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Abstract

In this paper we study pseudo-Riemannian submanifold&}in* satisfying the condition
Az = Az+ B, whereA is an endomorphism @&} andB is a constant vector iR **. We
give a characterization theorem wharis a self-adjoint endomorphism. As for hypersurfaces
we are able to obtain a classification theorem for any endomorphism

0. Introduction

An old and celebrated result due to T. Takahastd],[gives a characterization of the minimal
submanifolds in an ordinary sphe$é&'(r) by means of a nonzero eigenvalue of the Laplacian,
getting also an explicit expression of that eigenvalue in terms of the dimensibthe subman-
ifold and the radius- of the sphere. This can be seen in some sense as a starting point of an
ambitious programme drawn up by B.Y. Chen (see, for examplard [4]) directed to classify
submanifolds by the spectrum of its Laplacian.

As for Euclidean hypersurfaces an extension of Takahashi’'s Theorem has been obtained by
0.J. Garay, T], where he studies the hypersurfaces whose coordinate functions are eigenfunctions
of their Laplacian, with not necessarily the same eigenvalue. By considering the hypersurface as
the graph of a differentiable function, he has got that the family of those Euclidean hypersurfaces
is restricted to open pieces of minimal hypersurfaces, ordinary hyperspheres or generalized cir-
cular cylinders. Recently, T. Hasanis and T. Vlach&}, §eneralize this study by considering
submanifolds of arbitrary codimension.

A little later, Dillen, Pas and Verstraelen, iB]] pointed out that in order to get Garay’s
condition to be coordinate invariant, it must be slightly modifieddas = Ax + B, for some
A € EndR™) and B € R™. Getting back Garay’s idea into this context and working on sur-
faces inR?, they find no other surfaces appart from those given from Garay’s condition. The
work of those authors has been generalized, independently and using different tecniques, to the
n-dimensional case by Chen, Dillen, Verstraelen and Vranckgrarid Hasanis and Vlacho$)[

The indefinite Riemannian case deserves a special care. First, the shape operator needs not
be diagonalizable, condition which plays a chief role in the definite Riemannian case. On the
other hand, all of results already obtained have been found, even implicitly, by achieving the
isoparametricity of the hypersurface. It seems reasonable thinking of a richer classification can
be hoped in working on pseudo-Riemannian submanifolds in an indefinite Euclidean space. The
first attempt in this line has been made by the authordjnwhere they classify the surfaces
in the 3-dimensional Lorentz-Minkowski spaké satisfying the quoted condition. Now we are
going to generalize that work not only by considering hypersurfaces but also taking them in any
pseudo-Euclidean space.
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The main result of this paper is a classification theorem for hypersurfaGesn pseudo-
Euclidean spacR?“. Actually, it is shown thaf\/!* satisfiesAx = Az + B if and only if itis an
open piece of a minimal hypersurface, a totally umbilical hypersurface or a pseudo-Riemannian
product of a totally umbilical and a totally geodesic submanifold.

1. Some results on submanifolds

Let M be a pseudo-Riemannian submanifoldRf™. In order to set up the notation to be
used later on, we will denote by, H, Sy, V andV the second fundamental form, the mean
curvature vector field, the Weingarten map with respedt tdhe Levi-Civita connection on/}
and the usual flat connection M*"Z respectively.

Letx : M — R?*’“ be an isometric immersion satisfying the equation

Axr = Ax + B,

where A is an endomorphism CR?““ and B is a constant vector iR?*k. By taking covariant
derivative in (1), using the well-known equatidex = —n H and applying the Weingarten formula
we get

AX =nSyX —nDxH,

for any vector fieldX tangent tal/". SinceSy is a self-adjoint endomorphism, from (2) we have
<AX)Y >=< X, AY >,
for any tangent vector field§ andY . By taking covariant derivative in last equation we obtain

<Ao(X,Z),Y > —-<Ao(Y,Z), X >= 4)
<o(X,2),AY > —<o(Y,Z),AX >.

We need, for later use, the following formula far/f, which has been already obtained by B.Y.
Chenin B

n+k
AH = APH + gv <H.H>+2t(Spy) + Y ertr(SmS,) By, (5)
r=n-+1

whereAP” is the Laplacian of the normal bundé,also will denote the gradient a7, tr(SpH) =
Yoy EiSDEiHEi and{Ei,...,E,, Eny1, ..., By} is an adapted local orthonormal frame.

Let us start by assuming that A is a self-adjoint endomorphistCh’“ and letf : R?*’“ —
R be the quadratic function defined by

fly) =< Ay,y > +2 < B,y > .

SinceX (f) = 0, for any vector fieldX tangent toM”, then f is constant oA/, sayc. Let us
write N = f~1(c). Now from (1) and (6) we know tha¥ f = —2nH, so that if we suppose
M is a non-minimal submanifold iR}, it follows that N is a hypersurface oRI'**. If
< H,H >= 0, thenM is a quasi-minimal submanifold (in the sense of R. Rodd} jn ]R?*k.
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Finally we analize the case H, H >z 0. ThenN is a pseudo-Riemannian hypersurface of
R?* beingV f a normal vector field téV. Therefore, by using the formula

1 n
H=H, + - E gio1(E;, E;),
=1

whereH; is the mean curvature vector field 8f] in V ando; is the second fundamental form
of N in R"** and the fact thaf is normal toN, we obtainH; = 0, i.e., M is a minimal
submanifold ofN. Summarizing, we have got the following result.

Proposition 1.1 Letz : M — R?™ be an isometric immersion. Thexw: = Az + B, whereA
is a self-adjoint endomorphism Bf*** and B a constant vector, if and only if one of the following
statements holds:

1) M? is a minimal submanifold Gk ;

2) M is a quasi-minimal submanifold (in the sense of R. Rosc&J'of lying in a quadratic
hypersurface given bfi(y) =< Ay,y > +2 < B,y >= ¢, which also satisfie¥ f = —2nH;

3) M7 is a minimal submanifold of a pseudo-Riemannian quadratic hypersurface given by
fly) =< Ay,y > +2 < B,y >= ¢, which also satisfie¥ f = —2nH.

As a first consequence, we get Theorem 1 given by B.Y. Che8j,iwhere he gave a pseudo-
Riemannian version of Takahashi’s Theorem.

Corollary 1.2 Letz : M* — R?** pe an isometric immersion. Thek: = Az, for a real
constant), if and only if one of the following statements holds:

1) A = 0 and M7 is a minimal submanifold a7 *;

2) A > 0 and M is a minimal submanifold & %=1 () with r = \/n/X;

3) A\ < 0 and M is a minimal submanifold dfi” = () with = \/—n/\.

Proof. By assuming thaf # 0, takeA = Al andB = 0. Then from (6) we obtain\/" is a
submanifold of a quadratic hypersurface with equatign) = A\ < y,y >= ¢, for some real
constant. Now from the equation

A<z,x>=-2n—-2n< H,z >

we getc = n, so that)M/* cannot be a quasi-minimal submanifold]Rﬁ”g and the proof finishes.
In the Riemannian case, the self-adjoint endomorphisoan always be diagonalized. Then
the Theorem 2.1 ing] given by Hasanis and Vlachos can be easily obtained from the following.

Corollary 1.3 Letz : M"™ — R"** pe an isometric immersion. Thehr = Az + B, with
A = diag[\1, ..., Apyx] @A B = (by,...,byix) € R™* if and only if either) is minimal in
R™** or M is minimal in a quadratic hypersurface given Byy1, ..., Yn+x) = Z?jlk Ny? +
25" F biy; = ¢, which also satisfie¥ f = —2nH.

2. The classification theorem for hypersurfaces

We begin this section by giving some examples of hypersurfaégsn R?™! which satisfy
the conditionAz = Ax + B. To do that, letV, o« and S be a unit normal vector field with
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< N,N >= ¢, the mean curvature with respect’d(H = aN) and the shape operator df”,
respectively. As usual, the metric tensorIEtifJrl is given by

n+1
ds?® = Z gidx’ ® da',
i=1
wheret = #{i:¢; = —1}.
Takek € {1,...,n — 1} and letf : R?"' — R be the function defined by

k n+1
2 2 2
f(x1,...,2nq1) = 61 g €iT; + Ep1T)y 1 + 02 g €5T5,
i=1 j=k—+2

whered; andds belong to the sef0, 1} and they do not vanish simultaneously. Taking 0 and
§ = +1, the setM = f~1(6r2) is a hypersurface k"' for appropriate choices df, §;, 5> and
J.

A straighforward computation shows that the unit normal vector field is given by

N = (1/7")(513?1, ey 51.%'k, Lh+1, 521‘k+2, “e 7523771—1-1)

and the principal curvatures arg = —d;/r andus = —d2/r with multiplicities & andn — k,
respectively. Then the mean curvature is giveraby: —§/(nr)(d1k + d2(n — k)) and by using
the equatiomMx = —nH = —naN we haveAx = Ax where

01 O
01

A= %(51k+52(n—k)) 1 ,
T 5

O 02
appearing: timesd; andn — k timesd,.

These examples are nothing but pseudo-Riemannian spbjgres pseudo-Riemannian hy-
perbolic spaceH? | (r) and pseudo-Riemannian produlits x S7'~*(r) andR” x H?_‘f_l(r). It
is easy to see that all of them have constant mean curvature, actually they are pseudo-Riemannian
isoparametric hypersurfaces having at most one non-zero constant principal curvature. Never-
theless, it seems natural thinking of hypersurfacdkﬂﬁl, appart from those ones, having non

constant mean curvature satisfying the asked condition. The next theorem allows us to give a
negative answer to that question.

Theorem 2.1 Letz : M} — ]R?“ be an isometric immersion satisfying the conditihm =
Az + B. ThenM] has constant mean curvature.

Proof. Take inM?" the open sel/ = {p € M : Va?(p) # 0}. Our goal is to show is empty;

otherwise, we get
< SX)Y >

o(X,Y)=¢ "

H

)
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for any tangent vector fields @u.
Now by applying the Laplacian on both sides of (1) and taking into account (5) we have

AH = 2S(Va) + neaVa + {Aa + catr(S*)}N.
Then from (7) and (8) we obtain

XY
<Ao(X,Y),Z >= <S@7’>

(2eSZ(a) + naZ(a)),
that jointly with (2) and (4) gives
TX(a)SY =TY (a)SX,

whereT is the self-adjoint operator given ByX = naX +¢SX.

Case 1.7 (Va) # 0 onU. Then there exists a tangent vector fidfdsuch thafl'X («) # 0,
which implies from (10) that has rank one ot¥. Therefore we can choose a local orthonormal
frame{E,..., E, 1} with SE; = neaFEy, SE; =0,i=2,...,nandE,;; = N. From (10)
we deduceF; is parallel toVa and then we use (2) and (8) to get

AE; = en’a®E; —nEi(a)N
AE; = 0, i=2,....n,

AN = 3nee1Ei(a)Er + {iéa +ena®}IN.
Thus the characteristic polynomiBl (¢) of A is given by
Pa(t) = (1)U — (2en2a® + %)t
+ en®ala + ntat + 3n’ee; By (a)?},
from which we can find two real constantg and A\, such that
Aa = \a — 2en?a?, (12)

nlalAa = \ge — entat — 3n251E1(a)2.

Let {w!,... w1} and{w{}i,j be the dual frame and the connection forms, respectively, of
the chosen frame. Then we can write
w,llﬂ = —neaw!, (13)
whoy o= 0, i=2,...,n, (14)
do = eEi(a)w (15)

Take exterior differentiation in (13) and use (15), then it can be deddicke- 0. Then we locally
havew! = du, for some function:, and again from (15) we géiv A du = 0. Thusa depends on
u, « = a(u), and thereford?; (o) = 1/ (u).
Taking again exterior differentiation in (14) and usihg' = 0 we haveu! = 0,i=1,...,n.
Then we get
Ao = —81E1E1(0¢) = —810//. (16)
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and this equation allows us to rewrite equations (11) and (12) as

o = 2een’ad — Mo,

n?aa” = eeintat + 3n?(o/)? — Ageey.

d .
Let us takes = (o). Thend—ﬂ = 20" and from (17) we obtain
(6

0= eenat — g\ + C,

whereC' is a constant.
On the other hand, by comparing (17) and (18) we deduce

3n2ﬁ = M\oee1 + eerniat — 51)\1n2a2,

and finally from (19) and (20) we haveis locally constant o/, which is a contradiction.
Case 2:There is a poinp in U/ such thatl’(Va)(p) = 0. Then from (2) and (8) we have

< AH, X > (p) = —nea(p) X (a)(p) =< H, AX > (p),

which implies, jointly with (3), thatA is a self-adjoint endomorphism Iﬁ?“. Thus the above
equation remains valid everywhereldrand thereford/« is a principal direction ob with associ-
ated principal curvature given bynea. First, we claimVa is a non-null vector field. Otherwise,
from (2) we would have-cn?a? should be an eigenvalue df and thereforex must be constant
onU, which cannot hold. Now, we can choose a local orthonormal fréfe. .., E,4+1} such
that E; is parallel toVa andFE,,.1 = N. Then from (2) and (8) we have

AE;, = —en®a?E; —nFEj(a)N,
AE; = naSFE;, 1=2,...,m,
A
AN = —neeiEy(a)Ey + {22 1 etr(S2)IN.
«

Writing down S* for the endomorphisn$ restricted to spaf¥s, ..., E,} and working on char-
acteristic polynomials we deduce

t
PA(t) = q(t n=1pq.
Al) = at)(no)" ' Py (),
Ps(t) = —(nea+t)Ps-(1),
wheregq(t) is a polynomial of degree two. Ldtr,...,r,} be the possibly complex roots of
Ps, so thatr; = —nea and{rq,...,r,} are the roots ofPs-. From the relation betweeR,

and Ps« we getnar;, i = 2,...,n, IS a constant eigenvalue ¢f. On the other hand, since
tr(S) = >, r; = nea we deducey ;" , r; = 2nea and thereforey is locally constant o/,
which is a contradiction with the definition of.

Anyway, we have found/ is empty, i.e., M has constant mean curvature.

Looking for the asked classification, the next theorem becomes the main result of this paper.

Theorem 2.2 Letz : M — R?*! be an isometric immersion. Theéxw = Az + B if and only
if one of the following statements holds:

1) M? is a minimal hypersurface &7

2) M is an open piece of one of the following hypersurfa&@sr), H? (), RE x SP=F(7),
Ry X H?:ffl(r)'
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Proof. Assumex is a nonzero constant. Then from (2) and (8) we find

AX = naSX, (21)
AN = etr(S?*)N, (22)

from which we deducetr(S?) is an eigenvalue oft and thereforer(S?) is constant.
On the other hand, a4z + B is normal toM, from (22) we have

(A2 — etr(S?)A)z + (AB — etr(S?)B) = 0.

SinceM™ is non-minimal, last equation yield4?> — ctr(S?)A = 0 and taking into account (21)
we get
_ etr(S?)

S(S—A)=0, A= ,
no

which implies) # 0. Otherwise,S would be a self-adjoint endomorphism wis# = 0 and then
tr(S) must be zero (this can be easily seen by using the canonical forfjs which cannot hold
becauser # 0. HenceM? is an isoparametric hypersurface whose shape operator is diagonaliz-
able having as principal curvatures zero, with multiplicity at most 1, and), with multiplicity
at least one. IfM/? is not totally umbilical, then by using similar arguments as in Theorem 2.5
of [12] and Lemma 2 of 0], M is an open piece of a pseudo-Riemannian product of a totally
umbilical and a totally geodesic submanifold. This completes the proof.

As a consequence of this theorem we obtain the following Riemannian version, which has
been shown by Dillen-Pas-Verstrael&hywhenn = 2 and by Chen-Dillen-Verstraelen-Vrancken
[5] and Hasanis-Vlachog], independently, in the n-dimensional case.

Corollary 2.3 Letx : M™ — R"*! be an isometric immersion. Théxw = Az + B if and only
if one of the following statements holds:

1) M is a minimal hypersurface;

2) M is an open piece of a hypersphere;

3) M is an open piece of a generalized circular cylinder.
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