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1. Introduction.

Euclidean submanifolds of finite type were introduced few years ago by B.-Y.Chen, [2], [3].
Since then there has been an increasingly interesting development of this subject, where one can
observe that most papers concern to compact finite type submanifolds. This is because in such case
the finite type structure can be characterized by a practical condition on the Laplacian of the mean
curvature vector (seeS1), which turns out to be only a necessary condition when the submanifold
is non-compact.

Frequently, the submanifolds constructed over a given submanifold are non-compact. For
example, given a compact submanifold M of the unit sphereSn+1 centered at the origin inEn+2,
one constructs the punctured cone CM-{0} shaped on M. In [8], J.Simons proved that if M is
minimal in Sn+1 then CM-{0} is minimal inEn+2. In the finite type submanifolds terminology,
see [9], Simons’result says that if M is of 1-type then CM-{0} is also of 1-type.

In that context, the following problem arises in a natural way.

PROBLEM:“To what extent the finite type character of an Euclidean submanifold
affects the finite type condition of a manifold shaped on it?”

In order to solve that question the second author, [6], studied finite type punctured cones CM-
{0} and got a first answer. Actually he proved that a punctured cone shaped on M is of finite type
if and only if M is minimal inSn+1.

In this paper we construct non-compact ruled manifolds on a certain class of compact spherical
submanifolds with the aim of testing an answer to the proposed problem. Just now, we want to
point out the important differences between our case and the cone one. In fact, our ruled manifolds
are never minimal. Furthermore, they are of finite type if and only if they are generalized cylinders
shaped on a finite type spherical submanifold. Hence, whereas we could find only a special kind
of 1-type punctured cones, and then minimal, here we can get a k-type ruled manifold for any
k ∈ Z+, k > 2, all of them being generalized cylinders.

It seems to be that cylinders can be guessed to play a chief role in order to give a classification
of non-compact finite type euclidean submanifolds. Indeed it was shown, in [4], that the only
finite type tubes inE3 are the circular cylinders and, in [7], that euclidean hypersurfaces whose
coordinate functions are eigenfunctions of its Laplacian are either minimal or spheres or circular
cylinders. Also, in a recent paper, [5], B.-Y.Chen has shown that a null 2-type surface inE3 is an
open piece of a circular cylinder.
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Finally we mention that if we choose a totally umbilical hypersurface M ofSn+1, our ruled
manifolds are nothing but the classical circular cylinders and circular cones, depending on M is
totally geodesic or not. Therefore circular cones are not of finite type. This fact was also implicitly
contained in [6].

2. Preliminaries.

A p-dimensional submanifoldMp of the Euclidean spaceEn+2 is said to be of k-type if the
position vectorx of Mp in En+2 can be decomposed as

x = c + xi1 + · · ·+ xik ,

such that
∆xij = λijxij ,

andλi1 < · · · < λik , wherec ∈ En+2, λij ∈ IR and∆ represents the Laplacian ofMp with
respect to the induced metric.Mp is called of null k-type if one of theλ ’s is zero. IfMp is a
k-type Euclidean submanifold there exists a polynomial of degree k,P (t), such thatP (∆)H̃ = 0,
H̃ being the mean curvature vector ofMp in En+2. WhenMp is compact that is also a sufficient
condition ofMp to be of finite type (see [2], pg. 255).

Let us denote bySn+1 the (n+1)-dimensional unit sphere centered at the origin ofEn+2 ,
choose a totally umbilical compact hypersurfaceM̄n of Sn+1 and supossēMn is given as the
intersection ofSn+1 with an affine hyperplane P. Finally takeMp as a compact p-dimensional
submanifold ofM̄n.

SinceSn+1 is simply connected, we may choose a global unit vector fieldv, normal toM̄n in
Sn+1 which satisfiesAvX = ρX for a constantρ ∈ IR and any vector fieldX of M̄n. HereA
is the Weingarten map of̄Mn in Sn+1. We construct a (p+1)-dimensional ruled submanifold over
Mp, sayM∗, in the following way:

Mp × (−ε, ε) −→ En+2

(m, t) −→ m + tv

whereε > 0 is the largest real number for whichM∗ is isometrically imbedded inEn+2.
Our first task will be to compute the mean curvature vector fieldsH̄ andH̃ of M∗ andMp,

respectively, inEn+2 . To do that letσ be the second fundamental form ofMp in En+2 . Let
us write H’ andξ for the mean curvature vector ofMp in M̄n and the position vector onMp,
respectively. Letm be any point ofMp and choose a local frame{Ei}p

i=1 tangent toMp and so
that∇EjEi(m) = 0, ∇ being the Levi–Civita connection onMp. By parallel transport inEn+2

along the rays ofM̄n, we can extend{Ei}p
i=1 , ξ andv to vector fields inM̄n which we also

denote by the same letters.
First, by a straightforward computation, one gets

H̃ (m) = (H ′ + ρv − ξ)(m).

At each “time” t∈ (−ε, ε) we have onM∗ a homotetic copy ofMp, Mp
t , which is located on a

certain sphereSn+1
t (r) of radiusr(t) depending on t. Then we have

∇EiEi(m, t) = ∇t
Ei

Ei(m, t) + σt(Ei, Ei)− 1
r
ξ, (i = 1, . . . , p),
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where∇t andσt are the Levi–Civita connection and the second fundamental form ofMp
t in En+2,

respectively. Now sinceMp andMp
t are homotetic and∇EiEi(m) = 0 , we obtain

∇EiEi(m, t) =
1

r(t)
[σ(Ei, Ei)(m)− ξ(m)].

Observe that{E1, . . . , Ep, v} is a local tangent frame toM∗. Furthermore, asv is the unit tangent
field along the rays∂/∂t we have∇vv(m, t) = 0 and then

H̄ (m, t) =
1

p + 1
{

p∑

i=1

∇EiEi(m, t)}N =
p

p + 1
1
r
{H ′(m)− ξ(m)},

where N means normal component. Thus if we writef(t) = 1
r(t) we get

H̄ (m, t) =
p

p + 1
f(t){H ′(m)− ξ(m)}.

Before going any further, we would like to derive some easy but quite interesting consequences
from the formula (3). First we want to point out that evenMp is minimal in eitherM̄n or Sn+1,
M∗ is never minimal. This fact follows directly from( 3) and makes the difference with that
situation given for the punctured cones shaped onMp (see [8]).

Let us denote byη a unit vector field in the direction of̄H, so thatH̄ = αη, α being the mean
curvature ofM∗ in En+2. Then we have:

Proposition 2.1 With the above notations,Mp is a minimal submanifold of̄Mn if and only if

α2(m, t) = (
p

p + 1
)2f2(t).

Proof. An easy computation from (3) yields

α2(m, t) = (
p

p + 1
)2f2(t){α′2(m) + 1},

α′2 =< H ′,H ′ > being the mean curvature ofMp in M̄n.
In other words, ifMp is minimal inM̄n then the mean curvature ofM∗ at a point depends

exclusively on the height from such point toMp.
Similarly one gets:

Proposition 2.2 M∗ is a generalized cylinder shaped onMp if and only if the mean curvatureα
of M∗ is a constant along the rays ofM∗. Moreover, in such case,Mp is minimal inSn+1 if and
only if α2 = ( p

p+1)2 .

Proof. We only need to prove the sufficient condition. Supposeα2 is a constantµ(m) along the
rays. Then from (4)

µ(m) = (
p

p + 1
)2f2(t){α′2(m) + 1}

holds along the rays, for each fixed pointm ∈ Mp. Therefore f does not depend on t. By recalling
the construction ofM∗ this means thatr(t) = 1, for all t, and thenM∗ is isometric toMp × IR,
a generalized cylinder overMp.
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Second part follows from Proposition 2.1.
Remark. It can be compared Proposition 2.2 and Theorem 2.15 in [1], where it has been shown
an analogous result for another kind of ruled submanifolds ofEn+2.

At this point we go back to our central computations. By using arguments of Elementary
Geometry one can find

f(t) =
1

1− γt
,

whereγ is a constant given byγ = tan θ , θ being the angle betweenv ande, heree means the
unit normal vector to the planeP which determinesM̄n. Note thatM̄n has to be totally umbilical
to make sure thatv ande make a constant angle on̄Mn. Moreover,f(t) is always positive since
r(t) is the radius of a sphere.

In order to know the behaviour of the higher order Laplacians of the mean curvature vector
we are going to give a general formulation of the Laplacian of certain vector fields defined on
M∗. Let g be aC∞ real function on the open interval(−ε, ε) andX a C∞ vector field onMp,
not necessarily tangent. The parallel transport ofX along the rays onM∗ will also be denoted by
X. ThengX(m, t) = g(t)X(m) is aC∞ vector field onM∗. Now let us consider aC∞ function
F (m, t) onM∗ and define for eacht ∈ (−ε, ε) the following associatedC∞ function onMp :

Ft : Mp −→ IR; Ft(m) = F (m, t).

For a tangent vector fieldEi, i=1, . . . , p, choose a curveαi : Ji −→ Mp starting atm in the
direction ofEi(m), i.e.,αi(0) = m andα

′
i(0) = Ei(m) . Then the curveβi : Ji −→ M∗ given

by βi(s) = αi(s/k) + tv(s/k), wherek = 1 − ρt (recall thatAv = ρI ), takes initial conditions
βi(0) = m + tv andβ

′
i(0) = Ei(m, t) . Since

(EiF )(m, t) =
d

ds
|s=0(F ◦ β)(s) =

d

ds
|s=0Ft(α(s/k)) =

1
k
(dFt)m(Ei(m)),

we get

(EiF )(m, t) =
1
k
(EiFt)(m).

Thus using (2) and (6) we have

k = r and γ = ρ = tan θ.

On the other hand ifZ is aC∞ vector field over an Euclidean p-dimensional submanifold N and
∆ represents its Laplacian, we can write∆Z in the following way (see [2], pg. 270):

∆Z(q) = −{
p∑

i=1

∇Ei∇EiZ −∇∇Ei
EiZ}(q),

where{Ei}p
i=1 is a local tangent frame in a neighbourhood ofq ∈ N, ∇ is the Euclidean connec-

tion and∇ the induced connection on N.
Finally we have the following:

Lemma 2.3 Write ∆ and∆ for the Laplacians ofM∗ andMp, respectively, and letg andX be
as before. Then we have

∆(gX)(m, t) = gf2(t)∆X(m) + {pf(t)ρ
∂g

∂t
− ∂2g

∂t2
}X(m).
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Proof. Choose a local frame{Ei}p
i=1 of tangent fields toMp satisfying the equality∇EiEj(m) =

0 at a pointm ∈ Mp and letv = ∂/∂t be the unit tangent field toM∗ along the rays. Then if∇∗
is the Levi-Civita connection onM∗ we have∇∗vv = 0 . From (8) we get

∆(gX)(m, t) = −{
p∑

i=1

(∇Ei∇Ei(gX)−∇∇∗Ei
Ei(gX))(m, t) +∇v∇v(gX)}.

Now if we writegX = (gXj)j , j=1, . . . ,n+2, thengXj ∈ C∞(M∗), and we can use (6) to obtain

∇Ei(gX)(m, t) = (Ei(gXj))j(m, t) = (fg(EiXj(m)))j

and
∇Ei∇Ei(gX)(m, t) = gf2(t)((EiEiXj)(m))j = gf2(t)∇Ei∇EiX(m).

On the other hand from (2) one sees that∇∗Ei
Ei(m, t) = fρv, and then

∇∇∗Ei
Ei(gX)(m, t) = ρf(t)

∂g

∂t
X(m).

One also has

∇v∇v(gX)(m, t) =
∂2g

∂t2
X(m),

so that putting together (9) through (12) we get the lemma.

3. Higher Order Laplacians of the Mean Curvature Field.

In order to get a formula for the Laplacian of̄H, an easy computation from (8) yields

∆ξ = −
p∑

i=1

∇EiEi = −pH̃ = −p{H ′ + ρv − ξ},

having chosen, as usually, a local frame atm, {Ei}p
i=1 , satisfying∇EiEj(m) = 0. Then, from

(3) and Lemma 2.3 , one gets

∆H̄ (m, t) =
p

p + 1
f3(t){∆H ′ + [p + ρ2(p− 2)](H ′ − ξ) + pρv}(m).

Let us seek for a general expression of the higher order Laplacians ofH̄. To this end, we define
the functions

Fi,j(t) = φi,jf
2i+1(t)

and
Gi(t) = aif

2i+1(t),

where the constansφi,j andai are defined by

φi,i = 1, i = 0, 1, . . .

φi,j = φi−1,j−1 + ρ2(p− 2i)(2i− 1)φi−1,j , 1 6 j < i, i = 2, 3, . . .

5



Arch. Math. (Basel) 57 (1991), 97–104

{
a0 = 0
ai = pρ

∑i
j=1(pρ2)j−1φi,j i = 1, 2, . . .

φi,0 = [p + ρ2(p− 2i)(2i− 1)]φi−1,0 + pρai−1, i = 1, 2, . . .

On the other hand, from (8) one has

∆v = pρ{H ′ + ρv − ξ}.
Then we obtain the following:

Proposition 3.1 With the above notation, we have for anyk ∈ N :

∆k
H̄ (m, t) =

p

p + 1
{Fk,k∆kH ′ + Fk,k−1∆k−1H ′ + . . . + Fk,1∆H ′ + Fk,0(H ′ − ξ) + Gkv}.

Proof. It is a simple induction following Lemma 2.3 and the above set of formulas (13) through
(19).

4. Statement and Proof of the Main Result.

At this point it may be worth recalling the situation we are. We have a compact p-dimensional
submanifoldMp of a totally umbilical hypersurfacēMn of the unit sphereSn+1 centered at
the origin ofEn+2 . By using the umbilicity ofM̄n we have constructed inS1 a ruled (p+1)-
dimensional submanifold ofEn+2 which we have denoted byM∗. Now we are ready to give a
solution to the problem stated inS0 for such a class of ruled manifolds.

Theorem 4.1 The ruled submanifoldM∗ is of finite typek if and only if it is a generalized cylinder
of null k-type,M∗ = Mp × IR, constructed on a(k − 1) -type spherical submanifoldMp.

Proof. As one said inS1, if M∗ is of k -type, then its mean curvature vector satisfies

∆k
H̄ + d1∆

(k−1)
H̄ + · · ·+ dk−1∆H̄ + dkH̄ = 0,

wheredi , i=1, . . . , k , are real numbers (dk being nonzero because it is the product of the nonzero
eigenvalues used to build the immersion ofM∗ in En+2 ) and∆ is the Laplacian ofM∗.

Assumeρ 6= 0, i.e.,M̄n is not totally geodesic inSn+1. Hence by using Proposition 3.1 and
(20) we have

Fk,k∆kH ′ + {Fk,k−1 + d1Fk−1,k−1}∆k−1H ′ + · · ·+
+{Fk,1 + d1Fk−1,1 + · · ·+ dk−1F1,1}∆H ′ +

+{Fk,0 + d1Fk−1,0 + · · ·+ dk−1F1,0 + dkF0,0}(H ′ − ξ) +
+{Gk + d1Gk−1 + · · ·+ dk−1G1}v = 0, (21)

where, as always,∆ is the Laplacian ofMp and H’ the mean curvature vector ofMp in M̄n.
From (5) and (7) one getsr(t) = 1 − ρt . Now multiplying (21) byr2k+1 and usingFh,j(t) =
φh,jf

2h+1(t) we obtain

φk,k∆kH ′ + {φk,k−1 + d1φk−1,k−1r
2}∆k−1H ′ + · · ·+

+{φk,1 + d1φk−1,1r
2 + · · ·+ dk−1φ1,1r

2(k−1)}∆H ′ +

+{φk,0 + d1φk−1,0r
2 + · · ·+ dk−1φ1,0r

2(k−1) + dkφ0,0r
2k}(H ′ − ξ) +

{ak + d1ak−1r
2 + · · ·+ dka1r

2(k−1)}v = 0. (22)
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Therefore the coefficients of∆iH ′, (i = 1, . . . , k), (H ′ − ξ) andv are polynomials of different
degrees. Then for any fixed pointm ∈ Mp, asdk 6= 0, we will haveH ′ − ξ = 0, which is a
contradiction.

Henceρ = 0. That meansf ≡ 1 and thenM̄n is a totally geodesic hypersurface ofSn+1.
ThusM∗ is isometric to the product manifoldMp × IR, i.e.,M∗ is a generalized cylinder. By the
relationship between the second fundamental form ofMp × IR and that ofMp we can assert that
if H̄ satisfies (20), theñH satisfies also the same equation, whereH̃ denotes the mean curvature
vector ofMp in En+2. As Mp is compact, we have thatMp is of l -type, withl 6 k. SinceM∗ is
a cylinder,l = k − 1 . The converse is trivial.
Remark. In the above proof we can also deduceMp is of finite type by means of formula (22) .
Indeed if we useρ = 0 in the equations (16) through (19) we obtain

Fh,j = φh,j andGh = 0 for all h and j. (23)

Thus taking (23) in (22) and recalling (1), we finally get

∆kH̃ + d1∆k−1H̃ + · · ·+ dk−1∆H̃ + dkH̃ = 0.

SinceMp is compact, then from (24)Mp is of finite type.
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