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Resumen

Este trabajo va esencialmente encaminado a resolver la conjetura de Barros:Una hipersuperficie
inmersa en la esferaSm deRm+1 es de tipo dos si, y sólo si, tiene curvatura escalar constante
y curvatura media constante no nula.Esta conjetura surgió a ráız de los primeros intentos de
clasificar aquellas hipersuperficies esféricas cuya inmersión se puede construir conúnicamente dos
valores propios de su laplaciano. Los primeros resultados en esta lı́nea se deben a los profesores
Barros, Chen y Garay.

Este art́ıculo se ha desarrollado en el marco de un proyecto de investigación conjunto entre las
universidades de Granada y Murcia, y su versión definitiva se concretó en el segundo semestre del
90 con motivo de una estancia corta del profesor Barros en la Universidad de Murcia.

Los autores desean expresar su agradecimiento a la DGICYT, por su soporte financiero, y al
Departamento de Mateḿaticas de la Universidad de Murcia, por las facilidades prestadas en la
confeccíon de este trabajo.

Abstract

In this technical report, 2-type spherical hypersurfaces in the sphereSn+1 are characterized as
those having non-zero constant mean curvature and constant scalar curvature. Some applications
of this result are presented and discussed.

1. Introduction

In this paper, we deal with connected (but not necessarily compact) submanifolds of a Eu-
clidean m-spaceEm. Such a submanifoldM is said to be of finite type if each component of
its position vectorx can be written as a finite sum of eigenfunctions of the Laplacian∆ of M
(through this paper we will use∆f = −div∇f , the Laplacian ofM acting onC∞(M)), that is,

x = x0 +
k∑

t=1

xt,

where∆xt = λtxt (t = 1, . . . , k) andx0 being a constant vector, which is nothing but the center
of mass ofM in Em whenM is compact. If all eigenvalues{λ1, . . . , λk} are mutually different,
thenM is called ak-type submanifold (see, for instance, [Ch1] for details).

In terms of finite type submanifolds, a well-known result of T. Takahashi [Ta] says that a
submanifoldM in Sn+1 is of 1-type if and only ifM is a minimal submanifold ofSn+1. Moreover,
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whenM is compact the center of mass ofM in En+2 is the center ofSn+1 in En+2. Thus,M is
mass-symmetric inSn+1 ⊂ En+2.

If one takes a compact hypersurfaceM (which is not a small hypersphere) ofSn+1 ⊂ En+2

with non-zero constant mean curvature and constant scalar curvature (for example, a non-minimal
isoparametric hypersurface) then it can be proved thatM is of 2-type (see Corollary 4.2 or [Ch2]).
The converse will be obtained in this paper, which can be viewed as a partial solution to a first
open problem stated by B.Y. Chen [Ch4, I.4]. More precisely, we prove (Theorems 3.2 and 4.1)
that

A 2-type hypersurfaceM of the hypersphereSn+1 in En+2 has non-zero constant
mean curvature and constant scalar curvature.

Our first approach proves that given a 2-type spherical hypersurfaceM , then it has constant mean
curvature if and only if it has constant scalar curvature, (see Theorem 3.2). This gives an affirma-
tive answer to another open problem stated by B.Y. Chen [Ch4, I.6].

The behaviour of compact 2-type submanifolds inSn+1 is quite different to that of compact
minimal ones inSn+1. In fact, while compact minimal submanifolds inSn+1 are always mass-
symmetric, this does not happen for compact 2-type submanifolds inSn+1. In a joint paper of first
author and B.Y. Chen, [BCh], examples of non-mass-symmetric compact 2-type submanifolds
in the sphere are given. These examples were obtained with high codimension. However, as a
consequence of our main result, it is proved that

Compact 2-type hypersurfaces ofSn+1 are always mass-symmetric.

This also gives a partial answer to a third Chen’s problem [Ch4, I.1].
Finally, we will apply our results to study spherical Dupin hypersurfaces to get a local rigidity

theorem (see Theorem 5.1). In particular, the following is proved:

2-type Dupin hypersurfaces in the sphere with at most three distinct principal curva-
tures are isoparametric hypersurfaces.

This partially solves a fourth Chen’s open problem, [Ch4, II.11].
Our Main Theorem and its corollaries (see Section 4) generalize the main results of [BG],

[HV1], Theorems 1 and 3 of [BChG], Theorem 2 of [Ch2], Theorem 4.5 of [Ch1, p. 279] and also
Theorems 1 and 2 of [Ch3].

2. Some basic preliminaries and lemmas

Let M be a hypersurface of the unit hypersphereSn+1 in En+2 which we will assume (without
loss of generality) centred at the origin ofEn+2. Denote byx the position vector ofM in En+2

and by∇ andD the Levi-Civita connection ofM and the normal connection ofM in En+2,
respectively. We also denote byσ, A andH (respectively,H ′) the second fundamental form of
M in En+2, the Weingarten map ofM in Sn+1 and the mean curvature vector field ofM in En+2

(respectively, inSn+1). If ∆ denotes the Laplacian ofM , then the following formula for∆H was
computed in [BChG]:

∆H =
n

2
∇α2 + 2 trADH′ + (∆α + α|σ|2)N − (nα2 + n)x,
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whereH ′ = αN , N being the unit normal vector field ofM in Sn+1. Here∇α2 denotes the
gradient ofα2 andtrADH′ =

∑n
i=1 ADEi

H′Ei, where{E1, . . . , En} is a local orthonormal frame
tangent toM .

Now, assume thatM is of 2-type. Then its position vector inEn+2 can be written as

x = x0 + x1 + x2, with ∆x1 = λ1x1 and ∆x2 = λ2x2,

wherex0 is a constant vector inEn+2 andx1, x2 areEn+2–valued non-constant differentiable
functions onM .

From (2) and the well-known fact of∆x = −nH, we have

∆H = bH + c(x− x0),

whereb = λ1 + λ2 andc =
1
n

λ1λ2.

Remark 2.1 Through this paper, we can assume thatc 6= 0, otherwise last two authors have
proved in [FL] the non-existence of such hypersurfaces. Of course, ifM is compact thenc 6= 0.

From (1) and (3) one gets the following formulae:

nα2 + n = b− c + c < x, x0 >

and
< ∆H, X >= −c < x0, X >,

whereX denote any tangent vector field toM .
By using (4) and (5) a nice expression for the tangential component of∆H is found:

(∆H)T = −n∇α2.

On the other hand, from (1) one has

(∆H)T =
n

2
∇α2 + 2 trADH′ .

Finally, an easy computation involving (6), (7) and Codazzi equation gives

A(∇α) = trADH′ = −3n

4
∇α2.

Therefore, the following lemma is proved.

Lemma 2.2 ([BChG]) Let M be a 2-type hypersurface ofSn+1. Then∇α2 is a principal direc-

tion with principal curvature−3n

2
α on the open setU = {p ∈ M : ∇α2(p) 6= 0}.

Next lemma, which can also be found in [BChG], allows us to get a good information about
the above quoted open setU .

Lemma 2.3 Let M be a 2-type hypersurface ofSn+1. Then either M has constant mean curvature
or U is dense in M.
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For short, we writeh = (b− |σ|2)α−∆α andg = nα2 + n + c− b, and use (1), (3) and (6)
to get

cx0 = n∇α2 + hN + gx.

Now, working onU , choose a local orthonormal frame of principal directions{E1, . . . , En} with
associated principal curvatures{µ1, . . . , µn}, E1 being in the direction of∇α2, so thatµ1 =

−3n

2
α. By using (9) we find the following formulae:

0 = E1(cx0) = {nE1E1(α2) +
3n

2
αh + g}E1 (10)

+ nE1(α2)∇E1E1

+ {E1(h)− 3n2

2
αE1(α2)}N

and

0 = Ej(cx0) = nEjE1(α2)E1 + nE1(α2)
n∑

k=2

ωk
1 (Ej)Ek (11)

+ Ej(h)N − µjhEj + gEj , j = 2, . . . , n,

where we have written∇EjEi =
∑n

k=1 ωk
i (Ej)Ek. In particular, one has

Lemma 2.4 Let M be a 2-type hypersurface ofSn+1. Then the following formulae hold onU :

E1(h) =
3n2

2
αE1(α2), (12)

Ej(h) = 0, j = 2, . . . , n, (13)

nE1E1(α2) +
3n

2
αh + g = 0. (14)

Finally, a straighforward computation from (12), (13) and Lemma 2.3 gives

h = n2α3 + k, (15)

for a constantk, holding anywhere onM .

3. Spherical 2-type hypersurfaces with constant scalar curvature

We are going to compute∆α2 in two different ways. First, by using (4) we find

n∆α2 = ∆ < cx0, x >= −n < cx0,H
′ > +n < cx0, x >

and then, from (9), we get
∆α2 = −αh + g.

On the other hand,

∆α2 = 2α∆α− 2|∇α|2 (2)

= 2(b− |σ|2)α2 − 2αh− 2|∇α|2.
Now, we are ready to prove the following
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Proposition 3.1 Let M be a 2-type hypersurface ofSn+1. Then the mean curvatureα does not
vanish anywhere on M.

Proof. First, we use (9) and (15) to get

c2|x0|2 = 4n2α2|∇α|2 + n4α6 + n2α4 + 2kn2α3 (3)

+ 2n(n + c− b)α2 + k2 + (n + c− b)2.

Now, assume there is a pointp ∈ M such thatα(p) = 0. Then (3) yields

n4α4 + n2α2 + 2kn2α + 2n(n + c− b) + 4n2|∇α|2 = 0, (4)

which holds good onU , and then onM , becauseU is dense inM . In particular, we have

n + c− b = −2n|∇α(p)|2.

On the other hand, (1) and (2) give us

n + c− b = −2|∇α(p)|2.

Hence
n + c− b = 0 = |∇α(p)|2.

Now, by carrying (7) into (4) we getkα 6 0, so thatα does not change sign, becausek 6= 0
(otherwise,M should be minimal inSn+1). So, we can assumeα > 0 andk < 0. Then∆α(p) =
−h(p) = −k > 0, which cannot be hold becausep is a minimun ofα (notice we are using
∆f = −div∇f ).

Next, we are going to give the main result of this section, which gives an affirmative answer
to an open problem stated by B.Y. Chen [Ch4, I.6].

Theorem 3.2 Let M be a 2-type hypersurface ofSn+1. Then M has constant mean curvature if
and only if M has constant scalar curvature.

Proof. If α is a constant, thenh so is because (15) and then|σ|2 is also a constant. As a conse-
quence, we use the Gauss equation

|σ|2 = n2α2 − n(n− 1)τ + n

to getM has constant scalar curvature.
Conversely, suppose nowM has constant scalar curvature. From (9) we find

|∇α|2 =
1

4n2α2
{c2|x0|2 − h2 − g2},

that jointly with (1) and (2) leads to

4n2(b− |σ|2)α4 + (h− 2n2α3)h + (g − 2n2α2)g − c2|x0|2 = 0.

Finally, from here, (15) and Gauss equationα must be a root of a polynomial with constant coef-
ficients and thereforeα is a constant.
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4. The main result

Let M be a 2-type hypersurface ofSn+1 ⊂ En+2. ConsiderU = {p ∈ M : ∇α2(p) 6= 0}
which is a dense open subset ofM unless it was empty and soM has constant mean curvature
(see Lemma 2.3). Letp be any point ofU and denote byγ(t) the integral curve of∇α2 through
the pointp ∈ U . Now, (15) allows us to rewrite (14) alongγ(t) as follows:

d2

dt2
(α2) +

3
2
n2α4 + α2 +

3
2
kα +

1
n

(n + c− b) = 0.

Let β =
(

dα

dt

)2

. Then it is easy to see that equation (1) can be reduced to the following first

order differential equation:

α
dβ

dα
+ 2β = −3

2
n2α4 − α2 − 3

2
kα− 1

n
(n + c− b).

From this equation we obtain the following solution:

4n2α2β = −3
2
n4α4 − 2n2α2 − 6kn2α (3)

− 4n(n + c− b) ln(α) + C1,

whereC1 is some constant.
On the other hand, from (9) one has

4n2α2β = c2|x0|2 − (n2α3 + k)2 − (nα2 + n + c− b)2. (4)

Therefore, (3) and (4) prove the following

Theorem 4.1 Let M be a 2-type hypersurface ofSn+1 ⊂ En+2. Then M has constant mean
curvature.

The following result gives a nice characterization of compact 2-type hypersurfaces in the hy-
persphereSn+1 ⊂ En+2 and partially solves an open problem stated by B.Y. Chen [Ch4, I.4].

Corollary 4.2 Let M be a compact hypersurface ofSn+1 ⊂ En+2 which is not a small hyper-
sphere ofSn+1. Then M is of 2-type if and only if M has non-zero constant mean curvatureα and
constant scalar curvatureτ . Moreover, if M is of 2-type,α andτ are completely determined for
the eigenvalues{λ1, λ2} involved in the 2-type condition.

Proof. The necessary condition follows automatically from Theorems 4.1 and 3.2. Now, ifα and
τ are constant, then|A|2 is also constant and so (1) allows us to write

∆H = (|A|2 + n)H + (|A|2 − nα2)x,

where we have usedH = H ′ − x. As a consequence there exist two constants, sayr ands, such
that∆H = rH + sx, with s 6= 0 becauseM is not a small hypersphere ofSn+1. Therefore, we
use Theorem 2.2 of [Ch1, p. 257] to get thatM is of 2-type. Last claim of the statement follows
from Theorem 4.2 of [Ch1, p. 276].

Next result gives a partial answer to another open problem stated by B.Y. Chen [Ch4, I.1].
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Corollary 4.3 Let M be a compact 2-type hypersurface ofSn+1 ⊂ En+2. Then M is mass-
symmetric inSn+1.

Proof. First, we use Theorem 4.1 to have (5), where both coefficients|A|2 +n and|A|2−nα2 are
constant. Moreover,|A|2 − nα2 6= 0 becauseM is assumed to be of 2-type inEn+2 (notice that
|A|2 = nα2 impliesM is a small hypersphere and so of 1-type in some hyperplane ofEn+2 and
then of 1-type inEn+2). Thus we have

0 =
∫

M
∆Hdv = (|A|2 + n)

∫

M
Hdv + (|A|2 − nα2)

∫

M
xdv,

and so ∫

M
xdv = 0,

this means, the center of mass ofM is nothing but the origin ofEn+2.

Remark 4.4 We would like to point out that Theorem 4.1 and Corollaries 4.2 and 4.3 have been
also obtained, simultaneously and independently, by Hasanis and Vlachos in [HV2], where they
use a different method of proof.

5. Spherical 2-type Dupin hypersurfaces

A hypersurfaceM of Sn+1 ⊂ En+2 is called a Dupin hypersurface if the multiplicity of each
principal curvature is constant onM and each principal curvature is constant along its associated
principal directions. In [CR1] it is proved that compact embedded Dupin hypersurfaces are con-
formal images of isoparametric hypersurfaces when the numberg of principal curvatures isg 6 2,
but this is not the case wheng > 3. In [Th], G. Thorbergsson proves that, in cohomology level,
compact embedded Dupin hypersurfaces are isoparametric. That result leads to the Cecil-Ryan’s
conjecture [CR2]:A compact embedded Dupin hypersurface is Lie equivalent to an isoparametric
hypersurface.That holds wheng 6 3 [CR1, Mi]; otherwise, it can be found counterexamples to
the conjecture [PT, MO]. These facts suggest a close relation between compact embedded Dupin
hypersurfaces and isoparametric ones.

It is a well-known fact that isoparametric hypersurfaces ofSn+1 ⊂ En+2 with g 6 2 are
spheres and Riemannian products of spheres. Wheng = 3, they were completely classified by
E. Cartan [Ca]. They are all homogeneous spaces and their multiplicities of principal curvatures
(m1,m2,m3) and dimensionsn are listed in the adjoint table:

Mn (m1,m2,m3) n

SO(3)/Z2 + Z2 (1, 1, 1) 3
SU(3)/T 2 (2, 2, 2) 6
SP (3)/SP (1)3 (4, 4, 4) 12
F4/Spin(8) (8, 8, 8) 24

TABLE 1

Now, we are going to state and prove the main result of this section.
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Theorem 5.1 Let M be a Dupin hypersurface ofSn+1 with at most three distinct principal curva-
tures which is not a small hypersphere ofSn+1. Then M is of 2-type if and only if one the following
statements holds:

1) M is an open piece of a Riemannian productSp × Sn−p.
2) M is an open piece of one of the hypersurfaces exhibited in Table 1.

Proof. The sufficient condition follows easily from results of above sections. Now, let us suppose
M is a 2-type hypersurface ofSn+1. Then from Theorems 4.1 and 3.2 we know thatM has
constant mean curvature and constant scalar curvature. SinceM is a Dupin hypersurface it is
not difficult to see thatM is, in fact, an isoparametric hypersurface. Thus, we obtain the desired
conclusion, becauseM cannot have only one principal curvature.

As a consequence, we obtain the following.

Corollary 5.2 Let M be a Dupin hypersurface ofS4 which is not a small hypersphere. Then M
is of 2-type if and only if M is an open piece of one of the following hypersurfaces:S1 × S2,
SO(3)/Z2 + Z2.
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[FL] A. Ferŕandez and P. Lucas,Null finite-type hypersurfaces in space forms, Kodai Math.
J.14 (1991), 406–419.

[HV1] T. Hasanis and T. Vlachos,A local classification of 2-type surfaces inS3, Proc. Amer.
Math. Soc.112(1991), 533–538.

[HV2] T. Hasanis and T. Vlachos,Spherical 2-type hypersurfaces, J. of Geom.40 (1991), 82–
94.

[Mi] R. Miyaoka,Compact Dupin hypersurfaces with three principal curvatures, Math. Z.,
187(1984), 433–452.

[MO] R. Miyaoka and T. Ozawa,Construction of taut embeddings and Cecil-Ryan conjecture,
in Proc. of Symp. in Diff. Geom. 1988.

[PT] U. Pinkall and G. Thorbergsson,Deformations of Dupin hypersurfaces, Proc. A.M.S.,
107(1989), 1037–1043.

[Ta] T. Takahashi,Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan,18
(1966), 380–385.

[Th] G. Thorbergsson,Dupin hypersurfaces, Bull. London Math. Soc.,15 (1983), 493–498.

9


