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1. Introduction

In [5], Chen gives a classification of null 2-type surfaces in the Euclidean 3-space and he shows
in [6] that a similar characterization cannot be given for a surface in the Euclidean 4-space. In
fact, helical cylinders in Euclidean 4-space are characterized as those surfaces of null 2-type and
constant mean curvature.
In this paper we give a characterization of null 2-type hypersurfaces in a space of constant sec-
tional curvatureM̄n+1(k) and an approach to hypersurfaces of null 3-type. Indeed, we get a
generalization of Chen’s paper [5] not only by considering hypersurfaces, but also taking them in
space forms.
In spherical and hyperbolic cases we show that there is no null 2-type hypersurface, so that the Eu-
clidean case becomes the most attractive situation where our classification works on. Actually, we
show that Euclidean hypersurfaces of null 2-type and having at most two distinct principal curva-
tures are locally isometric to a generalized cylinder. Why the hypothesis on principal curvatures?
First, we think this is the most natural one, because, after Chen’s paper, we know that cylinders are
the only surfaces of null 2-type in Euclidean 3-space. Secondly, it is well-known that a Euclidean
isoparametric hypersurface has at most two distinct principal curvatures, so that if it has exactly
two, then one of them has to be zero. Our classification depends strongly on that isoparametricity
condition. Finally, bounding the number of principal curvatures is not as restrictive as one could
hope. As a matter of fact, the families of conformally flat and rotational hypersurfaces satisfy
that hypothesis and both are sufficiently large so that it is worth trying to give a characterization of
some subfamily of them in order to get along in their classifications. To this effect, we characterize
rotational and conformally flat hypersurfaces of null 2-type.
As for hypersurfaces of null 3-type one immediately sees that they are not difficult to handle
when they have constant mean curvature, because a nice formula for∆2H can be given. In that
case, we show that there is no spherical or hyperbolic hypersurface of null 3-type. It turns out
again that our only hope to get some more information concerns with Euclidean hypersurfaces.
Now, following a similar reasoning as in the null 2-type case, we are able to say that there is no
Euclidean hypersurface of null 3-type having constant mean curvature and at most two distinct
principal curvatures.
We wish to thank to Prof. M. Barros for many valuable comments and suggestions.

2. Preliminaries

Let x : Mn−→IRm be an isometric immersion of a connected n-dimensional Riemannian man-
ifold M into the Euclidean spaceIRm. We represent by∆ the Laplacian operator ofM (with
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respect to the induced metric) acting on the space of smooth functionsC∞(M). The manifoldM
is said to be ofk-type if the position vectorx of M can be decomposed in the following form:

x = x0 + xi1 + · · ·+ xik ,

where
∆xij = λijxij ,

λi1 < · · · < λik , x0 is a constant vector inIRm (whenM is compact,x0 is the center of mass of
M in IRm) and∆ is the extension of the Laplace operator toIRm-valuated smooth functions on
M in a natural way. A manifoldM is said to be of finite type if it is ofk-type for some natural
numberk; otherwise,M is said to be of infinite type. A special case appears when someλij = 0;
thenM is said to be of nullk-type or null finite type.
If M is of finite type, for example ofk-type, from(1) there exists a monic polynomial, sayQ(t),
such thatQ(∆)(x − x0) = 0. If we suppose thatQ(t) = tk + d1t

k−1 + · · · + dk−1t + dk then
coefficientsdi are given by

d1 = −
k∑

t=1

λit ; d2 =
∑

t<t′
λitλit′ ; · · · dk = (−1)kλi1λi2 . . . λik ,

where{λi1 , . . . , λik} are the associated eigenvalues giving thek-type character. Therefore, by
the formula∆x = −nH, whereH is the mean curvature vector field ofM in IRm, we have the
following differential equation:

∆k−1H + d1∆k−2H + · · ·+ dk−1H − dk

n
(x− x0) = 0.

We note thatdk = 0 whenM is of null k-type and therefore(3) only contains terms involving the
mean curvature vectorH.
Let IRm

s be the m-dimensional pseudo-Euclidean space with the standard flat pseudo-Riemannian
metric of signature(s,m−s) andx : Mn−→IRm

s an isometric immersion of a connected pseudo-
Riemannian (or space-like) submanifoldM in IRm

s . Then, in this context, we can introduce the
finite type notion in a similar way as in the Euclidean case. Thus we can characterize the pseudo-
Riemannian (or space-like) submanifolds ofk-type by equation( 3), in this caseH is the mean
curvature vector field ofM in IRm

s . For the general knowledge on Finite Type Submanifolds in
pseudo-Euclidean spaces, see for instance [3, 4].

3. The spherical case

Let Mn be a hypersurface in the unit sphereSn+1 centred at the origin ofIRn+2. Let us denote
by x : Mn−→Sn+1 ⊂ IRn+2 the immersion and by∇, D, D′ the Riemannian connection ofM ,
the normal connection ofM in IRn+2 and the normal connection ofM in Sn+1, respectively. Let
σ andH (resp.σ′ andH ′) be the second fundamental form and the mean curvature vector ofM
in IRn+2 (resp. ofM in Sn+1) and letA be the Weingarten map ofM in Sn+1. Then from [1,
Lemma 4] we have the following expression of∆H:

∆H = ∆D′H ′ +
n

2
∇α2 + 2 trADH′ + |σ|2H ′ − nα2x,

2



Angel Ferrández and Pascual Lucas, Null Finite Type Hypersurfaces in Space Forms

whereα2 =< H,H > and trADH′=trace{(X,Y )−→ADXH′Y }. Assume nowM is of 2-type,
i.e.,∆H = bH + c(x−x0). Let f : M−→IR be the function defined byf(x) =< x, x0 >. Then
for any tangent vector fieldX to M , we have

< (∆H)T , X >= −cX(f),

where(∆H)T means the tangent component of∆H in M . Then

(∆H)T = −c∇f.

By using(1) one gets
< ∆H,x >= −nα2

and again from the 2-type condition we have

< ∆H,x >= −b + c− cf.

From(3) and(4) we deduce
−c∇f = −n∇α2

that jointly with (2) yield to
(∆H)T = −n∇α2.

On the other hand, since∆D′ denotes the Laplacian associated withD′ and one has the formula

∆H ′ = (∆α′)N + α′∆N + 2A(∇α′),

whereH ′ = α′N andA = AN , then

∆D′H ′ = (∆α′)N.

The above formulae allow us to write down

∆H = −n∇α2 + (∆α′)N + |σ|2H ′ − nα2x.

At this point, the 2-type condition can be rewritten in the following useful form

c(x− x0) = −n∇α2 + {∆α′ + |σ|2α′ − bα′}N + {b− nα2}x.

In [1], studying the compact case with the additional condition of having at most two distinct
principal curvatures, it is shown thatM is of 2-type if and only if it is a product of two spheres with
appropriate radii. In our case, if we drop the compactness condition, then one of the eigenvalues
could vanish, but that can not be hold as the following result shows, which can also be deduced
from [7, Theorem 1].

Proposition 3.1 There is no spherical hypersurface of null 2-type.

Proof. If M is a spherical hypersurface of null 2-type, thenc = 0. Now from(9), thex-component
vanishes and thenα is constant. SinceM is not minimal, from theN -component, we have that
|σ|2 is also constant. Using again( 9), one gets|σ|2 = nα2, which is a contradiction with the
following lemma and the proof finishes.
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Lemma 3.2 LetM be a spherical hypersurface. Then the following inequality holds

nα2 6 |σ|2,
and the equality holds if and only ifM is of 1-type.

Proof. Let us denote byµ1, . . . , µn the principal curvatures ofM and take the vectorsV =
(µ1, . . . , µn) andW = (1, . . . , 1). Then from the own definitions ofα′ and|σ′|2 and the Cauchy-
Schwarz inequality the first part of lemma follows. Moreover, the equality holds if and only ifM
is totally umbilical and therefore of 1-type.
In the realm of finite type submanifolds, as far as we know, the 3-type case has been rather scarcely
studied. This is because it is difficult to find a nice expression for∆2H. Therefore,we shall
assume thatM is of constant mean curvature.
Then, a straightforward computation from(8) yields

∆2H = 2α′A(∇|σ|2) + {∆|σ|2 + |σ|4 − n|σ|2 + n2α2}H ′

− {n|σ|2α′2 + n2α2}x. (10)

Now, if M is of 3-type, i.e.,∆2H = a∆H + bH + c(x− x0), we have

c(x− x0) = 2α′A(∇|σ|2)
+ {∆|σ|2 + |σ|4 − n|σ|2 + n2α2 − a|σ|2 − b}H ′

− {n|σ|2α′2 + n2α2 − anα2 − b}x. (11)

We are ready to give another non-existence result.

Proposition 3.3 There is no spherical hypersurface of null 3-type with constant mean curvature.

Proof. If M is a spherical hypersurface of null 3-type, thenc = 0. Since the mean curvatureα′

of M is a non-vanishing constant, from thex-component in(11), one has|σ|2 is also a constant.
Then, once more from(11), we get

n|σ|2 − n2α2 + b = |σ|2(|σ|2 − a) = nα2(|σ|2 − a), (12)

from which we deduce
(|σ|2 − nα2)(|σ|2 − a) = 0.

But |σ|2 = nα2 can not be hold from Lemma 3.2. If|σ|2 = a > 0, from (12) and Lemma 3.2
it follows that b < 0. Then we can find a real numberp 6= 0, 1 (indeed,p is a solution of the
equationp2 − ap− b = 0) such that if we write

y1 =
b

p2 + b
x +

p

p2 + b
∆x,

y2 =
p2

p2 + b
x− p

p2 + b
∆x,

we have
x = y1 + y2,

where
∆y1 = p y1,

∆y2 = − b

p
y2,

showing thatM is of 2-type, which is a contradiction.
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4. The Euclidean case

In order to make a similar study to the spherical case, we start giving a formula for∆H, which for
surfaces was found by B.Y. Chen in [5].

Lemma 4.1 Letx : Mn−→IRn+1 be an orientable Euclidean hypersurface. Then

∆H = 2A(∇α) +
n

2
∇α2 + {∆α + α|A|2}N,

whereH = αN , N being a global unit normal vector field.

Proof. Letp be inM , {E1, . . . , En} a local orthonormal frame tangent toM such that∇EiEj(p) =
0 and∇̄ the connection inIRn+1. From the following formulae

∇̄EiH = Ei(α)N − αAEi,

∇̄Ei∇̄EiH = EiEi(α)N − 2Ei(α)AEi − α{(∇EiA)Ei + σ(AEi, Ei)},
we have

∆H = 2A(∇α) + α tr(∇A) + {∆α + α|A|2}N,

wheretr(∇A) =
n∑

i=1

(∇EiA)Ei.

To compute tr(∇A), let {X1, . . . , Xn} be the local orthonormal frame of eigenvectors of the
Weingarten map, i.e.,AXi = µiXi. Then, using the well-known equations

∇XiXj =
n∑

k=1

ωk
j (Xi)Xk,

we have

tr(∇A) =
n∑

j=1

Xj(µj)Xj +
∑

i,j

(µi − µj)ω
j
i (Xi)Xj .

Now, from Codazzi’s equation(∇XiA)Xj = (∇XjA)Xi, one gets

Xj(µi) = (µi − µj)ω
j
i (Xi).

Then
tr(∇A) = n∇α

and the lemma follows from here and(1).
Now, if M is of 2-type, i.e.,∆H = bH + cx (where we assume without loss of generality thatx0

is the origin ofIRn+1), from the above lemma we have

cx = 2A(∇α) +
n

2
∇α2 + {∆α + α|A|2 − bα}N.

This formula allow us to get three easy and interesting consequences, chiefly the third because it
will be very useful through this section. The first and second ones have already been obtained by
Chen and Lue in [7].
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Corollary 4.2 If M is a non minimal Euclidean hypersurface of at most 2-type and constant mean
curvature, then one of the two following possibilities holds:
(i) M is of null 2-type;
(ii) M is an open piece ofSn.

Corollary 4.3 If M is a compact Euclidean hypersurface of at most 2-type, thenM has constant
mean curvature if and only ifM is isometric to sphereSn.

Remark 4.4 The above corollary shows that there is no compact hypersurface of 2-type having
constant mean curvature.

Corollary 4.5 If M is a Euclidean hypersurface of null 2-type, then

A(∇α2) = −n

2
α∇α2.

The problem of characterizing Euclidean hypersurfaces of null 2-type does not seem an easy task
without additional hypothesis and actually it is more difficult than spherical case (see Proposi-
tion 3.1). The constancy of the mean curvature does not even provide, in principle, enough infor-
mation to get such characterization. Nevertheless, we have the following result.

Proposition 4.6 LetM be a Euclidean hypersurface with at most two principal curvatures. Then
M is of null 2-type and constant mean curvature if and only if it is locally isometric to a product
IRp × Sn−p(r).

Proof. If M is of null 2-type and has constant mean curvature, by using( 5) we have|A|2 is
a constant. Furthermore, the hypothesis on principal curvatures yields toM has exactly two
constant principal curvatures. From [10]M is an open piece ofIRp × Sn−p(r). The converse is
trivial.
In the proof of the above proposition, to use the Segre’s result, it has been crucial to deduce thatM
is isoparametric and for that to be possible we have needed the hypothesis on principal curvatures.
The isoparametricity condition onM is rather strong and owing to the recent results showing the
close relation between Dupin and isoparametric hypersurfaces, one can get another approximation
to characterize null 2-type hypersurfaces.

Proposition 4.7 If M is a Dupin Euclidean hypersurface of null 2-type, thenM has constant
mean curvature.

Proof. If the mean curvatureα were not constant, from Corollary 4.5, at the points of the open set
V = {p ∈ M : ∇α2(p) 6= 0}, we can choose a local orthonormal frame{E1, . . . , En} tangent to
M such thatE1 is parallel to∇α2. That meansE2(α) = · · · = En(α) = 0. SinceM is a Dupin

hypersurface andE1 is a principal direction with principal curvature−n

2
α, thenE1(α) = 0,

which is a contradiction.

Corollary 4.8 Let M be a Dupin Euclidean hypersurface with at most two principal curvatures.
ThenM is of null 2-type if and only ifM is locally isometric to a productIRp × Sn−p(r).

To get down to work in a more general situation we need a previous lemma.
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Lemma 4.9 Let M be a Euclidean hypersurface of null 2-type with at most two principal cur-

vatures. ThenV is empty or, at the points ofV, −n

2
α is a principal curvature with multiplicity

one.

Proof. At the points ofV, by using Corollary 4.5,−n

2
α is a principal curvature with associated

principal direction∇α2. LetV1 be the open subset ofV where the mean curvature does not vanish.
ThenV1 is not empty, ifV is not, and onV1 there are exactly two distinct principal curvatures.
Choose the local orthonormal frame{E1, . . . , En} of principal directions such thatE1 is parallel

to∇α2. Let D = {X ∈ TV : AX = −n

2
αX} be the distribution associated with the eigenvalue

−n

2
α, which is differentiable and involutive in the open setV1. If we assume dimD > 1, from [9,

Proposition 2.3], we haveX(−n

2
α) = 0 for any vector fieldX ∈ D. In particular,E1(α) = 0

on V1, so that beingE1 and∇α2 parallel, we getα is a constant onV1, which is a contradiction.

Therefore, dimD = 1 and−n

2
α has multiplicity one.

Now, the main result of this section states as follows.

Theorem 4.10 Let M be a Euclidean hypersurface with at most two principal curvatures. Then
M is of null 2-type if and only ifM is locally isometric to a productIRp × Sn−p(r).

Proof. SupposeMn is a Euclidean hypersurface. Our goal is to prove thatMn has constant
mean curvature. Ifα were not constant, then by the Lemma 4.9V is not empty and the vector

∇α2 is an eigenvector ofA corresponding to the eigenvalue−n

2
α with multiplicity 1. Choose

a local orthonormal frame{E1, . . . , En}, in an open set ofV, satisfying that{E1, . . . , En} are
eigenvectors ofA andE1 is parallel to∇α2.
Now by hypothesis∆H = bH so that from Lemma 4.1 we have

∆DH = (b− |A|2)H; A(∇α) +
n

2
α∇α = 0.

Let {ω1, . . . , ωn} and{ωj
i }, i, j = 1, . . . , n + 1, the dual frame and the connection forms of the

chosen frame. Then we have

ω1
n+1 =

n

2
αω1; ωj

n+1 = −3
2

n

n− 1
αωj , j = 2, . . . , n.

dα = E1(α)ω1.

From the first equation of(7) we have

dω1
n+1 =

n

2
αdω1.

Using now the second equation of(7) and the structure equations, one has

dω1
n+1 = −3

2
n

n− 1
αdω1.

These two last equations mean that
dω1 = 0.
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Therefore one locally hasω1 = du, for a certain functionu, which along with( 8) imply that
dα ∧ du = 0. Thusα depends onu, α = α(u). Thendα = α′du = α′(u)ω1 and soE1(α) = α′.
Taking differentiation in the second equation of(7) we have

dωj
n+1 = −3

2
n

n− 1
α′ω1 ∧ ωj − 3

2
n

n− 1
αdωj ,

and, also by the structure equations:

dωj
n+1 = −3

2
n

n− 1
αdωj − n(n + 2)

2(n− 1)
αωj

1 ∧ ω1.

Consequently

ω1
j =

3
n + 2

α′

α
ωj , j = 2, . . . , n,

that is
(n + 2)αω1

j = 3α′ωj , j = 2, . . . , n.

Differentiating(15) and using(7) and(14) we have

d(αω1
j ) =

3
n + 2

(α′)2

α
ω1 ∧ ωj + αdω1

j ,

dω1
j = −3

4
n2

n− 1
α2ω1 ∧ ωj +

3
n + 2

α′

α
(dωj +

3
n + 2

α′

α
ω1 ∧ ωj).

On the other hand
d(α′ωj) = α′′ω1 ∧ ωj + α′dωj .

Hence from(15) to (18) we obtain

4αα′′ − 4(n + 5)
n + 2

(α′)2 +
n2(n + 2)

n− 1
α4 = 0.

Puttingy = (α′)2 the above equation turns into

2
α

α′
y′ − 4(n + 5)

n + 2
y = −n2(n + 2)

n− 1
α4,

and then

y = (α′)2 = Cα
2(n+5)

n+2 −
(

n(n + 2)
2(n− 1)

)2

α4,

with C a constant.
Now we use the definition of∆α, the fact thatE1 is parallel to∇α2 and equation(14) to obtain

(n + 2)α∆α = −(n + 2)αα′′ + 3(n− 1)(α′)2.

As we know∆DH = (∆α)N , hence from(6) we get

α∆α = (b− |A|2)α2.
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Since|A|2 =
n2(n + 8)
4(n− 1)

α2, combining(22) and(23), we have

αα′′ − 3(n− 1)
(n + 2)

(α′)2 +
(

b− n2(n + 8)
4(n− 1)

α2

)
α2 = 0.

Thus, putting together(19) and(24) one has

2(n− 4)
n + 2

(α′)2 = bα2 − n2(n + 5)
2(n− 1)

α4.

We deduce, using( 21) and( 25) that α is locally constant onV, which is a contradiction with
the definition ofV. Henceα is constant onMn and the result follows from Proposition 4.6. The
converse is trivial and the proof finishes.
Then we obtain the following consequence, which B.Y. Chen already gave in [5].

Corollary 4.11 Let M be a surface inIR3. ThenM is of null 2-type if and only ifM is locally
isometric to a circular cylinder.

As we did in the spherical case, we now approach the Euclidean hypersurfaces of null 3-typewith
the additional assumption of having constant mean curvature.Then a direct computation from
Lemma 4.1 yields to

∆2H = 2αA(∇|A|2) + {∆|A|2 + |A|4}H.

Thus, ifM is of 3-type, we have

cx = 2αA(∇|A|2) + {∆|A|2 + |A|4 − a|A|2 − b}H,

and then we obtain the following

Proposition 4.12 There is no Euclidean hypersurface of null 3-type with constant mean curvature
and having at most two distinct principal curvatures.

Proof. Let M be a Euclidean hypersurface of null 3-type. From(27), sinceα is a non vanishing
constant, we haveA(∇|A|2) = 0. If we consider the open setW = {p ∈ M : ∇|A|2(p) 6= 0},
then at the points ofW ,∇|A|2 is a principal direction with0 principal curvature. Therefore, since
M has at most two principal curvatures andα is constant, ifλ is the other principal curvature, then
λ is also a constant. ThenM is isoparametric and so it can not be of null 3-type.

5. The hyperbolic case

Let IRn+2
1 the (n+2)-dimensional pseudo-Euclidean space with metric tensor given by

<,>= −dx1 ⊗ dx1 +
n+2∑

j=2

dxj ⊗ dxj ,

where(x1, . . . , xn+2) is a rectangular coordinate system inIRn+2
1 . Then(IRn+2

1 , <, >) is a flat
pseudo-Riemannian manifold with signature(1, n + 1). We define

Hn+1(R) = {x ∈ IRn+2
1 :< x, x >= −R2, x1 > 0},

9



Kodai Math. J. 14 (1991), 406–419

andHn+1 = Hn+1(1) the (n+1)-dimensional hyperbolic space.
Let Mn be a hypersurface inHn+1 and denote byx : Mn−→Hn+1 ⊂ IRn+2

1 the natural immer-
sion. We now use the same notation as in Section 3, where the symbols concerning there with
Sn+1 (resp.IRn+2), will be here the corresponding forHn+1 (resp.IRn+2

1 ).
We start with a useful expression for∆H, which essentially is given in [3].

Lemma 5.1 LetM be a hypersurface inHn+1. Then

∆H = 2A(∇α′) +
n

2
∇α′2 + (∆α′)N + (|A|2 − n)H ′ + (nα′2 − n)x.

Proof. It suffices to work as in the Euclidean case (Lemma 4.1) taking into account the following
facts:

H = H ′ + x,

Ax = −I,

σ(AEi, Ei) =< σ(AEi, Ei), N > N− < σ(AEi, Ei), x > x.

If M is of 2-type inIRn+2
1 , then from Lemma 5.1 we get

c(x− x0) = 2A(∇α′) +
n

2
∇α′2 + {∆α′ + α′|A|2 − nα′ − bα′}N

+ {nα′2 − n− b}x, (1)

where, as above,∆H = bH + c(x− x0).
As an example of a hyperbolic hypersurface of 2-type inIRn+2

1 we define

Hn−k(
√

1 + r2)× Sk(r) = {x ∈ Hn+1 : x2
n−k+1 + · · ·+ x2

n+2 = r2}.
If we put y1 = (x1, x2, . . . , xn−k, 0, . . . , 0) andy2 = (0, . . . , 0, xn−k+1, . . . , xn+2), it is easy to

see thatx = y1 +y2 where∆y1 =
−(n− k)
1 + r2

y1 and∆y2 =
k

r2
y2, so thatx is of 2-type inIRn+2

1 .

However, for the null 2-type case we have

Proposition 5.2 There is no hyperbolic hypersurface of null 2-type.

Proof. If M is a hyperbolic hypersurface of null 2-type, then from( 1) both α′ and |A|2 are
constant and furthermore|A|2 = nα′2. This will mean thatM is totally umbilical and then of
1-type, which is a contradiction.
To finish this section we shall study the hyperbolic hypersurfaces of3-type with constant mean
curvature.Indeed, a straightforward computation from Lemma 5.1 gives

∆2H = 2α′A(∇|A|2)
+ {∆|A|2 + |A|4 − |A|2n− n2α′2 + n2}H ′,
+ {nα′2|A|2 − 2n2α′2 + n2}x. (2)

WhenM is of 3-type, we have

c(x− x0) = 2α′A(∇|A|2)
+ {∆|A|2 + |A|4 − |A|2n− n2α′2 + n2 − a(|A|2 − n)− b}H ′

+ {nα′2|A|2 − 2n2α′2 + n2 − a(nα′2 − n)− b}x. (3)

Therefore, in a similar way as in the spherical case, we have

Proposition 5.3 There is no hyperbolic hypersurface of null 3-type with constant mean curvature.

10
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6. Conclusions

Now, we are going to get together in a more general situation the results we have got in the above
sections.
Main Theorem. LetMn be a hypersurface in a space form̄Mn+1(k). Then we have:

(i) If M is of null 2-type, thenk = 0. Moreover, ifM has at most two distinct principal
curvatures, thenM is locally isometric to a productIRn−k × Sk(r).

(ii) Assume that one of the following assertions holds:
1) k 6= 0,
2) k = 0 andM has at most two distinct principal curvatures.
Then eitherM has non constant mean curvature orM is not of null 3-type.

Now, we can deduce a few interesting consequences.
In [2] it is shown that a rotational hypersurface in a space of constant curvature has two principal
curvatures, one of them having multiplicity at least equal to n-1. Therefore, we have

Corollary 6.1 Let x : Mn−→M̄n+1(k) be a rotational hypersurface of null 2-type. Thenk = 0
andM is locally isometric to a productIR1 × Sn−1(r).

It is a well-known fact (see [8]) that, forn > 3, a hypersurfaceMn in M̄n+1(k) is conformally
flat if and only if at least n-1 principal curvatures are all equal. Then we get

Corollary 6.2 Letx : Mn−→M̄n+1(k), n > 3, be a conformally flat hypersurface of null 2-type.
Thenk = 0 andM is locally isometric to a productIR1 × Sn−1(r) or IRn−1 × S1(r).

If M is an Einstein hypersurface, we knowM has at most two distinct principal curvatures. Then
from [9, Theorem 3.1] we have

Corollary 6.3 Letx : Mn−→M̄n+1(k), n > 2, be an Einstein hypersurface of null 2-type. Then
k = 0 andM is locally isometric toIRn−1 × S1(r).

Added in proof. After this paper was referred, prof. Chen kindly pointed out to us that himself
and S.J. Li have shown, in a joint paper, that Proposition 2.3 holds for every 3-type spherical
hypersurface. We wish to thank to the referee and prof. Chen for their careful suggestions in order
to improve this article.
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