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1. Introduction

Let z : MP——IR**! be an isometric immersion of a manifold? into the Euclidean space
IR™*! andA its Laplacian. The family of such immersions satisfying the condifian= Az, \ €

IR, is characterized by a well-known result of Takahashi, [10]: they are either mininiaFirt

or minimal in some Euclidean hypersphere. These submanifolds obviously satisfy the condition
AH = \H, H being the mean curvature vector fieldIRF*!. Let us writeCy as the family of

those submanifolds satisfyin§H = \H. ThenC, contains the Takahashi’s family as a proper
subfamily as the cylindef? x IRY shows. WhenM? is compact, both families are the same.
Therefore, it is interesting to ask for the following geometric question:

“Are there any other submanifolds ify, apart from cylinders and Takahashi's fam-
ily?”

In this context it is worth exploring the existence of non-minimal Euclidean submanifolds whose
mean curvature vector be harmonic, i&F = 0. As afirst stage, only a special case of Euclidean
hypersurfaces will be involved in our study. More concretely, we analize the conformally flat
hypersurfaces dR™"! in C,. Actually, we show that this class of hypersurfaces is rather small.
Essentially they are either minimal, or hyperspheres or right circular cylinders (see Theorem 3.2).
Although there have been several attempts of clasifying conformally flat hypersurfaifds bf

[7], [8], these results are not complete as Cecil and Ryan show in [3], where they also obtained a
classification of the conformally flat hypersurfaces tauthy embedditift, n > 3.

In proving our result, we have used a method developed by B-Y Chen in [6]. As a result, a
significant fact is crucial in our computations: A conformally flat hypersurfa€e n > 3, is
characterized by having two principal curvatures (not necessarily distinct) of multiplicities 1 and
n—1 respectively. Thus even in the case of hypersurfaces with two principal curvatures of arbitrary
multiplicities the method does not work. However the procedure also holds good in the case of
Euclidean surfaces. This fact allow us to classify the Euclidean surfaggs(Proposition 3.1).

This result was also implicitly contained in the proof of main theorem of [6].

2. Basic Lemmas

Let M™ be an orientable hypersurface in the Euclidean sfite'. Let us denote by, A, H,V and D

the second fundamental form, the Weingarten endomorphism, the mean curvature vector, the Rie-
mannian connection af/™ and the normal connection @/ in IR**!. Then following [4, p.

271] we have
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Lemma 2.1 If M™ is a hypersurface ifR" ! then
AH = APH +|o|?H + Tr(VAg),

A being the Laplacian af/™ acting on (n+1)-valued function&\” H the Laplacian in the normal
bundle andl'r(VAg) is the trace oN Ay = VAg + Apy.

Now next lemma tell us how to compute(V Ay ) in a more familiar form.

Lemma 2.2 SupposeM™ is an orientable hypersurface @&"*! and ¢ a global unit normal
vector field. Letx be the mean curvature with respectiiadhat is H = a&. Then

Tr(VAy) = gw? +24(Va),
Va being the gradient of.

Proof. Choose an orthonormal local fram&; }7*! in such a way thaf E;}7*_, are tangent vector
fields toM™ and E,, 11 = £ Moreover we assume thatv;}' ; are eigenvectors ol = A
corresponding to the eigenvalups AE; = u;E;, i = 1,...,n. Denote by{w!, ..., w""!}
and{w’}, i,j = 1,...,n + 1, the dual frame and connection forms associate@Ep}?jll,
respectively. Then, using the connection equations:

n
VEZ'E]' = Z W;C(El)Ek,
k=1

we obtain
(Vi An)E; = Ei(o)u;Ej + aEi(1j)Ej + Y (115 — pw)w] (Ei) By
k
But then by Codazzi’'s equation
0= aBi(u;)E; — alj(pui)Ei + o Z{(M — )W (Bs) = (i — pu)wf (Ej)} Ey.
k

Therefore )
aFj(pi) = o — pi)wi (E;).
Consequently
Tr(VAy) = gVQQ +2TrApn,

and sincel'rApy =, ADEZ_HEi = A(Va) the lemma follows.

Remark 2.3 We denote by/ = {p € M" : Va?(p) # 0}. U is an open set in/™ and as a
consequence of Lemma 22yV Ay = 0 if and only if A(Va?) = —gaVaz onu.

Before ending this section we would like to give a first application of Lemma 2.2.

Proposition 2.4 Let M™ be a compact hypersurface immersedRfi*!. Then)M™ has constant
mean curvaturex if and only if AH = |o|?H, |o|? being the length of the second fundamental
form.



Angel Ferrandez, Oscar J.Garay and Pascual Lucas, On a certain class of conformally flat Euclidean hypersurfaces

Proof. Suppose\/™ has constant mean curvatureThen using Lemma 2.2 we ha¥e (VAy) =
0. Now take a local orthonormal framig?; }_, in a neighborhood of a given poipt We can
choose the field$£;} ; in such a way thaV g, E;(p) = 0. Therefore

AP H(p) (Z Dp,Dg,H — Dy, i, H) Z Dg, D, H(p) = A(a)E(p).

=1 =1

ThusAPH = A(a)¢ on the wholeM™. Sincea is constant AP H = 0. Consequently we get
from Lemma 2.1AH = |o|*H.

Conversely, supposdH = |o|2H. Then from Lemma 2.1AP H + Tr(VAg) = 0. Hence if
we write normal and tangent components, we hAYT = Tr(V Ay) = 0. As before AP H =
A(w)¢, thenA(a) = 0. SinceM™ is compactg is constant.

Remark 2.5 Let us denote by the scalar curvature af/™. From the above proposition and
Takahashi's theorem, it is easy to prove that the only compact immersed hypersurfiRes! of
having constant two of the three following quantitieso | andr, are hyperspheres. See also [5].

3. Main Result
Our goal is to prove the following theorem.

Theorem 3.1 Let M™ be a conformally flat orientable hypersurface B, n > 3. If M™ isin
the familyC, (i.e. AH = \H), for a constant\, then it is either minimal or isoparametric.

Proof. Supposé\/™ is conformally flat inR* ™%, n > 3. If M™ is totally umbilical, themM/™ is a
piece oflR" or S™. Otherwise, from Theorem 3 of [8] the Weingarten map6f has two distinct
eigenvalues of multiplicities 1 and — 1, respectively. Our next step is to prove thdt* has
constant mean curvature. dfwere not constant, then by the Remark @.1s not empty and the

vectorVea? is an eigenvector oft corresponding to the elgenvaluega. Choose a local frame
{E; }l 1> Eny1 =&, inan open set aif satlsfaylng thaf £;}"_, are eigenvectors ol andE; is
parallel toVa?. Thus one of the elgenvalues#sga. We have then two possible cases:

a) —ga has multiplicity 1, and therefore the other e|genvalu§4sn—1a with multiplicity n — 1.
n J—

n(n+1)

b) —ga has multiplicityn — 1 and the other eigenvalue4s27a with multiplicity 1.

Either choice of the multiplicity of—ga will lead to the same conclusion, so there is no loss of

generality in assuming we are in the first case.
Now by hypothesis\ H = AH so that from Lemmas 2.1 and 2.2 we have

APH = (A — |o)H: A(Va)+ gaw —0.

Let{w!,...,w" "} and{w’}; j=1
frame. Then we have

n+1 the dual frame and the connection forms of the choosen

77777

wn+1—§aw, wn+1——§n_1aw,j—2,...,n.
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da = Ey(a)w!.

From the first equation f2) we have
dw}zﬂ = gadwl.

Using now the second equation (@) and the structure equations, one has

§ n

dw’.
2n—1a w

1 _
dwn-i—l -

These two last equations mean that
dw! = 0.

Therefore one locally has' = du, for a certain function:, which along with( 3) imply that
da A du = 0. Thusa depends om, o = a(u). Thenda = o/du = o/ (u)w! and soE; (a) = «'.
Taking differentiation in the second equation(@f we have

j 3 n 1 i3 n ;
dw! | = 5 1a'w Aw! — S 1adw7,
and, also by the structure equations:
; 3 n - onn+2) 5
Consequently
3 o
1_ =
J_n+2a 7]_27‘ 7n7
that is
(n+2)awjl =3dW, j=2,...,n.

Differentiating(10) and using 2) and(9) we have

3 (0/)2 )
1y _ 1 1
d(awj)—n+27w AW + adw;,
3 n? , 3 o ~ 3 o -
dw! = —° 2w Nl + D (dwd + 2 A W),
w; 1w w+n+2a(w+n+2o¢w w’)
On the other hand

d(a'w?) = "Wt A 4 o/ du’.

Hence from(10) to (13) we obtain

4 5 2 2
40506”— (TL+ )(Oé,)Q—l- n (n+ )064:0.
n4 2 n—1
Puttingy = (a/)? the above equation turns into
WA G ) _n*(n+ 2) 4
n+2 n—1
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and then

oo (10 DY
with C' a constant.
Now we use the definition alq, the fact that; is parallel toVa? and equatior{9) to obtain
(n + 2)alAa = —(n+ 2)aa” + 3(n — 1)(d/)2
As we knowAP H = (A«)¢, hence from(1) we get
alAa = (A — |o[})a?

n?(n + 8)

AT o) 2 .
2n—1) a*, combining(17) and(18), we have

Since|o|? =

" 3(n_ 1) / nQ(n—i—8) _
aa — m(a )%+ </\ — 4(n_1>c»42) o® =0.

Thus, putting togethgr14) and(19) one has

2(4 —n)
n-+2

(a/)Q _ TL2(7'L + 5)054 o )\042.

2(n—1)
We deduce, using16) and(20) that« is locally constant o/, which is a contradiction with
the definition oft/. Hencea is constant onV/™. Taking again( 1) into consideration, we have
(Aa)¢ = (A — |o|*)H, so that eithery = 0 and M™ is minimal or|o|?> = X and thereforéo|?
is constant. But we had at most two different eigenvalues, then beomnséyaP are constant,
such eigenvalues are also constant. We have thereforéfthds in fact isoparametric.
A classical result of B. Segre [9] states that the isoparametric hypersurfadi@$’ihare R,
S™(r) and SP(r) x IR""P, where SP(r) is the p-sphere of radius in the Euclidean subspace
IRP*! perpendicular tdR"~P. On the other hand, if/™ is minimal and conformally flat with
n > 4, a result of Blair, [1], states that()/) is contained in a catenoid, see also [2]. Taking into
account these results and Theorem 3.1 one has the following.

Theorem 3.2 Let M™ be a complete conformally flat orientable hypersurfac&®af!, n > 3.
ThenM™ is in the familyC, if and only if it is one of the following hypersurfaces:

1) a hyperplandR™,

2) a catenoid,

3) around spheres™ (r),

4) a cylinder over a circldR™ ! x S'(r),

5) a cylinder over a roundn — 1)-spherelR, x S™~!(r).

Prof. Chen kindly pointed out to us that this result can also be considered under the viewpoint
of the finite type theory (see [4]). In fact, it can be shown that a Euclidean immersion satisfying
AH = \H is either minimal or of infinite type i = 0, and either ofi-type or of null2-type if

A # 0.

One should observe that conditions> 3 and conformally flat have been used in order to guar-
antee the existence of at most two distinct eigenvalues of multiplicities Inandl. This is
automatically satisfied by a surfacelRP. It means that the above computations are also correct
in the case of surfaces &t (see [6]). Then one obtains

5
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Proposition 3.3 Let M? be a surface ofR? in C. Then eitherd/? is minimal or it is a piece of
one of the following surfaces: a 2-sphe&fé(r) or a right circular cylinderS'(r) x IR.

Remark 3.4 From this result we see that the only surfacedRof satisfyingAH = 0 are the
minimal ones.

Bibliography

[1]
(2]

3]

[4]

[5]

[6]

[7]

(8]

[9]

D. BLAIR, A generalization of the catenoi@anadian J. of Math27 (1975), 231-236.

M. do CARMO and M. DAJCZERRotation hypersurfaces in spaces of constant curvature.
Transactions of the A.M.S277(1983), 685-709.

T.E. CECIL and P.J. RYANConformal geometry and the cyclides of Duganadian J. of
Math.,32(1980), 767-782.

B.-Y. CHEN, Total mean curvature and submanifolds of Finite Tyerld Scientific. Singa-
pore and New Jersey, 1984.

B.-Y. CHEN, Finite type submanifolds and generalizatiohsstituto “Guido Castelnuovo”.
Roma, 1985.

B.-Y. CHEN, Null 2-type surfaces iiR? are circular cylinders.Kodai Math. J.,11 (1988),
295-299.

R.S. KULKARNI, Conformally flat manifolds?roc. Nat. Acad. Sci. U.S.A69(1972), 2675-
2676.

S. NISHIKAWA and Y. MAEDA, Conformally flat hypersurfaces in a conformally flat mani-
fold. Tohoku Math. J.26 (1974), 159-168.

B. SEGRE Famiglie di ipersuperficie isoparametrische negli spazi euclidei ad un qualunque
numero di dimensioniAtti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natu27 (1938),
203-207.

[10] T. TAKAHASHI, Minimal immersions of Riemannian manifolds.Math. Soc. Japari8

(1966), 380-385.



