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1. Introduction

Let x : Mp−−→IRn+1 be an isometric immersion of a manifoldMp into the Euclidean space
IRn+1 and∆ its Laplacian. The family of such immersions satisfying the condition∆x = λx, λ ∈
IR, is characterized by a well-known result of Takahashi, [10]: they are either minimal inIRn+1

or minimal in some Euclidean hypersphere. These submanifolds obviously satisfy the condition
∆H = λH, H being the mean curvature vector field inIRn+1. Let us writeCλ as the family of
those submanifolds satisfying∆H = λH. ThenCλ contains the Takahashi’s family as a proper
subfamily as the cylinderSp × IRq shows. WhenMp is compact, both families are the same.
Therefore, it is interesting to ask for the following geometric question:

“Are there any other submanifolds inCλ apart from cylinders and Takahashi’s fam-
ily?”

In this context it is worth exploring the existence of non-minimal Euclidean submanifolds whose
mean curvature vector be harmonic, i.e.,∆H = 0. As a first stage, only a special case of Euclidean
hypersurfaces will be involved in our study. More concretely, we analize the conformally flat
hypersurfaces ofIRn+1 in Cλ. Actually, we show that this class of hypersurfaces is rather small.
Essentially they are either minimal, or hyperspheres or right circular cylinders (see Theorem 3.2).
Although there have been several attempts of clasifying conformally flat hypersurfaces ofIRn+1,
[7], [8], these results are not complete as Cecil and Ryan show in [3], where they also obtained a
classification of the conformally flat hypersurfaces tauthy embedded inIRn+1, n > 3.
In proving our result, we have used a method developed by B-Y Chen in [6]. As a result, a
significant fact is crucial in our computations: A conformally flat hypersurfaceMn, n > 3, is
characterized by having two principal curvatures (not necessarily distinct) of multiplicities 1 and
n−1 respectively. Thus even in the case of hypersurfaces with two principal curvatures of arbitrary
multiplicities the method does not work. However the procedure also holds good in the case of
Euclidean surfaces. This fact allow us to classify the Euclidean surfaces inCλ (Proposition 3.1).
This result was also implicitly contained in the proof of main theorem of [6].

2. Basic Lemmas

LetMn be an orientable hypersurface in the Euclidean spaceIRn+1. Let us denote byσ,A, H,∇ and D
the second fundamental form, the Weingarten endomorphism, the mean curvature vector, the Rie-
mannian connection ofMn and the normal connection ofMn in IRn+1. Then following [4, p.
271] we have
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Lemma 2.1 If Mn is a hypersurface inIRn+1 then

∆H = ∆DH + |σ|2H + Tr(∇̄AH),

∆ being the Laplacian ofMn acting on (n+1)-valued functions,∆DH the Laplacian in the normal
bundle andTr(∇̄AH) is the trace of∇̄AH = ∇AH + ADH .

Now next lemma tell us how to computeTr(∇̄AH) in a more familiar form.

Lemma 2.2 SupposeMn is an orientable hypersurface ofIRn+1 and ξ a global unit normal
vector field. Letα be the mean curvature with respect toξ, that isH = αξ. Then

Tr(∇̄AH) =
n

2
∇α2 + 2A(∇α),

∇α being the gradient ofα.

Proof. Choose an orthonormal local frame{Ei}n+1
i=1 in such a way that{Ei}n

i=1 are tangent vector
fields toMn andEn+1 = ξ. Moreover we assume that{Ei}n

i=1 are eigenvectors ofAξ = A
corresponding to the eigenvaluesµi, AEi = µiEi, i = 1, . . . , n. Denote by{ω1, . . . , ωn+1}
and {ωj

i }, i, j = 1, . . . , n + 1, the dual frame and connection forms associated to{Ei}n+1
i=1 ,

respectively. Then, using the connection equations:

∇EiEj =
n∑

k=1

ωk
j (Ei)Ek,

we obtain

(∇EiAH)Ej = Ei(α)µjEj + αEi(µj)Ej + α
∑

k

(µj − µk)ωk
j (Ei)Ek.

But then by Codazzi’s equation

0 = αEi(µj)Ej − αEj(µi)Ei + α
∑

k

{(µj − µk)ωk
j (Ei)− (µi − µk)ωk

i (Ej)}Ek.

Therefore
αEj(µi) = α(µj − µi)ω

j
i (Ei).

Consequently

Tr(∇̄AH) =
n

2
∇α2 + 2 TrADH ,

and sinceTrADH =
∑

i ADEi
HEi = A(∇α) the lemma follows.

Remark 2.3 We denote byU = {p ∈ Mn : ∇α2(p) 6= 0}. U is an open set inMn and as a

consequence of Lemma 2.2,Tr∇̄AH = 0 if and only if A(∇α2) = −n

2
α∇α2 onU .

Before ending this section we would like to give a first application of Lemma 2.2.

Proposition 2.4 Let Mn be a compact hypersurface immersed inIRn+1. ThenMn has constant
mean curvatureα if and only if∆H = |σ|2H, |σ|2 being the length of the second fundamental
form.
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Proof. SupposeMn has constant mean curvatureα. Then using Lemma 2.2 we haveTr(∇̄AH) =
0. Now take a local orthonormal frame{Ei}n

i=1 in a neighborhood of a given pointp. We can
choose the fields{Ei}n

i=1 in such a way that∇EiEj(p) = 0. Therefore

∆DH(p) = −
(

n∑

i=1

DEiDEiH −D∇Ei
EiH

)
(p) = −

n∑

i=1

DEiDEiH(p) = ∆(α)ξ(p).

Thus∆DH = ∆(α)ξ on the wholeMn. Sinceα is constant,∆DH = 0. Consequently we get
from Lemma 2.1∆H = |σ|2H.
Conversely, suppose∆H = |σ|2H. Then from Lemma 2.1,∆DH + Tr(∇̄AH) = 0. Hence if
we write normal and tangent components, we have∆DH = Tr(∇̄AH) = 0. As before,∆DH =
∆(α)ξ, then∆(α) = 0. SinceMn is compact,α is constant.

Remark 2.5 Let us denote byτ the scalar curvature ofMn. From the above proposition and
Takahashi’s theorem, it is easy to prove that the only compact immersed hypersurfaces ofIRn+1

having constant two of the three following quantitiesα, |σ|2 andτ , are hyperspheres. See also [5].

3. Main Result

Our goal is to prove the following theorem.

Theorem 3.1 LetMn be a conformally flat orientable hypersurface ofIRn+1, n > 3. If Mn is in
the familyCλ (i.e. ∆H = λH), for a constantλ, then it is either minimal or isoparametric.

Proof. SupposeMn is conformally flat inIRn+1, n > 3. If Mn is totally umbilical, thenMn is a
piece ofIRn or Sn. Otherwise, from Theorem 3 of [8] the Weingarten map ofMn has two distinct
eigenvalues of multiplicities 1 andn − 1, respectively. Our next step is to prove thatMn has
constant mean curvature. Ifα were not constant, then by the Remark 2.1U is not empty and the

vector∇α2 is an eigenvector ofA corresponding to the eigenvalue−n

2
α. Choose a local frame

{Ei}n+1
i=1 , En+1 = ξ, in an open set ofU satisfaying that{Ei}n

i=1 are eigenvectors ofA andE1 is

parallel to∇α2. Thus one of the eigenvalues is−n

2
α. We have then two possible cases:

a)−n

2
α has multiplicity 1, and therefore the other eigenvalue is

3
2

n

n− 1
α with multiplicity n−1.

b)−n

2
α has multiplicityn− 1 and the other eigenvalue is

n(n + 1)
2

α with multiplicity 1.

Either choice of the multiplicity of−n

2
α will lead to the same conclusion, so there is no loss of

generality in assuming we are in the first case.
Now by hypothesis∆H = λH so that from Lemmas 2.1 and 2.2 we have

∆DH = (λ− |σ|2)H; A(∇α) +
n

2
α∇α = 0.

Let {ω1, . . . , ωn+1} and{ωj
i }i,j=1,...,n+1 the dual frame and the connection forms of the choosen

frame. Then we have

ω1
n+1 =

n

2
αω1; ωj

n+1 = −3
2

n

n− 1
αωj , j = 2, . . . , n.
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dα = E1(α)ω1.

From the first equation of(2) we have

dω1
n+1 =

n

2
αdω1.

Using now the second equation of(2) and the structure equations, one has

dω1
n+1 = −3

2
n

n− 1
αdω1.

These two last equations mean that
dω1 = 0.

Therefore one locally hasω1 = du, for a certain functionu, which along with( 3) imply that
dα ∧ du = 0. Thusα depends onu, α = α(u). Thendα = α′du = α′(u)ω1 and soE1(α) = α′.
Taking differentiation in the second equation of(2) we have

dωj
n+1 = −3

2
n

n− 1
α′ω1 ∧ ωj − 3

2
n

n− 1
αdωj ,

and, also by the structure equations:

dωj
n+1 = −3

2
n

n− 1
αdωj − n(n + 2)

2(n− 1)
αωj

1 ∧ ω1.

Consequently

ω1
j =

3
n + 2

α′

α
ωj , j = 2, . . . , n,

that is
(n + 2)αω1

j = 3α′ωj , j = 2, . . . , n.

Differentiating(10) and using(2) and(9) we have

d(αω1
j ) =

3
n + 2

(α′)2

α
ω1 ∧ ωj + αdω1

j ,

dω1
j = −3

4
n2

n− 1
α2ω1 ∧ ωj +

3
n + 2

α′

α
(dωj +

3
n + 2

α′

α
ω1 ∧ ωj).

On the other hand
d(α′ωj) = α′′ω1 ∧ ωj + α′dωj .

Hence from(10) to (13) we obtain

4αα′′ − 4(n + 5)
n + 2

(α′)2 +
n2(n + 2)

n− 1
α4 = 0.

Puttingy = (α′)2 the above equation turns into

2αy′ − 4(n + 5)
n + 2

y = −n2(n + 2)
n− 1

α4,
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and then

y = (α′)2 = Cα
2(n+5)

n+2 −
(

n(n + 2)
2(n− 1)

)2

α4,

with C a constant.
Now we use the definition of∆α, the fact thatE1 is parallel to∇α2 and equation(9) to obtain

(n + 2)α∆α = −(n + 2)αα′′ + 3(n− 1)(α′)2.

As we know∆DH = (∆α)ξ, hence from(1) we get

α∆α = (λ− |σ|2)α2.

Since|σ|2 =
n2(n + 8)
4(n− 1)

α2, combining(17) and(18), we have

αα′′ − 3(n− 1)
(n + 2)

(α′)2 +
(

λ− n2(n + 8)
4(n− 1)

α2

)
α2 = 0.

Thus, putting together(14) and(19) one has

2(4− n)
n + 2

(α′)2 =
n2(n + 5)
2(n− 1)

α4 − λα2.

We deduce, using( 16) and( 20) that α is locally constant onU , which is a contradiction with
the definition ofU . Henceα is constant onMn. Taking again( 1) into consideration, we have
(∆α)ξ = (λ − |σ|2)H, so that eitherα = 0 andMn is minimal or|σ|2 = λ and therefore|σ|2
is constant. But we had at most two different eigenvalues, then becauseα and|σ|2 are constant,
such eigenvalues are also constant. We have therefore thatMn is in fact isoparametric.
A classical result of B. Segre [9] states that the isoparametric hypersurfaces inIRn+1 are IRn,
Sn(r) andSp(r) × IRn−p, whereSp(r) is the p-sphere of radiusr in the Euclidean subspace
IRp+1 perpendicular toIRn−p. On the other hand, ifMn is minimal and conformally flat with
n > 4, a result of Blair, [1], states thatx(M) is contained in a catenoid, see also [2]. Taking into
account these results and Theorem 3.1 one has the following.

Theorem 3.2 Let Mn be a complete conformally flat orientable hypersurface ofIRn+1, n > 3.
ThenMn is in the familyCλ if and only if it is one of the following hypersurfaces:
1) a hyperplaneIRn,
2) a catenoid,
3) a round sphereSn(r),
4) a cylinder over a circleIRn−1 × S1(r),
5) a cylinder over a round(n− 1)-sphereIR × Sn−1(r).

Prof. Chen kindly pointed out to us that this result can also be considered under the viewpoint
of the finite type theory (see [4]). In fact, it can be shown that a Euclidean immersion satisfying
∆H = λH is either minimal or of infinite type ifλ = 0, and either of1-type or of null2-type if
λ 6= 0.
One should observe that conditionsn > 3 and conformally flat have been used in order to guar-
antee the existence of at most two distinct eigenvalues of multiplicities 1 andn − 1. This is
automatically satisfied by a surface inIR3. It means that the above computations are also correct
in the case of surfaces ofIR3 (see [6]). Then one obtains
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Proposition 3.3 Let M2 be a surface ofIR3 in Cλ. Then eitherM2 is minimal or it is a piece of
one of the following surfaces: a 2-sphereS2(r) or a right circular cylinderS1(r)× IR.

Remark 3.4 From this result we see that the only surfaces ofIR3 satisfying∆H = 0 are the
minimal ones.
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