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1. Introduction

In [5], Chen gives a classification of null 2-type surfaces in the Euclidean 3-space and he shows
in [6] that a similar characterization cannot be given for a surface in the Euclidean 4-space. In
fact, helical cylinders in Euclidean 4-space are characterized as those surfaces of null 2-type and
constant mean curvature.

In this paper we give a characterization of null 2-type hypersurfaces in a space of constant sec-
tional curvatureM™*1(k) and an approach to hypersurfaces of null 3-type. Indeed, we get a
generalization of Chen’s paper [5] not only by considering hypersurfaces, but also taking them in
space forms.

In spherical and hyperbolic cases we show that there is no null 2-type hypersurface, so that the Eu-
clidean case becomes the most attractive situation where our classification works on. Actually, we
show that Euclidean hypersurfaces of null 2-type and having at most two distinct principal curva-
tures are locally isometric to a generalized cylinder. Why the hypothesis on principal curvatures?
First, we think this is the most natural one, because, after Chen’s paper, we know that cylinders are
the only surfaces of null 2-type in Euclidean 3-space. Secondly, it is well-known that a Euclidean
isoparametric hypersurface has at most two distinct principal curvatures, so that if it has exactly
two, then one of them has to be zero. Our classification depends strongly on that isoparametricity
condition. Finally, bounding the number of principal curvatures is not as restrictive as one could
hope. As a matter of fact, the families of conformally flat and rotational hypersurfaces satisfy
that hypothesis and both are sufficiently large so that it is worth trying to give a characterization of
some subfamily of them in order to get along in their classifications. To this effect, we characterize
rotational and conformally flat hypersurfaces of null 2-type.

As for hypersurfaces of null 3-type one immediately sees that they are not difficult to handle
when they have constant mean curvature, because a nice formuld fbican be given. In that

case, we show that there is no spherical or hyperbolic hypersurface of null 3-type. It turns out
again that our only hope to get some more information concerns with Euclidean hypersurfaces.
Now, following a similar reasoning as in the null 2-type case, we are able to say that there is no
Euclidean hypersurface of null 3-type having constant mean curvature and at most two distinct
principal curvatures.

We wish to thank to Prof. M. Barros for many valuable comments and suggestions.

2. Preliminaries

Letx : M™"—IR™ be an isometric immersion of a connected n-dimensional Riemannian man-
ifold M into the Euclidean spad®™. We represent byA the Laplacian operator a¥/ (with
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respect to the induced metric) acting on the space of smooth funct®®fs! ). The manifold)M
is said to be ok-type if the position vectos of M can be decomposed in the following form:

x:x0+xi1+"’+xik7

where
Az, = Nz,

Aip < -+ < A, xo IS a constant vector ilR™ (whenM is compacty is the center of mass of
M in IR™) and A is the extension of the Laplace operatofdRd*-valuated smooth functions on
M in a natural way. A manifoldV/ is said to be of finite type if it is ok-type for some natural
numberk; otherwise,M is said to be of infinite type. A special case appears when sgme 0;
thenM is said to be of nulk-type or null finite type.

If M is of finite type, for example of-type, from(1) there exists a monic polynomial, s@)t),
such thatQ(A)(z — o) = 0. If we suppose thaf)(t) = t* + dit* =1 + ... + dy_1t + dj then
coefficientsd; are given by

dy= =) Ai do = NiAiyi o de= (=DM Ay
t=1 t<t!
where{);,,..., \;, } are the associated eigenvalues giving AHigpe character. Therefore, by
the formulaAxz = —nH, whereH is the mean curvature vector field &f in IR™, we have the

following differential equation:
A IH 4+ i ARPH 4 dy  H — %(x —x9) = 0.
n

We note thatl;, = 0 whenM is of null k-type and thereforé3) only contains terms involving the

mean curvature vectdy .

LetIRY" be the m-dimensional pseudo-Euclidean space with the standard flat pseudo-Riemannian
metric of signaturés, m — s) andz : M"—IR> an isometric immersion of a connected pseudo-
Riemannian (or space-like) submanifald in IR;". Then, in this context, we can introduce the
finite type notion in a similar way as in the Euclidean case. Thus we can characterize the pseudo-
Riemannian (or space-like) submanifoldskefype by equatior( 3), in this caseH is the mean
curvature vector field of/ in IR;". For the general knowledge on Finite Type Submanifolds in
pseudo-Euclidean spaces, see for instance [3, 4].

3. The spherical case

Let M™ be a hypersurface in the unit sphesfet! centred at the origin dR"2. Let us denote
by z : M"— 8"+ c IR**2 the immersion and by, D, D’ the Riemannian connection 8f,
the normal connection ¥/ in IR**2 and the normal connection af in S™*1, respectively. Let
o andH (resp.c’ and H') be the second fundamental form and the mean curvature vecidr of
in IR**2 (resp. of M in S™*1) and letA be the Weingarten map @il in S**!. Then from [1,
Lemma 4] we have the following expression# :

AH =AP'H + %voﬂ +2trApg + o2 H' — nax,

2
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wherea? =< H,H > and tApg=trace{(X,Y)—Ap, 'Y }. Assume nowM is of 2-type,
i.e., AH = bH + c¢(z — x9). Let f : M—IR be the function defined by(x) =< z, 29 >. Then
for any tangent vector field to M, we have

< (AH)T, X >=—eX(f),
where(AH)” means the tangent component®ff in M. Then
(AH)T = —cV{.

By using(1) one gets

< AH,z >= —nao?

and again from the 2-type condition we have
<AH,x >=—-b+c—cf.

From(3) and(4) we deduce
—cVf=—-nVa?

that jointly with (2) yield to
(AH)T = —nVa?.

On the other hand, sincd”’ denotes the Laplacian associated withand one has the formula
AH' = (Ad)N + o/ AN +2A(Vd'),
whereH' = o/ N andA = Ay, then
AP'H' = (Ad/)N.
The above formulae allow us to write down
AH = —nVa? + (Ad)N + |o)*H' — na’a.
At this point, the 2-type condition can be rewritten in the following useful form
c(z — x9) = —nVa? + {Ad + |o]?a/ — ba/}N + {b — na’}z.

In [1], studying the compact case with the additional condition of having at most two distinct
principal curvatures, it is shown thaf is of 2-type if and only if it is a product of two spheres with
appropriate radii. In our case, if we drop the compactness condition, then one of the eigenvalues
could vanish, but that can not be hold as the following result shows, which can also be deduced
from [7, Theorem 1].

Proposition 3.1 There is no spherical hypersurface of null 2-type.

Proof. If M is a spherical hypersurface of null 2-type, thea 0. Now from(9), thexz-component
vanishes and then is constant. Sincé/ is not minimal, from the/V-component, we have that
|o|? is also constant. Using agai®), one getso|?> = na?, which is a contradiction with the
following lemma and the proof finishes.
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Lemma 3.2 Let M be a spherical hypersurface. Then the following inequality holds
na® < |of?,
and the equality holds if and only M is of 1-type.
Proof. Let us denote by, ..., u, the principal curvatures o/ and take the vector¥y =
(p11,- -+, pn) @ndW = (1,...,1). Then from the own definitions ef and|c’|> and the Cauchy-
Schwarz inequality the first part of lemma follows. Moreover, the equality holds if and oy if
is totally umbilical and therefore of 1-type.
In the realm of finite type submanifolds, as far as we know, the 3-type case has been rather scarcely
studied. This is because it is difficult to find a nice expressionXéH. Thereforewe shall
assume thad/ is of constant mean curvature.
Then, a straightforward computation frai®) yields
A’H = 20/A(V|o]?) + {Al|o|* + |o|* = n|o|? + n®a®}H’
— {nlo?a’? + n%a?}z. (10)
Now, if M is of 3-type, i.e. A2H = aAH + bH + c(z — x0), we have
clzx—xz0) = 20/A(V|o|?)
+ {A|J\2 + |0]4 — n|o*|2 +n?a® — a\0|2 —b}H'
— {n|o*a’? + n%a* — ana® — b}z. (11)
We are ready to give another non-existence result.
Proposition 3.3 There is no spherical hypersurface of null 3-type with constant mean curvature.

Proof. If M is a spherical hypersurface of null 3-type, thes 0. Since the mean curvaturé
of M is a non-vanishing constant, from thecomponent in(11), one hago|? is also a constant.
Then, once more from11), we get

nlof? = n%a® +b = |o2(|of? - a) = na®(o* - a), (12)

from which we deduce
(lo* = na?)(lo]? - a) = 0.
But |¢|? = na? can not be hold from Lemma 3.2. |#*> = a > 0, from (12) and Lemma 3.2

it follows thatb < 0. Then we can find a real numbgr= 0,1 (indeed,p is a solution of the
equatiornp? — ap — b = 0) such that if we write

b p
_ A
bt s

p* p

- - A
pQ—i—bm p2+b o

Y1

Y2

we have

T =Y+ Y2,
where

Ay1 =py,

b
A?JQ = —— Y2,
p

showing thatM/ is of 2-type, which is a contradiction.
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4. The Euclidean case

In order to make a similar study to the spherical case, we start giving a formulaHomhich for
surfaces was found by B.Y. Chen in [5].

Lemma 4.1 Letz : M™—IR**! be an orientable Euclidean hypersurface. Then
AH =24(Va) + £Va + {Aa+ alAP}N,
whereH = aN, N being a global unit normal vector field.

Proof. Letpbe inM,{E\,..., E,} alocal orthonormal frame tangentié such thalv g, E; (p) =
0 andV the connection ilR**!. From the following formulae

?EZH == EZ(Q)N - OzAEi,

we have
AH =2A(Va) + atr(VA) + {Aa + o|A*}N,

n

wheretr(VA) = (Vi A)E;.

i=1
To compute tr(VA), let {X1,..., X, } be the local orthonormal frame of eigenvectors of the
Weingarten map, i.eAX; = u; X;. Then, using the well-known equations

n
inXj = Z wf(XZ)Xk,
k=1

we have N
tr(VA) =3 X)X + > (i — )l (X0) X

Now, from Codazzi’'s equatioVx, 4) X; = (Vx,;A)X;, one gets

Xj(pi) = (i — i )wl (Xi).
Then
tr(VA) = nVa

and the lemma follows from here aqd).
Now, if M is of 2-type, i.e. AH = bH + cx (where we assume without loss of generality that
is the origin oflR**!), from the above lemma we have

cx =2A(Va) + gVOéQ + {Aa + alA|* — ba}N.

This formula allow us to get three easy and interesting consequences, chiefly the third because it
will be very useful through this section. The first and second ones have already been obtained by
Chen and Lue in [7].
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Corollary 4.2 If M is a non minimal Euclidean hypersurface of at most 2-type and constant mean
curvature, then one of the two following possibilities holds:

() M is of null 2-type;

(ii) M is an open piece of".

Corollary 4.3 If M is a compact Euclidean hypersurface of at most 2-type, fiidmas constant
mean curvature if and only &/ is isometric to spher&™.

Remark 4.4 The above corollary shows that there is no compact hypersurface of 2-type having
constant mean curvature.

Corollary 4.5 If M is a Euclidean hypersurface of null 2-type, then
A(Va?) = —gaVag.

The problem of characterizing Euclidean hypersurfaces of null 2-type does not seem an easy task
without additional hypothesis and actually it is more difficult than spherical case (see Proposi-
tion 3.1). The constancy of the mean curvature does not even provide, in principle, enough infor-
mation to get such characterization. Nevertheless, we have the following result.

Proposition 4.6 Let M be a Euclidean hypersurface with at most two principal curvatures. Then
M is of null 2-type and constant mean curvature if and only if it is locally isometric to a product
IRP x S™P(r).

Proof. If M is of null 2-type and has constant mean curvature, by uéisigwe have|A|? is

a constant. Furthermore, the hypothesis on principal curvatures yieldit bas exactly two
constant principal curvatures. From [10] is an open piece dRP x S™ P(r). The converse is

trivial.

In the proof of the above proposition, to use the Segre’s result, it has been crucial to dedide that

is isoparametric and for that to be possible we have needed the hypothesis on principal curvatures.
The isoparametricity condition ol is rather strong and owing to the recent results showing the
close relation between Dupin and isoparametric hypersurfaces, one can get another approximation
to characterize null 2-type hypersurfaces.

Proposition 4.7 If M is a Dupin Euclidean hypersurface of null 2-type, thehhas constant
mean curvature.

Proof. If the mean curvature: were not constant, from Corollary 4.5, at the points of the open set
V = {p€ M : Va?(p) # 0}, we can choose a local orthonormal fraff, .. ., E,,} tangent to
M such thatF; is parallel toVa?. That meanssz(a) = --- = E,(a) = 0. SinceM is a Dupin

hypersurface andv; is a principal direction with principal curvature%a, then Fy(a) = 0,
which is a contradiction.

Corollary 4.8 Let M be a Dupin Euclidean hypersurface with at most two principal curvatures.
ThenM is of null 2-type if and only if\/ is locally isometric to a produdRP x S™P(r).

To get down to work in a more general situation we need a previous lemma.

6



Angel Ferrandez and Pascual Lucas, Null Finite Type Hypersurfaces in Space Forms

Lemma 4.9 Let M be a Euclidean hypersurface of null 2-type with at most two principal cur-

vatures. TherV is empty or, at the points af, —ga is a principal curvature with multiplicity
one.

Proof. At the points ofV, by using Corollary 4.5,—%04 is a principal curvature with associated

principal directionVa?. LetV; be the open subset bfwhere the mean curvature does not vanish.
ThenV; is not empty, ifV is not, and onl; there are exactly two distinct principal curvatures.
Choose the local orthonormal franj&, . . ., £, } of principal directions such thdt; is parallel

toVa?. LetD ={X €TV : AX = —gaX} be the distribution associated with the eigenvalue
—ga, which is differentiable and involutive in the open $&t If we assume diy > 1, from [9,

Proposition 2.3], we havX(—ga) = 0 for any vector fieldX € D. In particular,E;(«) = 0
on Vi, so that beingz; andVa? parallel, we gety is a constant of;, which is a contradiction.
Therefore, dinD = 1 and—"a has multiplicity one.

Now, the main result of this section states as follows.

Theorem 4.10 Let M be a Euclidean hypersurface with at most two principal curvatures. Then
M is of null 2-type if and only if\/ is locally isometric to a produdRP x S™P(r).

Proof. SupposeM™ is a Euclidean hypersurface. Our goal is to prove thét has constant
mean curvature. l& were not constant, then by the Lemma #.9s not empty and the vector

Va? is an eigenvector ofl corresponding to the eigenvaluega with multiplicity 1. Choose

a local orthonormal framé¢FEy, ..., E,}, in an open set op, satisfying that{ £y, ..., E,} are
eigenvectors oft and E; is parallel tova?.
Now by hypothesis\ H = bH so that from Lemma 4.1 we have

APH = (b— |AP)H:  A(Va)+ gaVa = 0.

Let {w!,...,w"} and{wg}, i,j = 1,...,n+ 1, the dual frame and the connection forms of the
chosen frame. Then we have
1 noo1 j 3 P
Wyl = 5005 wﬁl+1:—2n_1auﬂ,j:2,...,n.
do = Ey(a)w.

From the first equation df7) we have
dw}lﬂ = gadwl.
Using now the second equation(@f) and the structure equations, one has

§ n
2n—1

dw,lH_l =— adw!.

These two last equations mean that
dw! = 0.
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Therefore one locally has' = du, for a certain function:, which along with( 8) imply that
da A du = 0. Thusa depends om, o = a(u). Thenda = o/du = o/ (u)w' and soF; (a) = «'.
Taking differentiation in the second equation(@f we have

dngH = _gn ﬁ 10/w1 Awl — 3 1adwj,
and, also by the structure equations:
dwiJrl = —g i 1adwj - 721((71 )aw{ A w!
Consequently ,
}_ni2zw%j_’ 1
that is
(n+2)awjl =3dw!, j=2,...,n.

Differentiating(15) and using7) and(14) we have

3 (a/)Q )
1y _ 1 1
d(awj)—n+27w ANw? + adw;,
3 77,2 . 3 o . 3 o .
dw! = =2 021 A W 2 (dw? Lot Awd),
i 4n_1aw w +n+2a<w +n+2aw w’)

On the other hand
d(dw!) = o"w' Aw? + /dw’.

Hence from(15) to (18) we obtain

4 5 2 2
4o — (n+ )(0/)24— n (n+ )04420.
n 42 n—1
Puttingy = (a/)? the above equation turns into
g0,y Ant5)  nPnt2) 4
of n+2 n—1

and then

2n45)  (p(n+2))>
— /2: n+2 _ N =T 4
y = (o)’ = Ca (Q(H_l)) o,

with C' a constant.
Now we use the definition alq, the fact thatF; is parallel toVa? and equatior14) to obtain

(n+2)aAa = —(n +2)aa” + 3(n — 1)(d/)2
As we knowA” H = (Aa)N, hence from(6) we get

alAa = (b—|A]?)a’.

8
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n?(n + 8)

. 2 _ 2 P
Since|A|* = =1 a“, combining(22) and(23), we have
//_3(n_1) "2 _n2(n+8) 2\ 2 _
ao (n+2)(a)+ b 4(n_1)a a” =0.
Thus, putting togethgr19) and(24) one has
_ 2
2(” 4) (0/)2 — ba2 . n (TL + 5) 044
n+2 2(n—1)

We deduce, using21) and (25) that« is locally constant orV, which is a contradiction with
the definition of). Hencex is constant on/™ and the result follows from Proposition 4.6. The
converse is trivial and the proof finishes.

Then we obtain the following consequence, which B.Y. Chen already gave in [5].

Corollary 4.11 Let M be a surface ifR®. ThenM is of null 2-type if and only if\/ is locally
isometric to a circular cylinder.

As we did in the spherical case, we now approach the Euclidean hypersurfaces of null8ttype
the additional assumption of having constant mean curvatiifeen a direct computation from
Lemma 4.1 yields to

A*H =20 A(V|A]?) + {A|AP + |A]*} H.

Thus, if M is of 3-type, we have
cx = 20 A(V|A]?) + {A|A* + |A]* — a|A]* — b} H,
and then we obtain the following

Proposition 4.12 There is no Euclidean hypersurface of null 3-type with constant mean curvature
and having at most two distinct principal curvatures.

Proof. Let M be a Euclidean hypersurface of null 3-type. FrE2), since« is a non vanishing
constant, we havel(V|A|?) = 0. If we consider the open s&' = {p € M : V|A|*(p) # 0},
then at the points dfi’, V| A|? is a principal direction wittd) principal curvature. Therefore, since
M has at most two principal curvatures an@s constant, if\ is the other principal curvature, then
A is also a constant. TheW is isoparametric and so it can not be of null 3-type.

5. The hyperbolic case

Let IR‘{1+2 the (n+2)-dimensional pseudo-Euclidean space with metric tensor given by

n+2
<, >=—dz' @ dz! + Z da? @ da,
j=2
where (1, . .., x,12) is a rectangular coordinate systemli{ 2. Then(IR¥2, <, >) is a flat

pseudo-Riemannian manifold with signatgten + 1). We define

H""YR)={z ¢ R¥?:< z,2 >= —R? z; > 0},

9
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andH"t! = H"*1(1) the (n+1)-dimensional hyperbolic space.

Let M™ be a hypersurface i"*! and denote by: : M"— H™+! c IR¥™ the natural immer-

sion. We now use the same notation as in Section 3, where the symbols concerning there with
Sn+1 (resp.R™*2), will be here the corresponding féf*+! (resp.IR}1?).

We start with a useful expression f&rH, which essentially is given in [3].

Lemma 5.1 Let M be a hypersurface if”+!. Then
AH = 2A(Va') + gw’? + (AN + (JAP — n)H' + (na’? — n)z.

Proof. It suffices to work as in the Euclidean case (Lemma 4.1) taking into account the following
facts:
H=H +z,

Ay =—1,
o0(AE;, E;) =< o(AE;, E;),N > N— < o(AE;, E;),x > .

If M is of 2-type inIRIf”, then from Lemma 5.1 we get

c(z—mzg) = 24(Vd)+ gVoﬂ +{Ad + o/|A]? — na’ — ba'}N

+ {na/? —n — b}z, (1)

where, as above\H = bH + c¢(x — xp).
As an example of a hyperbolic hypersurface of 2-typli§<i?1+2 we define

H”_k(\/l +172) x Sk(r) ={ze H . mi_kﬂ 4+ +x%+2 = r2}.
If we puty; = (1, 29,...,2,-,0,...,0) @andys = (0,...,0,Zy_g+1,...,Tnt2), itiS easy to

see thatr = y; +y2 WhereAy; = _(”7_2/‘“) y; andAy, = % Y2, SO thatr is of 2-type inIer“.
r r

1+
However, for the null 2-type case we have

Proposition 5.2 There is no hyperbolic hypersurface of null 2-type.

Proof. If M is a hyperbolic hypersurface of null 2-type, then frgm) both o/ and |A|? are
constant and furthermoriel|? = na'?. This will mean thatM is totally umbilical and then of
1-type, which is a contradiction.
To finish this section we shall study the hyperbolic hypersurfacestgpe with constant mean
curvature.Indeed, a straightforward computation from Lemma 5.1 gives
A*H = 2d/A(V|A]?)
+{AJAP + |A* = |APPn — n?d? + 2 H,
+ {na®|A)? — 2n%a? + n?}x. (2)
WhenM is of 3-type, we have
clx —x9) = 2d'A(V|A]?)
+{AJAP + |A* = |AP*n — n%d? + n? — a(JA]? —n) — b} H'
+ {na?|A* — 2n2a”? +n? — a(na’® —n) — b}z, (3)
Therefore, in a similar way as in the spherical case, we have

Proposition 5.3 There is no hyperbolic hypersurface of null 3-type with constant mean curvature.

10
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6. Conclusions

Now, we are going to get together in a more general situation the results we have got in the above
sections.
Main Theorem. Let M™ be a hypersurface in a space foli"*! (k). Then we have:

(i) If M is of null 2-type, therk = 0. Moreover, if M has at most two distinct principal
curvatures, ther/ is locally isometric to a produdR™ % x S*(r).

(i) Assume that one of the following assertions holds:
Dk +#0,
2) k = 0 and M has at most two distinct principal curvatures.
Then eitherM has non constant mean curvature i is not of null 3-type.

Now, we can deduce a few interesting consequences.
In [2] it is shown that a rotational hypersurface in a space of constant curvature has two principal
curvatures, one of them having multiplicity at least equal to n-1. Therefore, we have

Corollary 6.1 Letx : M"—M"*1(k) be a rotational hypersurface of null 2-type. Thier= 0
and M is locally isometric to a produdR® x S"~!(r).

It is a well-known fact (see [8]) that, for > 3, a hypersurfacéd/™ in M"*!(k) is conformally
flat if and only if at least n-1 principal curvatures are all equal. Then we get

Corollary 6.2 Letz : M"—M"*1(k),n > 3, be a conformally flat hypersurface of null 2-type.
Thenk = 0 and M is locally isometric to a produdR! x S"~!(r) or R*~! x S(r).

If M is an Einstein hypersurface, we knda has at most two distinct principal curvatures. Then
from [9, Theorem 3.1] we have

Corollary 6.3 Letx : M"—M""(k),n > 2, be an Einstein hypersurface of null 2-type. Then
k = 0 and M is locally isometric tdR*~! x S1(r).

Added in proof. After this paper was referred, prof. Chen kindly pointed out to us that himself
and S.J. Li have shown, in a joint paper, that Proposition 2.3 holds for every 3-type spherical
hypersurface. We wish to thank to the referee and prof. Chen for their careful suggestions in order
to improve this article.
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