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Resumen

Este trabajo va esencialmente encaminado a resolver la conjetura de Baradsipersuperficie
inmersa en la esfer8™ deR™*! es de tipo dos si, yodo si, tiene curvatura escalar constante
y curvatura media constante no nul&sta conjetura surgia rdz de los primeros intentos de
clasificar aquellas hipersuperficiesargtas cuya inmeréh se puede construir c@micamente dos
valores propios de su laplaciano. Los primeros resultados erimstase deben a los profesores
Barros, Chen y Garay.

Este ariculo se ha desarrollado en el marco de un proyecto de invegéiigaonjunto entre las
universidades de Granada y Murcia, y su v@nsiefinitiva se concréten el segundo semestre del
90 con motivo de una estancia corta del profesor Barros en la Universidad de Murcia.

Los autores desean expresar su agradecimiento a la DGICYT, por su soporte financiero, y al
Departamento de Mateaticas de la Universidad de Murcia, por las facilidades prestadas en la
confeccon de este trabajo.

Abstract

In this technical report, 2-type spherical hypersurfaces in the sg#ieré are characterized as
those having non-zero constant mean curvature and constant scalar curvature. Some applications
of this result are presented and discussed.

1. Introduction

In this paper, we deal with connected (but not necessarily compact) submanifolds of a Eu-
clidean m-spac&™. Such a submanifold/ is said to be of finite type if each component of
its position vectorr can be written as a finite sum of eigenfunctions of the Lapladiaof M
(through this paper we will usA f = —divV f, the Laplacian of\/ acting onC*°(M)), that is,

k
T =0+ E Tt,
t=1

whereAz, = iz (t = 1,..., k) andxg being a constant vector, which is nothing but the center
of mass ofM in E™ whenM is compact. If all eigenvalueg\y, ..., \x} are mutually different,
then)M is called ak-type submanifold (see, for instance, [Ch1] for details).

In terms of finite type submanifolds, a well-known result of T. Takahashi [Ta] says that a
submanifoldM in S**1 is of 1-type if and only ifM is a minimal submanifold d8”*+!. Moreover,
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when M is compact the center of massf in E*+2 is the center o§"*! in E**+2. Thus, M is
mass-symmetric i§" ! c E"*+2,

If one takes a compact hypersurfate (which is not a small hypersphere) §f+1 ¢ E"+2
with non-zero constant mean curvature and constant scalar curvature (for example, a non-minimal
isoparametric hypersurface) then it can be provedihas of 2-type (see Corollary 4.2 or [Ch2]).
The converse will be obtained in this paper, which can be viewed as a partial solution to a first
open problem stated by B.Y. Chen [Ch4, 1.4]. More precisely, we prove (Theorems 3.2 and 4.1)
that

A 2-type hypersurfacéd/ of the hyperspher&™*! in E"+2 has non-zero constant
mean curvature and constant scalar curvature.

Our first approach proves that given a 2-type spherical hypersukfathen it has constant mean
curvature if and only if it has constant scalar curvature, (see Theorem 3.2). This gives an affirma-
tive answer to another open problem stated by B.Y. Chen [Ch4, 1.6].

The behaviour of compact 2-type submanifolds$i! is quite different to that of compact
minimal ones irS™*!. In fact, while compact minimal submanifolds §#+! are always mass-
symmetric, this does not happen for compact 2-type submanifoRisfh In a joint paper of first
author and B.Y. Chen, [BCh], examples of hon-mass-symmetric compact 2-type submanifolds
in the sphere are given. These examples were obtained with high codimension. However, as a
consequence of our main result, it is proved that

Compact 2-type hypersurfaces®f+! are always mass-symmetric.

This also gives a partial answer to a third Chen'’s problem [Ch4, 1.1].
Finally, we will apply our results to study spherical Dupin hypersurfaces to get a local rigidity
theorem (see Theorem 5.1). In particular, the following is proved:

2-type Dupin hypersurfaces in the sphere with at most three distinct principal curva-
tures are isoparametric hypersurfaces.

This partially solves a fourth Chen’s open problem, [Ch4, 11.11].

Our Main Theorem and its corollaries (see Section 4) generalize the main results of [BG],
[HV1], Theorems 1 and 3 of [BChG], Theorem 2 of [Ch2], Theorem 4.5 of [Ch1, p. 279] and also
Theorems 1 and 2 of [Ch3].

2. Some basic preliminaries and lemmas

Let M be a hypersurface of the unit hypersph@te! in E*+2 which we will assume (without
loss of generality) centred at the origin[Bf+2. Denote byz the position vector of/ in E*+2
and byV and D the Levi-Civita connection of\/ and the normal connection @ in E"*2,
respectively. We also denote by A and H (respectively,H’) the second fundamental form of
M in E"*2, the Weingarten map a¥/ in S"*! and the mean curvature vector field/df in E*+2
(respectively, irS"t1). If A denotes the Laplacian af, then the following formula fo H was
computed in [BChG]:

AH = gwﬂ +2trApm + (Aa + alo’)N — (na® + n)z,
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where H' = aN, N being the unit normal vector field df/ in S”*1. HereVa? denotes the
gradientofo? andtrApy = > -, Ap, u Ei, where{Ey, ..., E,}is alocal orthonormal frame
tangent tal/. '

Now, assume that/ is of 2-type. Then its position vector I&*+2 can be written as

r=x9+x1+x2, With Az =Xz and Azs = Moo,

wherez is a constant vector ift"*? andz;, z» areE"*?—valued non-constant differentiable
functions on}\/.
From (2) and the well-known fact dkz = —nH, we have

AH =bH + ¢(z — xp),
1
whereb = \{ + Ay andc = — A1 \s.
n

Remark 2.1 Through this paper, we can assume thaf 0, otherwise last two authors have
proved in [FL] the non-existence of such hypersurfaces. Of couraé,if compact thewr # 0.

From (1) and (3) one gets the following formulae:
no’4+n=b—c+c<uzx>

and
<AH, X >=—c< xp, X >,

whereX denote any tangent vector field Ad.
By using (4) and (5) a nice expression for the tangential componehibfs found:

(AH)T = —nVa?2.
On the other hand, from (1) one has
(AH)T = gVoz2 + 2 tI‘ADH/.

Finally, an easy computation involving (6), (7) and Codazzi equation gives

3n

—ZVCMZ.

A(V@) =trApg =
Therefore, the following lemma is proved.

Lemma 2.2 ([BChG]) Let M be a 2-type hypersurface &!. ThenVa? is a principal direc-
tion with principal curvature—%na on the open sl = {p € M : Va?(p) # 0}.

Next lemma, which can also be found in [BChG], allows us to get a good information about
the above quoted open gét

Lemma 2.3 Let M be a 2-type hypersurface 8f*!. Then either M has constant mean curvature
or U is dense in M.



Publicaciones del Depto. de Matematicas 1 (1991), 1-14

For short, we writeh = (b — |0|?)a — Aaandg = na? +n + ¢ — b, and use (1), (3) and (6)
to get
cxo = nVa? + hN + gz.

Now, working onl{, choose a local orthonormal frame of principal directi¢#fs, . .., E,, } with
associated principal curvaturég, ..., u,}, E1 being in the direction oVa?, so thaty; =
—i%na. By using (9) we find the following formulae:
oy 3N
0 = Ei(czg) = {nEiEi(a”)+ 7ah+g}E1 (10)
+nE (a*) Vg, B

3n?
+{BW(R) — T -aBy(e?)}N

and

n
0 = Ej(czo) = nE;E1(c®)Ey +nEi(0®)) wi(E))E; (11)
k=2
+ Ej(h)N — [Ljth —I—gEJ’, i=2,...,n,

where we have writteV g, E; = Y, w¥(E;) Eg. In particular, one has

Lemma 2.4 Let M be a 2-type hypersurface 8f!. Then the following formulae hold @

2
Ei(h) = S%aEl(aQ), (12)
Ej(h)=0, j=2,....n, (13)
3
nELEr(a?) + ?nah +g=0. (14)

Finally, a straighforward computation from (12), (13) and Lemma 2.3 gives
h=n2a® +k, (15)

for a constank, holding anywhere oi/.

3. Spherical 2-type hypersurfaces with constant scalar curvature

We are going to computAca? in two different ways. First, by using (4) we find
nAa? = A < cxg,x >= —n < cxo, H > +n < cxg,x >

and then, from (9), we get
Ao? = —ah +g.

On the other hand,

Acd? = 20Aa—2|Val? 2)
= 2(b—|o*)a? - 2ah — 2|Val.

Now, we are ready to prove the following

4
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Proposition 3.1 Let M be a 2-type hypersurface 8f*!. Then the mean curvature does not
vanish anywhere on M.

Proof. First, we use (9) and (15) to get

Alzol? = 4na?|Val? + nab + n?at + 2kn2a? 3)

+2n(n+c—ba? +k* 4+ (n+c—b)>.

Now, assume there is a pointc M such thav(p) = 0. Then (3) yields
ntat + n?a® + 2kna + 2n(n + ¢ — b) + 4n?|Val? = 0, (4)
which holds good o#/, and then onV/, becausé/ is dense inV/. In particular, we have
n+c—b=—2n|Va(p).
On the other hand, (1) and (2) give us
n+c—b=—-2Va(p)*.
Hence

n+c—b=0=|Vap)?

Now, by carrying (7) into (4) we geta < 0, so thata does not change sign, becauseZ 0
(otherwise, M should be minimal ir§"*!). So, we can assume > 0 andk < 0. ThenAa(p) =
—h(p) = —k > 0, which cannot be hold becaugeis a minimun ofa (notice we are using
Af = —divVY).

Next, we are going to give the main result of this section, which gives an affirmative answer
to an open problem stated by B.Y. Chen [Ch4, I.6].

Theorem 3.2 Let M be a 2-type hypersurface 8f*t1. Then M has constant mean curvature if
and only if M has constant scalar curvature.

Proof. If « is a constant, theh so is because (15) and then? is also a constant. As a conse-
guence, we use the Gauss equation

lo|> =n?a®? —n(n—1)1+n
to getM has constant scalar curvature.
Conversely, suppose naW has constant scalar curvature. From (9) we find

1
Val = o (Pl = b2 g2,

that jointly with (1) and (2) leads to

4n? (b — |o)?)at + (h — 2n%a®)h + (g — 2n%a?)g — Plzo> = 0.

Finally, from here, (15) and Gauss equatiomust be a root of a polynomial with constant coef-
ficients and therefore is a constant.
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4. The main result

Let M be a 2-type hypersurface 8f*! ¢ E"*2, Considetd = {p € M : Va?(p) # 0}
which is a dense open subset/df unless it was empty and sd has constant mean curvature
(see Lemma 2.3). Lt be any point oi/ and denote byy(¢) the integral curve oF«a? through
the pointp € U. Now, (15) allows us to rewrite (14) along¢) as follows:

2, 5 3 54 5 3 1
ﬁ(a )—i—in a’+a +§ka+;(n+c—b) =0.
da\? . . . .
Let3 = ) Then it is easy to see that equation (1) can be reduced to the following first
order differential equation:
d 1
04£ +20 = —gn2a4 —a? - ;ka — EUH_C_ b).

From this equation we obtain the following solution:

3
4n2a?p = —§n4a4 —2n%a? — 6kn’a 3
—4n(n + ¢ —b)In(a) + C4,

where(; is some constant.
On the other hand, from (9) one has

4n*a’p = Alzo)? — (n?a® + k)2 — (na® + n+c—b)2 (4)
Therefore, (3) and (4) prove the following

Theorem 4.1 Let M be a 2-type hypersurface 8t! ¢ E"*2. Then M has constant mean
curvature.

The following result gives a nice characterization of compact 2-type hypersurfaces in the hy-
perspher&™*! ¢ E"*+2 and partially solves an open problem stated by B.Y. Chen [Ch4, 1.4].

Corollary 4.2 Let M be a compact hypersurface 8f*t! ¢ E"*2 which is not a small hyper-
sphere ofS™*!. Then M is of 2-type if and only if M has non-zero constant mean curvatarel
constant scalar curvature. Moreover, if M is of 2-typex and r are completely determined for
the eigenvalue$\;, A2} involved in the 2-type condition.

Proof. The necessary condition follows automatically from Theorems 4.1 and 3.2. Navanitl
T are constant, thep|? is also constant and so (1) allows us to write

AH = (\A|2 +n)H + (]A\z — noz2)x,

where we have useH = H' — z. As a consequence there exist two constantsysayds, such
that AH = rH + sz, with s # 0 because\/ is not a small hypersphere §f+!. Therefore, we
use Theorem 2.2 of [Chl, p. 257] to get thdtis of 2-type. Last claim of the statement follows
from Theorem 4.2 of [Ch1, p. 276].

Next result gives a partial answer to another open problem stated by B.Y. Chen [Ch4, |.1].

6
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Corollary 4.3 Let M be a compact 2-type hypersurface $ft! ¢ E"*2. Then M is mass-
symmetric irS”+1.

Proof. First, we use Theorem 4.1 to have (5), where both coefficietitst- n and| A|? — na? are
constant. MoreovetA|? — na? # 0 becauséV/ is assumed to be of 2-type &2 (notice that

|A|? = na? implies M is a small hypersphere and so of 1-type in some hyperplafi& bt and
then of 1-type ifE"*2). Thus we have

O:/ AHdU:(]A|2+n)/ Hdv+(|A|2—na2)/ zdv,
M M M

/ xdv = 0,
M

this means, the center of massidfis nothing but the origin o™ 2,

and so

Remark 4.4 We would like to point out that Theorem 4.1 and Corollaries 4.2 and 4.3 have been
also obtained, simultaneously and independently, by Hasanis and Vlachos in [HV2], where they
use a different method of proof.

5. Spherical 2-type Dupin hypersurfaces

A hypersurfacel/ of S"*! ¢ E"*+2 is called a Dupin hypersurface if the multiplicity of each
principal curvature is constant gvf and each principal curvature is constant along its associated
principal directions. In [CR1] it is proved that compact embedded Dupin hypersurfaces are con-
formal images of isoparametric hypersurfaces when the nugntsigprincipal curvatures ig < 2,
but this is not the case when> 3. In [Th], G. Thorbergsson proves that, in cohomology level,
compact embedded Dupin hypersurfaces are isoparametric. That result leads to the Cecil-Ryan’s
conjecture [CR2]A compact embedded Dupin hypersurface is Lie equivalent to an isoparametric
hypersurfaceThat holds whery < 3 [CR1, Mi]; otherwise, it can be found counterexamples to
the conjecture [PT, MO]. These facts suggest a close relation between compact embedded Dupin
hypersurfaces and isoparametric ones.

It is a well-known fact that isoparametric hypersurfaces®f! ¢ E"*2 with ¢ < 2 are
spheres and Riemannian products of spheres. When3, they were completely classified by
E. Cartan [Ca]. They are all homogeneous spaces and their multiplicities of principal curvatures
(mq, mgo, m3) and dimensions are listed in the adjoint table:

M" (m1,ma,m3) | n

SO(3)/Zs + Zo (1,1,1) 3

SU(3)/T? (2,2,2) 6

SP(3)/SP(1)3 (4,4,4) 12

F,/Spin(8) (8,8,8) 24
TABLE 1

Now, we are going to state and prove the main result of this section.

7
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Theorem 5.1 Let M be a Dupin hypersurface &**! with at most three distinct principal curva-
tures which is not a small hypersphere$ift'. Then M is of 2-type if and only if one the following
statements holds:

1) M is an open piece of a Riemannian prod8gt< S"~P.

2) M is an open piece of one of the hypersurfaces exhibited in Table 1.

Proof. The sufficient condition follows easily from results of above sections. Now, let us suppose
M is a 2-type hypersurface & *!. Then from Theorems 4.1 and 3.2 we know tfAdthas
constant mean curvature and constant scalar curvature. &inisea Dupin hypersurface it is
not difficult to see thal\/ is, in fact, an isoparametric hypersurface. Thus, we obtain the desired
conclusion, becaus® cannot have only one principal curvature.

As a consequence, we obtain the following.

Corollary 5.2 Let M be a Dupin hypersurface & which is not a small hypersphere. Then M
is of 2-type if and only if M is an open piece of one of the following hypersurfages: S?,
SO(3)/Zy + Zs.
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