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Luis J. Aĺıas, Angel Ferŕandez and Pascual Lucas
Geom. Dedicata 42 (1992), 345–354

(Partially supported by DGICYT grant PS87-0115)

Abstract

In this paper we study pseudo-Riemannian submanifolds inRn+k
t satisfying the condition

∆x = Ax+B, whereA is an endomorphism ofRn+k
t andB is a constant vector inRn+k

t . We
give a characterization theorem whenA is a self-adjoint endomorphism. As for hypersurfaces
we are able to obtain a classification theorem for any endomorphismA.

0. Introduction

An old and celebrated result due to T. Takahashi, [13], gives a characterization of the minimal
submanifolds in an ordinary sphereSm(r) by means of a nonzero eigenvalue of the Laplacian,
getting also an explicit expression of that eigenvalue in terms of the dimensionn of the subman-
ifold and the radiusr of the sphere. This can be seen in some sense as a starting point of an
ambitious programme drawn up by B.Y. Chen (see, for example, [2] and [4]) directed to classify
submanifolds by the spectrum of its Laplacian.

As for Euclidean hypersurfaces an extension of Takahashi’s Theorem has been obtained by
O.J. Garay, [7], where he studies the hypersurfaces whose coordinate functions are eigenfunctions
of their Laplacian, with not necessarily the same eigenvalue. By considering the hypersurface as
the graph of a differentiable function, he has got that the family of those Euclidean hypersurfaces
is restricted to open pieces of minimal hypersurfaces, ordinary hyperspheres or generalized cir-
cular cylinders. Recently, T. Hasanis and T. Vlachos, [8], generalize this study by considering
submanifolds of arbitrary codimension.

A little later, Dillen, Pas and Verstraelen, in [6], pointed out that in order to get Garay’s
condition to be coordinate invariant, it must be slightly modified as∆x = Ax + B, for some
A ∈ End(Rm) andB ∈ Rm. Getting back Garay’s idea into this context and working on sur-
faces inR3, they find no other surfaces appart from those given from Garay’s condition. The
work of those authors has been generalized, independently and using different tecniques, to the
n-dimensional case by Chen, Dillen, Verstraelen and Vrancken, [5], and Hasanis and Vlachos, [9].

The indefinite Riemannian case deserves a special care. First, the shape operator needs not
be diagonalizable, condition which plays a chief role in the definite Riemannian case. On the
other hand, all of results already obtained have been found, even implicitly, by achieving the
isoparametricity of the hypersurface. It seems reasonable thinking of a richer classification can
be hoped in working on pseudo-Riemannian submanifolds in an indefinite Euclidean space. The
first attempt in this line has been made by the authors in [1], where they classify the surfaces
in the 3-dimensional Lorentz-Minkowski spaceL3 satisfying the quoted condition. Now we are
going to generalize that work not only by considering hypersurfaces but also taking them in any
pseudo-Euclidean space.
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The main result of this paper is a classification theorem for hypersurfacesMn
s in pseudo-

Euclidean spaceRn+1
t . Actually, it is shown thatMn

s satisfies∆x = Ax+B if and only if it is an
open piece of a minimal hypersurface, a totally umbilical hypersurface or a pseudo-Riemannian
product of a totally umbilical and a totally geodesic submanifold.

1. Some results on submanifolds

Let Mn
s be a pseudo-Riemannian submanifold ofRn+k

t . In order to set up the notation to be
used later on, we will denote byσ, H, SH , ∇ and∇̄ the second fundamental form, the mean
curvature vector field, the Weingarten map with respect toH, the Levi-Civita connection onMn

s

and the usual flat connection onRn+k
t , respectively.

Let x : Mn
s −→ Rn+k

t be an isometric immersion satisfying the equation

∆x = Ax + B,

whereA is an endomorphism ofRn+k
t andB is a constant vector inRn+k

t . By taking covariant
derivative in (1), using the well-known equation∆x = −nH and applying the Weingarten formula
we get

AX = nSHX − nDXH,

for any vector fieldX tangent toMn
s . SinceSH is a self-adjoint endomorphism, from (2) we have

< AX, Y >=< X,AY >,

for any tangent vector fieldsX andY . By taking covariant derivative in last equation we obtain

< Aσ(X, Z), Y > − < Aσ(Y,Z), X >= (4)

< σ(X, Z), AY > − < σ(Y, Z), AX > .

We need, for later use, the following formula for∆H, which has been already obtained by B.Y.
Chen in [3]:

∆H = ∆DH +
n

2
∇ < H, H > +2 tr(SDH) +

n+k∑

r=n+1

εrtr(SHSr)Er, (5)

where∆D is the Laplacian of the normal bundle,∇ also will denote the gradient onMn
s , tr(SDH) =∑n

i=1 εiSDEi
HEi and{E1, . . . , En, En+1, . . . , En+k} is an adapted local orthonormal frame.

Let us start by assuming that A is a self-adjoint endomorphism ofRn+k
t and letf : Rn+k

t −→
R be the quadratic function defined by

f(y) =< Ay, y > +2 < B, y > .

SinceX(f) = 0, for any vector fieldX tangent toMn
s , then f is constant onMn

s , sayc. Let us
write N = f−1(c). Now from (1) and (6) we know that̄∇f = −2nH, so that if we suppose
Mn

s is a non-minimal submanifold inRn+k
t , it follows that N is a hypersurface ofRn+k

t . If
< H, H >= 0, thenMn

s is a quasi-minimal submanifold (in the sense of R. Rosca [11]) in Rn+k
t .
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Finally we analize the case< H, H >6= 0. ThenN is a pseudo-Riemannian hypersurface of
Rn+k

t being∇̄f a normal vector field toN . Therefore, by using the formula

H = H1 +
1
n

n∑

i=1

εiσ1(Ei, Ei),

whereH1 is the mean curvature vector field ofMn
s in N andσ1 is the second fundamental form

of N in Rn+k
t , and the fact thatH is normal toN , we obtainH1 = 0, i.e., Mn

s is a minimal
submanifold ofN . Summarizing, we have got the following result.

Proposition 1.1 Letx : Mn
s −→ Rn+k

t be an isometric immersion. Then∆x = Ax+B, whereA
is a self-adjoint endomorphism ofRn+k

t andB a constant vector, if and only if one of the following
statements holds:

1) Mn
s is a minimal submanifold ofRn+k

t ;
2) Mn

s is a quasi-minimal submanifold (in the sense of R. Rosca) ofRn+k
t lying in a quadratic

hypersurface given byf(y) =< Ay, y > +2 < B, y >= c, which also satisfies̄∇f = −2nH;
3) Mn

s is a minimal submanifold of a pseudo-Riemannian quadratic hypersurface given by
f(y) =< Ay, y > +2 < B, y >= c, which also satisfies̄∇f = −2nH.

As a first consequence, we get Theorem 1 given by B.Y. Chen in [3], where he gave a pseudo-
Riemannian version of Takahashi’s Theorem.

Corollary 1.2 Let x : Mn
s −→ Rn+k

t be an isometric immersion. Then∆x = λx, for a real
constantλ, if and only if one of the following statements holds:

1) λ = 0 andMn
s is a minimal submanifold ofRn+k

t ;
2) λ > 0 andMn

s is a minimal submanifold ofSn+k−1
t (r) with r =

√
n/λ;

3) λ < 0 andMn
s is a minimal submanifold ofHn+k−1

t−1 (r) with r =
√
−n/λ.

Proof. By assuming thatλ 6= 0, takeA = λI andB = 0. Then from (6) we obtainMn
s is a

submanifold of a quadratic hypersurface with equationf(y) = λ < y, y >= c, for some real
constantc. Now from the equation

∆ < x, x >= −2n− 2n < H, x >

we getc = n, so thatMn
s cannot be a quasi-minimal submanifold ofRn+k

t and the proof finishes.
In the Riemannian case, the self-adjoint endomorphismA can always be diagonalized. Then

the Theorem 2.1 in [8] given by Hasanis and Vlachos can be easily obtained from the following.

Corollary 1.3 Let x : Mn −→ Rn+k be an isometric immersion. Then∆x = Ax + B, with
A = diag[λ1, . . . , λn+k] andB = (b1, . . . , bn+k) ∈ Rn+k, if and only if eitherM is minimal in
Rn+k or M is minimal in a quadratic hypersurface given byf(y1, . . . , yn+k) =

∑n+k
i=1 λiy

2
i +

2
∑n+k

i=1 biyi = c, which also satisfies̄∇f = −2nH.

2. The classification theorem for hypersurfaces

We begin this section by giving some examples of hypersurfacesMn
s in Rn+1

t which satisfy
the condition∆x = Ax + B. To do that, letN , α andS be a unit normal vector field with
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< N,N >= ε, the mean curvature with respect toN (H = αN ) and the shape operator ofMn
s ,

respectively. As usual, the metric tensor ofRn+1
t is given by

ds2 =
n+1∑

i=1

εidxi ⊗ dxi,

wheret = #{i : εi = −1}.
Takek ∈ {1, . . . , n− 1} and letf : Rn+1

t −→ R be the function defined by

f(x1, . . . , xn+1) = δ1

k∑

i=1

εix
2
i + εk+1x

2
k+1 + δ2

n+1∑

j=k+2

εjx
2
j ,

whereδ1 andδ2 belong to the set{0, 1} and they do not vanish simultaneously. Takingr > 0 and
δ = ±1, the setM = f−1(δr2) is a hypersurface ofRn+1

t for appropriate choices ofk, δ1, δ2 and
δ.

A straighforward computation shows that the unit normal vector field is given by

N = (1/r)(δ1x1, . . . , δ1xk, xk+1, δ2xk+2, . . . , δ2xn+1)

and the principal curvatures areµ1 = −δ1/r andµ2 = −δ2/r with multiplicities k andn − k,
respectively. Then the mean curvature is given byα = −δ/(nr)(δ1k + δ2(n − k)) and by using
the equation∆x = −nH = −nαN we have∆x = Ax where

A =
δ

r2
(δ1k + δ2(n− k))




δ1 O
...

δ1

1
δ2

...
O δ2




,

appearingk timesδ1 andn− k timesδ2.
These examples are nothing but pseudo-Riemannian spheresSn

t (r), pseudo-Riemannian hy-
perbolic spacesHn

t−1(r) and pseudo-Riemannian productsRk
s × Sn−k

t−s (r) andRk
s ×Hn−k

t−s−1(r). It
is easy to see that all of them have constant mean curvature, actually they are pseudo-Riemannian
isoparametric hypersurfaces having at most one non-zero constant principal curvature. Never-
theless, it seems natural thinking of hypersurfaces inRn+1

t , appart from those ones, having non
constant mean curvature satisfying the asked condition. The next theorem allows us to give a
negative answer to that question.

Theorem 2.1 Let x : Mn
s −→ Rn+1

t be an isometric immersion satisfying the condition∆x =
Ax + B. ThenMn

s has constant mean curvature.

Proof. Take inMn
s the open setU = {p ∈ Mn

s : ∇α2(p) 6= 0}. Our goal is to showU is empty;
otherwise, we get

σ(X, Y ) = ε
< SX, Y >

α
H,
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for any tangent vector fields onU .
Now by applying the Laplacian on both sides of (1) and taking into account (5) we have

AH = 2S(∇α) + nεα∇α + {∆α + εαtr(S2)}N.

Then from (7) and (8) we obtain

< Aσ(X,Y ), Z >=
< SX, Y >

α
(2εSZ(α) + nαZ(α)),

that jointly with (2) and (4) gives

TX(α)SY = TY (α)SX,

whereT is the self-adjoint operator given byTX = nαX + εSX.
Case 1:T (∇α) 6= 0 onU . Then there exists a tangent vector fieldX such thatTX(α) 6= 0,

which implies from (10) thatS has rank one onU . Therefore we can choose a local orthonormal
frame{E1, . . . , En+1} with SE1 = nεαE1, SEi = 0, i = 2, . . . , n andEn+1 = N . From (10)
we deduceE1 is parallel to∇α and then we use (2) and (8) to get

AE1 = εn2α2E1 − nE1(α)N
AEi = 0, i = 2, . . . , n,

AN = 3nεε1E1(α)E1 + {∆α

α
+ εn2α2}N.

Thus the characteristic polynomialPA(t) of A is given by

PA(t) = (−1)n−1tn−1{t2 − (2εn2α2 +
∆α

α
)t

+ εn2α∆α + n4α4 + 3n2εε1E1(α)2},

from which we can find two real constantsλ1 andλ2 such that

∆α = λ1α− 2εn2α3, (11)

n2α∆α = λ2ε− εn4α4 − 3n2ε1E1(α)2.

Let {ω1, . . . , ωn+1} and{ωj
i }i,j be the dual frame and the connection forms, respectively, of

the chosen frame. Then we can write

ω1
n+1 = −nεαω1, (13)

ωi
n+1 = 0, i = 2, . . . , n, (14)

dα = ε1E1(α)ω1. (15)

Take exterior differentiation in (13) and use (15), then it can be deduceddω1 = 0. Then we locally
haveω1 = du, for some functionu, and again from (15) we getdα ∧ du = 0. Thusα depends on
u, α = α(u), and thereforeE1(α) = ε1α

′(u).
Taking again exterior differentiation in (14) and usingdω1 = 0 we haveω1

i = 0, i = 1, . . . , n.
Then we get

∆α = −ε1E1E1(α) = −ε1α
′′. (16)
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and this equation allows us to rewrite equations (11) and (12) as

α′′ = 2εε1n
2α3 − λ1ε1α,

n2αα′′ = εε1n
4α4 + 3n2(α′)2 − λ2εε1.

Let us takeβ = (α′)2. Then
dβ

dα
= 2α′′ and from (17) we obtain

β = εε1n
2α4 − ε1λ1α

2 + C,

whereC is a constant.
On the other hand, by comparing (17) and (18) we deduce

3n2β = λ2εε1 + εε1n
4α4 − ε1λ1n

2α2,

and finally from (19) and (20) we haveα is locally constant onU , which is a contradiction.
Case 2:There is a pointp in U such thatT (∇α)(p) = 0. Then from (2) and (8) we have

< AH, X > (p) = −nεα(p)X(α)(p) =< H, AX > (p),

which implies, jointly with (3), thatA is a self-adjoint endomorphism inRn+1
t . Thus the above

equation remains valid everywhere onU and therefore∇α is a principal direction ofS with associ-
ated principal curvature given by−nεα. First, we claim∇α is a non-null vector field. Otherwise,
from (2) we would have−εn2α2 should be an eigenvalue ofA and thereforeα must be constant
onU , which cannot hold. Now, we can choose a local orthonormal frame{E1, . . . , En+1} such
thatE1 is parallel to∇α andEn+1 = N . Then from (2) and (8) we have

AE1 = −εn2α2E1 − nE1(α)N,

AEi = nαSEi, i = 2, . . . , n,

AN = −nεε1E1(α)E1 + {∆α

α
+ εtr(S2)}N.

Writing downS∗ for the endomorphismS restricted to span{E2, . . . , En} and working on char-
acteristic polynomials we deduce

PA(t) = q(t)(nα)n−1PS∗(
t

nα
),

PS(t) = −(nεα + t)PS∗(t),

whereq(t) is a polynomial of degree two. Let{r1, . . . , rn} be the possibly complex roots of
PS , so thatr1 = −nεα and{r2, . . . , rn} are the roots ofPS∗ . From the relation betweenPA

andPS∗ we getnαri, i = 2, . . . , n, is a constant eigenvalue ofA. On the other hand, since
tr(S) =

∑n
i=1 ri = nεα we deduce

∑n
i=2 ri = 2nεα and thereforeα is locally constant onU ,

which is a contradiction with the definition ofU .
Anyway, we have foundU is empty, i.e.,Mn

s has constant mean curvature.
Looking for the asked classification, the next theorem becomes the main result of this paper.

Theorem 2.2 Letx : Mn
s −→ Rn+1

t be an isometric immersion. Then∆x = Ax + B if and only
if one of the following statements holds:

1) Mn
s is a minimal hypersurface ofRn+1

t ;
2) Mn

s is an open piece of one of the following hypersurfaces:Sn
t (r), Hn

t−1(r),Rk
u×Sn−k

t−u (r),
Rk

u ×Hn−k
t−u−1(r).
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Proof. Assumeα is a nonzero constant. Then from (2) and (8) we find

AX = nα SX, (21)

AN = εtr(S2)N, (22)

from which we deduceεtr(S2) is an eigenvalue ofA and thereforetr(S2) is constant.
On the other hand, asAx + B is normal toMn

s , from (22) we have

(A2 − εtr(S2)A)x + (AB − εtr(S2)B) = 0.

SinceMn
s is non-minimal, last equation yieldsA2 − εtr(S2)A = 0 and taking into account (21)

we get

S(S − λI) = 0, λ =
εtr(S2)

nα
,

which impliesλ 6= 0. Otherwise,S would be a self-adjoint endomorphism withS2 = 0 and then
tr(S) must be zero (this can be easily seen by using the canonical forms ofS), which cannot hold
becauseα 6= 0. HenceMn

s is an isoparametric hypersurface whose shape operator is diagonaliz-
able having as principal curvatures zero, with multiplicity at mostn− 1, andλ, with multiplicity
at least one. IfMn

s is not totally umbilical, then by using similar arguments as in Theorem 2.5
of [12] and Lemma 2 of [10], Mn

s is an open piece of a pseudo-Riemannian product of a totally
umbilical and a totally geodesic submanifold. This completes the proof.

As a consequence of this theorem we obtain the following Riemannian version, which has
been shown by Dillen-Pas-Verstraelen [6] whenn = 2 and by Chen-Dillen-Verstraelen-Vrancken
[5] and Hasanis-Vlachos [9], independently, in the n-dimensional case.

Corollary 2.3 Letx : Mn −→ Rn+1 be an isometric immersion. Then∆x = Ax+B if and only
if one of the following statements holds:

1) M is a minimal hypersurface;
2) M is an open piece of a hypersphere;
3) M is an open piece of a generalized circular cylinder.

Bibliography
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