On surfaces in the 3-dimensional Lorentz-Minkowski space

Angel Ferrández and Pascual Lucas
Pacific J. Math. 152 (1992), 93-100
(Partially supported by DGICYT grant PS87-0115)

Abstract

Let M_{s}^{2} be a surface in the 3-dimensional Lorentz-Minkowski space \mathbb{L}^{3} and denote by H its mean curvature vector field. This paper locally classifies those surfaces verifying the condition $\Delta H=\lambda H$, where λ is a real constant.

The classification is done by proving that M_{s}^{2} has zero mean curvature everywhere or it is isoparametric, i.e., its shape operator has constant minimal polynomial.

1. Introduction

Let $x: M^{2} \longrightarrow \mathbb{R}^{3}$ be an isometric immersion of a surface M^{2} in the 3-dimensional Euclidean space and denote by Δ its Laplacian. A well-known result due to Takahashi states that minimal surfaces and spheres are the only surfaces in \mathbb{R}^{3} satisfying the condition $\Delta x=\lambda x$, for a real constant λ. From the formula $\Delta x=-2 H$, where H is the mean curvature vector field, we know that those surfaces also verify the condition $\Delta H=\lambda H$. Thus, it is worthwhile to explore the existence of other surfaces satisfying that condition. The answer is given in [FGL], where the authors (jointly with O.J. Garay) obtain the following theorem, which is a consequence of [FGL, Th. 3.2]:

Theorem 1.1 Let M^{2} be a surface in \mathbb{R}^{3}. Then $\Delta H=\lambda H$ if and only if M^{2} is minimal or an open piece of one of the following surfaces: a sphere $S^{2}(r)$ or a right circular cylinder $S^{1}(r) \times \mathbb{R}$.

Now, if the ambient space is the 3-dimensional Lorentz-Minkowski space \mathbb{L}^{3}, the surface M^{2} can be endowed with a Riemannian metric (spacelike surface) or a Lorentzian metric (Lorentzian surface) and then it seems natural to hope that a richer classification can be achieved. Indeed, we state a first question:

PROBLEM 1. Classify all surfaces in \mathbb{L}^{3} satisfying the condition $\Delta H=\lambda H$, where H is the mean curvature vector field.

A maximal surface in \mathbb{L}^{3} is a spacelike surface with zero mean curvature everywhere. Obviously, those surfaces satisfy $\Delta H=0$. Then, another question arises naturally:

PROBLEM 2. Are there any other surfaces, appart from maximal ones, satisfying $\Delta H=0$?

In this paper, see Section 3, we solve the above two problems.

2. The Laplacian of the mean curvature vector field

Let M_{s}^{2} be a surface in \mathbb{L}^{3} with index $s=0,1$. Denote by σ, A, H, ∇ and $\bar{\nabla}$ the second fundamental form, the shape operator, the mean curvature vector field, the Levi-Civita connection of M_{s}^{2} and the usual flat connection of \mathbb{L}^{3}, respectively. Let N be a unit vector field normal to M_{s}^{2} and let α be the mean curvature with respect to N, i.e., $H=\alpha N$.

In order to compute ΔH at a point $p \in M_{s}^{2}$, choose a local orthonormal frame $\left\{E_{1}, E_{2}\right\}$ such that $\nabla_{E_{i}} E_{j}(p)=0$. From the formula

$$
\bar{\nabla}_{E_{i}} \bar{\nabla}_{E_{i}} H=E_{i} E_{i}(\alpha) N-2 E_{i}(\alpha) A E_{i}-\alpha\left(\nabla_{E_{i}} A\right) E_{i}-\alpha \sigma\left(A E_{i}, E_{i}\right)
$$

one has

$$
\Delta H=2 A(\nabla \alpha)+\alpha \operatorname{tr} \nabla A+\left\{\Delta \alpha+\varepsilon \alpha|A|^{2}\right\} N
$$

where $\operatorname{tr} \nabla A=\operatorname{trace}\left\{(X, Y) \longrightarrow\left(\nabla_{X} A\right) Y\right\}$ and $\varepsilon=<N, N>$.
To find a nice expression of $\operatorname{tr} \nabla A$, we distinguish three cases, according to the canonical form of A.

Case 1. A is diagonalizable. Let $\left\{X_{1}, X_{2}\right\}$ be a local orthonormal basis of eigenvectors of A, i.e., $A X_{i}=\mu_{i} X_{i}$. Then from the connection equations one has

$$
\begin{align*}
\operatorname{tr} \nabla A= & \sum_{i=1}^{2} \varepsilon_{i}\left(\nabla_{X_{i}} A\right) X_{i} \tag{2}\\
= & \left\{\varepsilon_{1} X_{1}\left(\mu_{1}\right)+\varepsilon_{2}\left(\mu_{2}-\mu_{1}\right) \omega_{2}^{1}\left(X_{2}\right)\right\} X_{1} \\
& +\left\{\varepsilon_{2} X_{2}\left(\mu_{2}\right)+\varepsilon_{1}\left(\mu_{1}-\mu_{2}\right) \omega_{1}^{2}\left(X_{1}\right)\right\} X_{2}
\end{align*}
$$

where $\varepsilon_{i}=<X_{i}, X_{i}>$.
Now, from the Codazzi's equation $\left(\nabla_{X_{1}} A\right) X_{2}=\left(\nabla_{X_{2}} A\right) X_{1}$, we get

$$
\varepsilon_{i}\left(\mu_{i}-\mu_{j}\right) \omega_{i}^{j}\left(X_{i}\right)=\varepsilon_{j} X_{j}\left(\mu_{i}\right)
$$

which, jointly with (2), yields

$$
\begin{align*}
\operatorname{tr} \nabla A & =\varepsilon_{1} X_{1}\left(\mu_{1}+\mu_{2}\right) X_{1}+\varepsilon_{2} X_{2}\left(\mu_{1}+\mu_{2}\right) X_{2} \tag{3}\\
& =2 \varepsilon \nabla \alpha
\end{align*}
$$

Case 2. A is not diagonalizable and its minimal polynomial is $(x-\beta)^{2}$. Now, it has to be $\varepsilon=1$ and we can choose a local null frame $\left\{X_{1}, X_{2}\right\}$, i.e., $<X_{1}, X_{1}>=<X_{2}, X_{2}>=0$ and $<X_{1}, X_{2}>=-1$, such that $A X_{1}=\beta X_{1}+X_{2}$ and $A X_{2}=\beta X_{2}$. Now we have

$$
\begin{align*}
\operatorname{tr} \nabla A & =-\left(\nabla_{X_{1}} A\right) X_{2}-\left(\nabla_{X_{2}} A\right) X_{1} \tag{4}\\
& =-2 X_{1}(\beta) X_{2}
\end{align*}
$$

By using again the Codazzi's equation we get $X_{2}(\beta)=0$ and considering that β is the mean curvature, one obtains from (4) that

$$
\begin{equation*}
\operatorname{tr} \nabla A=-2 X_{1}(\alpha) X_{2}=2 \nabla \alpha \tag{5}
\end{equation*}
$$

Case 3. A is not diagonalizable and its minimal polynomial is $(x-\beta)^{2}+\gamma^{2}, \gamma \neq 0$. Here, it must be $\varepsilon=1$ and we can choose and local orthonormal frame $\left\{X_{1}, X_{2}\right\}$ such that $A X_{1}=$ $\beta X_{1}-\gamma X_{2}, A X_{2}=\gamma X_{1}+\beta X_{2}$. Writing $\varepsilon_{i}=<X_{i}, X_{i}>$, we have

$$
\begin{align*}
\operatorname{tr} \nabla A= & \left\{\varepsilon_{1} X_{1}(\beta)-\varepsilon_{1} \gamma \omega_{2}^{1}\left(X_{1}\right)-\varepsilon_{1} \gamma \omega_{1}^{2}\left(X_{1}\right)+\varepsilon_{2} X_{2}(\gamma)\right\} X_{1} \tag{6}\\
& +\left\{\varepsilon_{2} X_{2}(\beta)+\varepsilon_{2} \gamma \omega_{2}^{1}\left(X_{2}\right)+\varepsilon_{2} \gamma \omega_{1}^{2}\left(X_{2}\right)-\varepsilon_{1} X_{1}(\gamma)\right\} X_{2} .
\end{align*}
$$

From the Lorentzian structure of the tangent space, one has $\omega_{1}^{2}=\omega_{2}^{1}$, and using once more the Codazzi's equation we find

$$
\begin{equation*}
\operatorname{tr} \nabla A=2\left\{\varepsilon_{1} X_{1}(\beta) X_{1}+\varepsilon_{2} X_{2}(\beta) X_{2}\right\}=2 \nabla \alpha . \tag{7}
\end{equation*}
$$

Summarizing, for a surface $M_{s}^{2}, \mathrm{~s}=0,1$, in \mathbb{L}^{3} we have got the desired formula

$$
\Delta H=2 A(\nabla \alpha)+\varepsilon \nabla \alpha^{2}+\left\{\Delta \alpha+\varepsilon \alpha|A|^{2}\right\} N,
$$

where $\nabla \alpha$ is the gradient of α and $\varepsilon=\langle N, N\rangle$.

3. Some examples of surfaces with $\Delta H=\lambda H$

We are going to describe some examples of surfaces in \mathbb{L}^{3} satisfying the condition $\Delta H=\lambda H$ for a real constant λ.
Example 3.1 Let $f: \mathbb{L}^{3} \longrightarrow \mathbb{R}$ be a real function defined by $f(x, y, z)=-\delta_{1} x^{2}+y^{2}+\delta_{2} z^{2}$, where δ_{1} and δ_{2} belong to the set $\{0,1\}$ and they do not vanish simultaneously. Taking $r>0$ and $\varepsilon= \pm 1$, the set $f^{-1}\left(\varepsilon r^{2}\right)$ is a surface in \mathbb{L}^{3} provided that $\left(\delta_{1}, \delta_{2}, \varepsilon\right) \neq(0,1,-1)$.

A straightforward computation shows that the unit normal vector field is written as $N=$ $\frac{1}{r}\left(\delta_{1} x, y, \delta_{2} z\right)$; the principal curvatures are $\mu_{1}=-\delta_{1} / r$ and $\mu_{2}=-\delta_{2} / r$. Then, the mean curvature is given by $\alpha=(\varepsilon / 2)\left(\mu_{1}+\mu_{2}\right)=(-\varepsilon / 2 r)\left(\delta_{1}+\delta_{2}\right)$ and it is easy to show that $|A|^{2}=$ $\mu_{1}^{2}+\mu_{2}^{2}=\left(1 / r^{2}\right)\left(\delta_{1}+\delta_{2}\right)$. Therefore, by using formula (8), we have $\Delta H=\left(\varepsilon / r^{2}\right)\left(\delta_{1}+\delta_{2}\right) H$.

We have list all possibilities in the adjoint table.

δ_{1}	δ_{2}	ε	Equation	Surface	Shape operator	α	ΔH
0	1	1	$y^{2}+z^{2}=r^{2}$	$\mathbb{L} \times S^{1}(r)$	$\left(\begin{array}{cc}0 & 0 \\ 0 & -1 / r\end{array}\right)$	$-\frac{1}{2 r}$	$\frac{1}{r^{2}} H$
1	0	-1	$-x^{2}+y^{2}=-r^{2}$	$H^{1}(r) \times \mathbb{R}$	$\left(\begin{array}{cc}-1 / r & 0 \\ 0 & 0\end{array}\right)$	$\frac{1}{2 r}$	$-\frac{1}{r^{2}} H$
1	0	1	$-x^{2}+y^{2}=r^{2}$	$S_{1}^{1}(r) \times \mathbb{R}$	$\left(\begin{array}{cc}-1 / r & 0 \\ 0 & 0\end{array}\right)$	$-\frac{1}{2 r}$	$\frac{1}{r^{2}} H$
1	1	-1	$-x^{2}+y^{2}+z^{2}=-r^{2}$	$H^{2}(r)$	$\left(\begin{array}{cc}-1 / r & 0 \\ 0 & -1 / r\end{array}\right)$	$\frac{1}{r}$	$-\frac{2}{r^{2}} H$
1	1	1	$-x^{2}+y^{2}+z^{2}=r^{2}$	$S_{1}^{2}(r)$	$\left(\begin{array}{cc}-1 / r & 0 \\ 0 & -1 / r\end{array}\right)$	$-\frac{1}{r}$	$\frac{2}{r^{2}} H$

TABLE 1

Example 3.2 (B-scroll, see [Gr]). Let $x(s)$ be a null curve in \mathbb{L}^{3} with Cartan frame $\{A, B, C\}$, i.e., A, B, C are vector fields along $x(s)$ satisfying the following conditions:

$$
\begin{aligned}
& <A, A>=<B, B>=0, \quad<A, B>=-1, \\
& <A, C>=<B, C>=0, \quad<C, C>=1,
\end{aligned}
$$

and

$$
\begin{aligned}
\dot{x} & =A \\
\dot{A} & =k(s) C \\
\dot{B} & =w_{0} C, \quad w_{0} \text { being a non zero constant, } \\
\dot{C} & =w_{0} A+k(s) B .
\end{aligned}
$$

If we consider the immersion $\Psi:(s, u) \longrightarrow x(s)+u B(s)$, then Ψ defines a Lorentz surface that L.K. Graves calls B-scroll. An easy computation leads to $N(s, u)=-w_{0} u B(s)-C(s)$ and $H=w_{0} N$. Then, from the formula (8), we get $\Delta H=2 w_{0}^{2} H$.

We wish to finish this section noticing that in the Riemannian case the sphere $S^{2}(r)$ and the right circular cylinder $S^{1}(r) \times \mathbb{R}$ are the only non minimal surfaces satisfying the condition $\Delta H=$ λH, but in the Lorentzian situation we find a richer family of surfaces satisfying that condition, as the above examples show. In particular, we would like to point out the chief difference among the B-scroll example and the other ones. In fact, in the first five cases (see Table 1) the shape operator is diagonalizable, whereas in a B-scroll it takes, in the usual frame $\{\partial \Psi / \partial s, \partial \Psi / \partial u\}$, the following form

$$
\left(\begin{array}{cc}
w_{0} & 0 \\
k(s) & w_{0}
\end{array}\right)
$$

and its minimal polynomial is $\left(x-w_{0}\right)^{2}$.

4. Main results

This section is devoted to show the following major result.
Theorem 4.1 Let M_{s}^{2}, $s=0,1$, be a surface in the Lorentz-Minkowski space \mathbb{L}^{3}. Then M_{s}^{2} satisfies the equation $\Delta H=\lambda H$ if and only if one the following statements is true:

1) M_{s}^{2} has zero mean curvature everywhere.
2) M_{s}^{2} is an open piece of a B-scroll.
3) M_{s}^{2} is an open piece of one of the surfaces exhibited in Table 1 .

Proof. Take in M_{s}^{2} the open set $\mathcal{U}=\left\{p \in M_{s}^{2}: \nabla \alpha^{2}(p) \neq 0\right\}$. Our first goal is showing that \mathcal{U} is empty, i.e., α is constant. Otherwise, by assumption and (8) we have got

$$
A\left(\nabla \alpha^{2}\right)=-\varepsilon \alpha \nabla \alpha^{2},
$$

and

$$
\Delta \alpha+\left(\varepsilon|A|^{2}-\lambda\right) \alpha=0
$$

at the points of \mathcal{U}. Therefore $\nabla \alpha^{2}$ is a principal direction with principal curvature $-\varepsilon \alpha$ on \mathcal{U}. Now, we claim that the shape operator is diagonalizable at the points of \mathcal{U}. First, from (1), we see that the minimal polynomial of A can not have the form $(x-\beta)^{2}+\gamma^{2}, \gamma \neq 0$. On the other hand, neither can be $(x-\beta)$; otherwise, we would have $\left(1+\varepsilon^{2}\right) \alpha(p)=0$ and therefore $\nabla \alpha^{2}(p)=0$, which can not be hold on \mathcal{U}. Finally, a similar reasoning shows that the minimal polynomial neither can have the form $(x-\beta)^{2}$.

Let us take, at a point of \mathcal{U}, a local orthonormal frame $\left\{E_{1}, E_{2}, E_{3}\right\}$ such that $E_{3}=N$ and $\left\{E_{1}, E_{2}\right\}$ are eigenvectors of A and E_{1} is parallel to $\nabla \alpha^{2}$. Then eigenvalues of A are given by $-\varepsilon \alpha$ and $3 \varepsilon \alpha$. Let $\left\{\omega^{1}, \omega^{2}, \omega^{3}\right\}$ and $\left\{\omega_{i}^{j}\right\}$ be the dual frame and the connection forms, respectively. It is easy to see that

$$
\begin{gathered}
\omega_{3}^{1}=\varepsilon \alpha \omega^{1}, \\
\omega_{3}^{2}=-3 \varepsilon \alpha \omega^{2}, \\
d \alpha=E_{1}(\alpha) \omega^{1} .
\end{gathered}
$$

Taking exterior differentiation in (3) and using the structure equations we obtain $d \omega^{1}=0$. Therefore, one locally has $\omega^{1}=d v$, for some function v, that jointly with (5) yields $d \alpha \wedge d v=0$. Then, α depends on $v, \alpha=\alpha(v)$, and therefore $d \alpha=\alpha^{\prime} d v=\alpha^{\prime} \omega^{1}$ and $E_{1}(\alpha)=\alpha^{\prime}$.

Now, by exterior diferentiation in (4) and using again the structure equations, one gets

$$
4 \alpha \omega_{2}^{1}=3 \varepsilon_{1} \varepsilon_{2} \alpha^{\prime} \omega^{2}
$$

where $\varepsilon_{i}=<E_{i}, E_{i}>$. Then a direct computation from (6) allows us to write down the following differential equation

$$
4 \alpha \alpha^{\prime \prime}-7\left(\alpha^{\prime}\right)^{2}+16 \varepsilon \varepsilon_{1} \alpha^{4}=0 .
$$

It is easy to see that a first integral is given by

$$
\left(\alpha^{\prime}\right)^{2}=C \alpha^{7 / 2}-16 \varepsilon \varepsilon_{1} \alpha^{4},
$$

where C is a constant.
From the fact that E_{1} is parallel to $\nabla \alpha^{2}$ and equation (6) we find

$$
4 \alpha \Delta \alpha=-4 \varepsilon_{1} \alpha \alpha^{\prime \prime}+3 \varepsilon_{1}\left(\alpha^{\prime}\right)^{2} .
$$

On the other hand, since $|A|^{2}=10 \alpha^{2}$, by using equations (2) and (9) we have

$$
-4 \alpha \alpha^{\prime \prime}+3\left(\alpha^{\prime}\right)^{2}=4 \varepsilon_{1}\left(\lambda-10 \varepsilon \alpha^{2}\right) \alpha^{2},
$$

that jointly with (7) gives

$$
\left(\alpha^{\prime}\right)^{2}=-\varepsilon_{1} \lambda \alpha^{2}+14 \varepsilon \varepsilon_{1} \alpha^{4} .
$$

We deduce, by using (8) and (10), that α is locally a constant on \mathcal{U}, which is a contradiction with the definition of the set \mathcal{U}. As a consequence, α is a constant on M_{s}^{2}. Then, again from (2), we deduce that either M_{s}^{2} has zero mean curvature everywhere or $|A|^{2}=\varepsilon \lambda$ and therefore $|A|^{2}$ is also a constant. That implies that the minimal polynomial of A is constant and therefore M_{s}^{2} is isoparametric. Then, if $s=0, M_{0}^{2}$ is an open piece of $H^{2}(r)$ or $H^{1}(r) \times \mathbb{R}$. When $s=1$, it follows from [Ma] that M_{1}^{2} is an open piece of one of the following surfaces: $S_{1}^{2}(r), S_{1}^{1}(r) \times \mathbb{R}$, $\mathbb{L} \times S^{1}(r)$ and the B-scroll of Example 3.2.

Theorem 4.1 gives the best solution to the stated Problem 1, so that additional hypothesis should be given in order to characterize those surfaces with zero mean curvature everywhere.

The following results can be deduced from Theorem 4.1.

Corollary 4.2 Let M_{s}^{2} be a surface in \mathbb{L}^{3}. Then $\Delta H=0$ if and only if M_{s}^{2} has zero mean curvature everywhere.

This is the solution of the Problem 2. It is worth noticing that this solution is quite similar from that given for surfaces in the 3-dimensional Euclidean space, because according to Theorem 1.1 minimal surfaces in \mathbb{R}^{3} are the only ones satisfying the condition $\Delta H=0$.

Corollary 4.3 Let M_{s}^{2} be a surface in \mathbb{L}^{3} with non zero mean curvature. Then $\Delta H=\lambda H, \lambda>0$, if and only if M_{s}^{2} is an open piece of a Lorentzian cylinder or M_{s}^{2} is a B-scroll.

Corollary 4.4 Let M^{2} a spacelike surface in \mathbb{L}^{3}. Then $\Delta H=\lambda H$ if and only if one of the following statements holds:
a) M^{2} is maximal.
b) M^{2} is an open piece of the hyperbolic plane $H^{2}(r)$.
c) M^{2} is an open piece of the hyperbolic cylinder $H^{1}(r) \times \mathbb{R}$.

Acknowledgements

We wish to thank Prof. Alfonso Romero for his nice talks and useful comments on indefinite Riemannian Geometry.

Bibliography

[FGL] A. Ferrández, O.J. Garay and P. Lucas, On a certain class of conformally flat Euclidean hypersurfaces. Lecture Notes in Math., n. 1481, (1991), 48-54.
[Gr] L.K. Graves, Codimension one isometric immersiones between Lorentz spaces. Trans. Amer. Math. Soc. 252 (1979), 367-392.
[Ma] M.A. Magid, Lorentzian isoparametric hypersurfaces. Pacific J. Math., 118 (1985), 165197.

