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1. Introduction.

Euclidean submanifolds of finite type were introduced few years ago by B.-Y.Chen, [2], [3].
Since then there has been an increasingly interesting development of this subject, where one can
observe that most papers concern to compact finite type submanifolds. This is because in such case
the finite type structure can be characterized by a practical condition on the Laplacian of the mean
curvature vector (se8'), which turns out to be only a necessary condition when the submanifold
iS non-compact.

Frequently, the submanifolds constructed over a given submanifold are non-compact. For
example, given a compact submanifold M of the unit spt&re! centered at the origin i 2,
one constructs the punctured cone GM- shaped on M. In [8], J.Simons proved that if M is
minimal in S”*! then CM{0} is minimal in E"*2. In the finite type submanifolds terminology,
see [9], Simons'result says that if M is of 1-type then GBFis also of 1-type.

In that context, the following problem arises in a natural way.

PROBLEM!To what extent the finite type character of an Euclidean submanifold
affects the finite type condition of a manifold shaped on it?”

In order to solve that question the second author, [6], studied finite type punctured cones CM-
{0} and got a first answer. Actually he proved that a punctured cone shaped on M is of finite type
if and only if M is minimal in.S"™*+1,

In this paper we construct non-compact ruled manifolds on a certain class of compact spherical
submanifolds with the aim of testing an answer to the proposed problem. Just now, we want to
point out the important differences between our case and the cone one. In fact, our ruled manifolds
are never minimal. Furthermore, they are of finite type if and only if they are generalized cylinders
shaped on a finite type spherical submanifold. Hence, whereas we could find only a special kind
of 1-type punctured cones, and then minimal, here we can get a k-type ruled manifold for any
k€ ZT, k> 2, all of them being generalized cylinders.

It seems to be that cylinders can be guessed to play a chief role in order to give a classification
of non-compact finite type euclidean submanifolds. Indeed it was shown, in [4], that the only
finite type tubes ink? are the circular cylinders and, in [7], that euclidean hypersurfaces whose
coordinate functions are eigenfunctions of its Laplacian are either minimal or spheres or circular
cylinders. Also, in a recent paper, [5], B.-Y.Chen has shown that a null 2-type surfatdsman
open piece of a circular cylinder.
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Finally we mention that if we choose a totally umbilical hypersurface M®f!, our ruled
manifolds are nothing but the classical circular cylinders and circular cones, depending on M is
totally geodesic or not. Therefore circular cones are not of finite type. This fact was also implicitly
contained in [6].

2. Preliminaries.

A p-dimensional submanifold/? of the Euclidean spacE™*? is said to be of k-type if the
position vectorr of M? in E"*+2 can be decomposed as

r=cH+xy + -+ Ty,

such that
Az = Nz,

and);, < --- < )\, Wherec € E"*Q,/\ij € IR and A represents the Laplacian af? with
respect to the induced metrid4? is called of null k-type if one of the\ ’s is zero. IfMP? is a
k-type Euclidean submanifold there exists a polynomial of degré&®, such thatP(A)H = 0,

H being the mean curvature vector&f” in E"2. WhenM? is compact that is also a sufficient
condition of M? to be of finite type (see [2], pg. 255).

Let us denote bys™*! the (n+1)-dimensional unit sphere centered at the origii®sf?,
choose a totally umbilical compact hypersurfag® of S"*! and supossé/™ is given as the
intersection ofS™*! with an affine hyperplane P. Finally takeg” as a compact p-dimensional
submanifold ofd/™.

SincesS™ ! is simply connected, we may choose a global unit vector figlbrmal toM ™ in
S+ which satisfiesd, X = pX for a constanp € IR and any vector field{ of M". Here A
is the Weingarten map af/™ in S"*1. We construct a (p+1)-dimensional ruled submanifold over
MP, sayM*, in the following way:

MP x (—g,e) — E™F2
(m,t) — m+tv

wheres > 0 is the largest real number for whidi * is isometrically imbedded if"+2.

Our first task will be to compute the mean curvature vector fiéfdand A of M* and M?,
respectively, inE"*2. To do that leto be the second fundamental form df? in E"+2. Let
us write H’ and¢ for the mean curvature vector af” in AM™ and the position vector of/?,
respectively. Lein be any point ofA/? and choose a local fram{e?; }_; tangent taM/? and so
that Vg, E;(m) = 0, V being the Levi—Civita connection al”. By parallel transport ingnt2
along the rays ofl/", we can extend E;}Y_, , ¢ andwv to vector fields indM™ which we also
denote by the same letters.

First, by a straightforward computation, one gets

H (m) = (H'+ pv = &)(m).

At each “time” te (—&, ) we have onM/* a homotetic copy of\/?, M?, which is located on a
certain spheré!" ™! (r) of radiusr(t) depending on t. Then we have

_ 1
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whereV? ando! are the Levi—Civita connection and the second fundamental fodufaih E™+2,
respectively. Now sincé/? andM? are homotetic an¥ g, E;(m) = 0, we obtain

= 1

Vi Ei(m,t) = @[U(Eu Ei)(m) — &(m)].
Observe thaf 1, . . ., Ep, v} is alocal tangent frame td/*. Furthermore, as is the unit tangent
field along the ray® /0t we haveV,v(m,t) = 0 and then

p
H (m,t) = — (3" Ve Bim )Y = 2 {1/ (m) = (m)},

where N means normal component. Thus if we wfite) = L _we get

r(t)

T p /

H (m,t) = e 1S OUH (m) = &(m)}.
Before going any further, we would like to derive some easy but quite interesting consequences
from the formula (3). First we want to point out that ev&ff is minimal in eitherM™ or S"*1,
M* is never minimal. This fact follows directly fromi3) and makes the difference with that
situation given for the punctured cones shapedfh(see [8]).

Let us denote by a unit vector field in the direction off, so thatdd = an, @ being the mean

curvature ofM* in E™*2, Then we have:

Proposition 2.1 With the above notationg/? is a minimal submanifold af/™ if and only if
2(m.1) = (—P 2204,
Proof. An easy computation from (3) yields

_92 p 2 r2 2
a“(m,t) = (—— t){a“(m) + 1},
(m,1) (p—i-l)f(){ (m) +1}
a'? =< H', H' > being the mean curvature 8f? in M".
In other words, ifM? is minimal in M™ then the mean curvature af* at a point depends
exclusively on the height from such point i&?.
Similarly one gets:

Proposition 2.2 M* is a generalized cylinder shaped ai? if and only if the mean curvatur@
of M* is a constant along the rays a8 *. Moreover, in such caséy/? is minimal inS™*! if and
only if @ = (;£7)*.
Proof. We only need to prove the sufficient condition. Suppa$és a constant(m) along the
rays. Then from (4)
P 2.2 2
= (—— t 1
p(m) (p—l—l) fr@{a™(m) + 1}
holds along the rays, for each fixed pointe MP. Therefore f does not depend on t. By recalling
the construction ofi/* this means that(¢) = 1, for all ¢, and then\/* is isometric toM? x IR,
a generalized cylinder oved®.
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Second part follows from Proposition 2.1.

Remark. It can be compared Proposition 2.2 and Theorem 2.15 in [1], where it has been shown
an analogous result for another kind of ruled submanifolds"vf?.

At this point we go back to our central computations. By using arguments of Elementary
Geometry one can find .

=1
where~ is a constant given by = tan @ , 6 being the angle betweanande, heree means the
unit normal vector to the plan which determines/”. Note that)M™ has to be totally umbilical
to make sure that ande make a constant angle dd™. Moreover, f(t) is always positive since
r(t) is the radius of a sphere.

In order to know the behaviour of the higher order Laplacians of the mean curvature vector
we are going to give a general formulation of the Laplacian of certain vector fields defined on
M*. Let g be aC* real function on the open intervél-c, ) and X aC> vector field onM?,
not necessarily tangent. The parallel transpotXadlong the rays od/* will also be denoted by
X. ThengX (m,t) = g(t)X (m) is aC> vector field on)M*. Now let us consider &> function
F(m,t) on M* and define for eache (—¢, ¢) the following associated* function onM? :

Fy: MP — IR; Fi(m) = F(m,t).

For a tangent vector field;, i=1, ..., p, choose a curwe; : J, — MP starting atm in the
direction of E; (1), i.e.,a;(0) = m anda;(0) = E;(m) . Then the curves; : J; — M* given
by Bi(s) = ai(s/k) + tv(s/k), wherek = 1 — pt (recall thatA, = pI'), takes initial conditions
3:(0) = m + tv and3;(0) = E;(m,t) . Since

(B)Yom, 1) = |oo(F 0 )(s) = |soFila(s/R)) = 1 (B (Brm),
we get
(BiF)(m.t) = 7 (EiFy)(m).
Thus using (2) and (6) we have
k=r and ~=p=tané.

On the other hand i is aC* vector field over an Euclidean p-dimensional submanifold N and
A represents its Laplacian, we can writ& in the following way (see [2], pg. 270):

p
i=1

where{ E;}!_, is a local tangent frame in a neighbourhood;af N, V is the Euclidean connec-
tion andV the induced connection on N.
Finally we have the following:

Lemma 2.3 Write A and A for the Laplacians of\/* and M?, respectively, and lef and X be
as before. Then we have

dg 07

AgX)(m, 1) = g (AX (m) +{pf (Dp%, — 53} X (m).
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Proof. Choose a local framgE; }”_, of tangent fields td/? satisfying the equality g, E;(m) =
0 ata pointm € MP and letv = /0t be the unit tangent field td/* along the rays. Then ¥*
is the Levi-Civita connection on/* we haveV;v = 0. From (8) we get

p

AlgX)(m,t) = —{> (V5 VE(9X) - Vv, 2(9X))(m, t) + Vo Vy(9X)}.
i=1

Now if we write g X = (¢X;); ,j=1, ...,n+2, they X, € C>°(M*), and we can use (6) to obtain

Vi (9X)(m,t) = (Ei(9X;));(m, t) = (fg(EiX;(m)));
and o o
Vi Ve (9X)(m,t) = g f* () (BiEiX;)(m)); = ¢f*()VE V5, X (m).
On the other hand from (2) one sees tRgt £;(m, t) = fpv, and then
_ dg
Vg, £:(9X)(m, 1) = pf (1) 5, X (m).
One also has
VoVau(gX)(m,t) = @X(m)
v v g Y - 6t2 9
so that putting together (9) through (12) we get the lemma.

3. Higher Order Laplacians of the Mean Curvature Field.

In order to get a formula for the Laplacian Bf, an easy computation from (8) yields

p

A{ == VgE =-pH = —p{H +pv - &},
=1

having chosen, as usually, a local framerat{ E;}"_, , satisfyingV g, E;(m) = 0. Then, from
(3) and Lemma 2.3, one gets

p

AH (m,t) = Imf?’(t){AH' +p+p*(p = 2))(H' = &) + ppv}(m).

Let us seek for a general expression of the higher order Laplaciafs © this end, we define
the functions

E, () = ¢ij 21
and
Gi(t) = a; f2T(¢),

where the constans; ; anda; are defined by
¢ii=1,1=0,1,...
Gij = Pi-1j-1+p*(p—20)(2i — )15, 1<j<i, i=2,3,...

5
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ag =0
{ a; =pp Z§:1(PP2)j_1¢i7j 1=1,2,...
dio = [p+p°(p—20)(2i — D)]pi—10+ ppai—1, i =1,2,...
On the other hand, from (8) one has
Av = pp{H" + pv — ¢}
Then we obtain the following:

Proposition 3.1 With the above notation, we have for ahy N :

ANH (m,t) = Z%{FMA’“H’ + Fup 1 AMVH 4 4 Fyy AH' + Fio(H' — €) + Gy

Proof. It is a simple induction following Lemma 2.3 and the above set of formulas (13) through
(19).

4. Statement and Proof of the Main Result.

At this point it may be worth recalling the situation we are. We have a compact p-dimensional
submanifoldMP of a totally umbilical hypersurfacé/™ of the unit spheres™*! centered at
the origin of E"*2. By using the umbilicity of A" we have constructed ifi! a ruled (p+1)-
dimensional submanifold aE™*2 which we have denoted by/*. Now we are ready to give a
solution to the problem stated §Y for such a class of ruled manifolds.

Theorem 4.1 The ruled submanifold/* is of finite typek if and only if it is a generalized cylinder
of null k-type,M* = MP x IR, constructed on & — 1) -type spherical submanifolai/?.

Proof. As one said irS!, if M* is of k -type, then its mean curvature vector satisfies

AA + A"V 4 vd (AH +dH =0,

whered; , i=1,..., k, are real numbersif, being nonzero because it is the product of the nonzero
eigenvalues used to build the immersion\éf in E"*2) andA is the Laplacian of\/*.
Assumep # 0, i.e., M™ is not totally geodesic is”+!. Hence by using Proposition 3.1 and
(20) we have
Fp b APH + {Fyp1 + diFyoy o JAPTH - 4
+H{Fp1+diFy11+ - +dp1Fii}AH +
H{Fro+diFr_10+ +de—1F10+ dpFooH(H — &) +
+{Gr + d1G—1+ -+ dp_1G1}v =0, (21)
where, as alwaysA is the Laplacian of\/? and H’ the mean curvature vector 817 in M".
From (5) and (7) one getgt) = 1 — pt . Now multiplying (21) byr?**! and usingFy, ;(t) =
o j 21 1(t) we obtain
Ok AFH + { g1 + digp—1 51 JAFTH 4 4
g + digp_117 + -+ dp1¢1 P VIAH +
H{bro + didr_1.07% + -+ di_101,072F Y 4 dpgoorF Y (H - €) +
{ag + diag_1m% + -+ dkalrz(k_l)}v =0. (22)

6
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Therefore the coefficients dd'H’, (i = 1,...,k), (H' — &) andv are polynomials of different
degrees. Then for any fixed point € MP?, asd; # 0, we will have H' — ¢ = 0, which is a
contradiction.

Hencep = 0. That meansf = 1 and then)M" is a totally geodesic hypersurface $f*!.
ThusM* is isometric to the product manifoltl”? x IR, i.e., M™* is a generalized cylinder. By the
relationship between the second fundamental form/éfx IR and that ofA/? we can assert that
if H satisfies (20), the satisfies also the same equation, whErdenotes the mean curvature
vector of MP in E"*2, As MP is compact, we have that’” is of [ -type, withi < k. SinceM* is
acylinder,l = kK — 1. The converse is trivial.

Remark. In the above proof we can also dedut® is of finite type by means of formula (22) .
Indeed if we use = 0 in the equations (16) through (19) we obtain

Fy; = ¢nj andGy, = 0 for all h and j. (23)
Thus taking (23) in (22) and recalling (1), we finally get
APH + A TH 4+ dy 1 AH +di H = 0.

Since M? is compact, then from (24)/? is of finite type.
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