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Abstract

Let M2
s be a surface in the 3-dimensional Lorentz-Minkowski spaceL3 and denote byH its

mean curvature vector field. This paper locally classifies those surfaces verifying the condition
∆H = λH, whereλ is a real constant.

The classification is done by proving thatM2
s has zero mean curvature everywhere or it is

isoparametric, i.e., its shape operator has constant minimal polynomial.

1. Introduction

Letx : M2 −→ R3 be an isometric immersion of a surfaceM2 in the 3-dimensional Euclidean
space and denote by∆ its Laplacian. A well-known result due to Takahashi states that minimal
surfaces and spheres are the only surfaces inR3 satisfying the condition∆x = λx, for a real
constantλ. From the formula∆x = −2H, whereH is the mean curvature vector field, we know
that those surfaces also verify the condition∆H = λH. Thus, it is worthwhile to explore the
existence of other surfaces satisfying that condition. The answer is given in [FGL], where the
authors (jointly with O.J. Garay) obtain the following theorem, which is a consequence of [FGL,
Th. 3.2]:

Theorem 1.1 Let M2 be a surface inR3. Then∆H = λH if and only ifM2 is minimal or an
open piece of one of the following surfaces: a sphereS2(r) or a right circular cylinderS1(r)×R.

Now, if the ambient space is the 3-dimensional Lorentz-Minkowski spaceL3, the surfaceM2

can be endowed with a Riemannian metric (spacelike surface) or a Lorentzian metric (Lorentzian
surface) and then it seems natural to hope that a richer classification can be achieved. Indeed, we
state a first question:

PROBLEM 1.Classify all surfaces inL3 satisfying the condition∆H = λH, where
H is the mean curvature vector field.

A maximal surface inL3 is a spacelike surface with zero mean curvature everywhere. Obviously,
those surfaces satisfy∆H = 0. Then, another question arises naturally:

PROBLEM 2.Are there any other surfaces, appart from maximal ones, satisfying
∆H = 0?

In this paper, see Section 3, we solve the above two problems.
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2. The Laplacian of the mean curvature vector field

Let M2
s be a surface inL3 with index s = 0, 1. Denote byσ, A, H, ∇ and∇̄ the second

fundamental form, the shape operator, the mean curvature vector field, the Levi-Civita connection
of M2

s and the usual flat connection ofL3, respectively. LetN be a unit vector field normal toM2
s

and letα be the mean curvature with respect toN , i.e.,H = αN .
In order to compute∆H at a pointp ∈ M2

s , choose a local orthonormal frame{E1, E2} such
that∇EiEj(p) = 0. From the formula

∇̄Ei∇̄EiH = EiEi(α)N − 2Ei(α)AEi − α (∇EiA) Ei − ασ(AEi, Ei),

one has
∆H = 2A(∇α) + αtr∇A + {∆α + εα|A|2}N,

wheretr∇A = trace{(X, Y ) −→ (∇XA) Y } andε =< N, N >.
To find a nice expression oftr∇A, we distinguish three cases, according to the canonical form

of A.
Case 1.A is diagonalizable. Let{X1, X2} be a local orthonormal basis of eigenvectors ofA,

i.e.,AXi = µiXi. Then from the connection equations one has

tr∇A =
2∑

i=1

εi (∇XiA) Xi (2)

= {ε1X1(µ1) + ε2(µ2 − µ1)ω1
2(X2)}X1

+ {ε2X2(µ2) + ε1(µ1 − µ2)ω2
1(X1)}X2,

whereεi =< Xi, Xi >.
Now, from the Codazzi’s equation(∇X1A) X2 = (∇X2A) X1, we get

εi(µi − µj)ω
j
i (Xi) = εjXj(µi),

which, jointly with (2), yields

tr∇A = ε1X1(µ1 + µ2)X1 + ε2X2(µ1 + µ2)X2 (3)

= 2ε∇α.

Case 2.A is not diagonalizable and its minimal polynomial is(x − β)2. Now, it has to be
ε = 1 and we can choose a local null frame{X1, X2}, i.e.,< X1, X1 >=< X2, X2 >= 0 and
< X1, X2 >= −1, such thatAX1 = βX1 + X2 andAX2 = βX2. Now we have

tr∇A = − (∇X1A) X2 − (∇X2A) X1 (4)

= −2X1(β)X2.

By using again the Codazzi’s equation we getX2(β) = 0 and considering thatβ is the mean
curvature, one obtains from(4) that

tr∇A = −2X1(α)X2 = 2∇α. (5)
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Case 3.A is not diagonalizable and its minimal polynomial is(x − β)2 + γ2, γ 6= 0. Here,
it must beε = 1 and we can choose and local orthonormal frame{X1, X2} such thatAX1 =
βX1 − γX2, AX2 = γX1 + βX2. Writing εi =< Xi, Xi >, we have

tr∇A = {ε1X1(β)− ε1γω1
2(X1)− ε1γω2

1(X1) + ε2X2(γ)}X1 (6)

+ {ε2X2(β) + ε2γω1
2(X2) + ε2γω2

1(X2)− ε1X1(γ)}X2.

From the Lorentzian structure of the tangent space, one hasω2
1 = ω1

2, and using once more the
Codazzi’s equation we find

tr∇A = 2{ε1X1(β)X1 + ε2X2(β)X2} = 2∇α. (7)

Summarizing, for a surfaceM2
s , s=0,1, inL3 we have got the desired formula

∆H = 2A(∇α) + ε∇α2 + {∆α + εα|A|2}N,

where∇α is the gradient ofα andε =< N,N >.

3. Some examples of surfaces with∆H = λH

We are going to describe some examples of surfaces inL3 satisfying the condition∆H = λH
for a real constantλ.

Example 3.1 Let f : L3 −→ R be a real function defined byf(x, y, z) = −δ1x
2 + y2 + δ2z

2,
whereδ1 andδ2 belong to the set{0, 1} and they do not vanish simultaneously. Takingr > 0 and
ε = ±1, the setf−1(εr2) is a surface inL3 provided that(δ1, δ2, ε) 6= (0, 1,−1).

A straightforward computation shows that the unit normal vector field is written asN =
1
r (δ1x, y, δ2z); the principal curvatures areµ1 = −δ1/r and µ2 = −δ2/r. Then, the mean
curvature is given byα = (ε/2)(µ1 + µ2) = (−ε/2r)(δ1 + δ2) and it is easy to show that|A|2 =
µ2

1 + µ2
2 = (1/r2)(δ1 + δ2). Therefore, by using formula(8), we have∆H = (ε/r2)(δ1 + δ2)H.

We have list all possibilities in the adjoint table.

δ1 δ2 ε Equation Surface Shape operator α ∆H

0 1 1 y2 + z2 = r2 L × S1(r)

�
0 0
0 −1/r

�
− 1

2r

1

r2
H

1 0 -1 −x2 + y2 = −r2 H1(r)× R
� −1/r 0

0 0

�
1

2r
− 1

r2
H

1 0 1 −x2 + y2 = r2 S1
1(r)× R

� −1/r 0
0 0

�
− 1

2r

1

r2
H

1 1 -1 −x2 + y2 + z2 = −r2 H2(r)

� −1/r 0
0 −1/r

�
1

r
− 2

r2
H

1 1 1 −x2 + y2 + z2 = r2 S2
1(r)

� −1/r 0
0 −1/r

�
−1

r

2

r2
H

TABLE 1
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Example 3.2 (B-scroll, see [Gr]). Letx(s) be a null curve inL3 with Cartan frame{A,B, C},
i.e.,A, B, C are vector fields alongx(s) satisfying the following conditions:

< A, A >=< B,B >= 0, < A,B >= −1,

< A, C >=< B, C >= 0, < C, C >= 1,

and

ẋ = A

Ȧ = k(s)C
Ḃ = w0C, w0 being a non zero constant,

Ċ = w0A + k(s)B.

If we consider the immersionΨ : (s, u) −→ x(s) + uB(s), thenΨ defines a Lorentz surface
that L.K. Graves callsB-scroll. An easy computation leads toN(s, u) = −w0uB(s)− C(s) and
H = w0N . Then, from the formula(8), we get∆H = 2w2

0H.

We wish to finish this section noticing that in the Riemannian case the sphereS2(r) and the
right circular cylinderS1(r)×R are the only non minimal surfaces satisfying the condition∆H =
λH, but in the Lorentzian situation we find a richer family of surfaces satisfying that condition,
as the above examples show. In particular, we would like to point out the chief difference among
the B-scroll example and the other ones. In fact, in the first five cases (see Table 1) the shape
operator is diagonalizable, whereas in a B-scroll it takes, in the usual frame{∂Ψ/∂s, ∂Ψ/∂u},
the following form (

w0 0
k(s) w0

)
,

and its minimal polynomial is(x− w0)2.

4. Main results

This section is devoted to show the following major result.

Theorem 4.1 Let M2
s , s = 0, 1, be a surface in the Lorentz-Minkowski spaceL3. ThenM2

s

satisfies the equation∆H = λH if and only if one the following statements is true:
1) M2

s has zero mean curvature everywhere.
2) M2

s is an open piece of a B-scroll.
3) M2

s is an open piece of one of the surfaces exhibited in Table 1.

Proof. Take inM2
s the open setU = {p ∈ M2

s : ∇α2(p) 6= 0}. Our first goal is showing thatU
is empty, i.e.,α is constant. Otherwise, by assumption and(8) we have got

A(∇α2) = −εα∇α2,

and
∆α + (ε|A|2 − λ)α = 0
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at the points ofU . Therefore∇α2 is a principal direction with principal curvature−εα on U .
Now, we claim that the shape operator is diagonalizable at the points ofU . First, from( 1), we
see that the minimal polynomial ofA can not have the form(x − β)2 + γ2, γ 6= 0. On the
other hand, neither can be(x − β); otherwise, we would have(1 + ε2)α(p) = 0 and therefore
∇α2(p) = 0, which can not be hold onU . Finally, a similar reasoning shows that the minimal
polynomial neither can have the form(x− β)2.

Let us take, at a point ofU , a local orthonormal frame{E1, E2, E3} such thatE3 = N and
{E1, E2} are eigenvectors ofA andE1 is parallel to∇α2. Then eigenvalues ofA are given by−εα
and3εα. Let {ω1, ω2, ω3} and{ωj

i } be the dual frame and the connection forms, respectively. It
is easy to see that

ω1
3 = εαω1,

ω2
3 = −3εαω2,

dα = E1(α)ω1.

Taking exterior differentiation in(3) and using the structure equations we obtaindω1 = 0. There-
fore, one locally hasω1 = dv, for some functionv, that jointly with(5) yieldsdα∧dv = 0. Then,
α depends onv, α = α(v), and thereforedα = α′dv = α′ω1 andE1(α) = α′.

Now, by exterior diferentiation in(4) and using again the structure equations, one gets

4αω1
2 = 3ε1ε2α

′ω2,

whereεi =< Ei, Ei >. Then a direct computation from(6) allows us to write down the following
differential equation

4αα′′ − 7(α′)2 + 16εε1α
4 = 0.

It is easy to see that a first integral is given by

(α′)2 = Cα7/2 − 16εε1α
4,

whereC is a constant.
From the fact thatE1 is parallel to∇α2 and equation(6) we find

4α∆α = −4ε1αα′′ + 3ε1(α′)2.

On the other hand, since|A|2 = 10α2, by using equations(2) and(9) we have

−4αα′′ + 3(α′)2 = 4ε1(λ− 10εα2)α2,

that jointly with (7) gives
(α′)2 = −ε1λα2 + 14εε1α

4.

We deduce, by using(8) and(10), thatα is locally a constant onU , which is a contradiction with
the definition of the setU . As a consequence,α is a constant onM2

s . Then, again from(2), we
deduce that eitherM2

s has zero mean curvature everywhere or|A|2 = ελ and therefore|A|2 is
also a constant. That implies that the minimal polynomial ofA is constant and thereforeM2

s is
isoparametric. Then, ifs = 0, M2

0 is an open piece ofH2(r) or H1(r) × R. Whens = 1, it
follows from [Ma] thatM2

1 is an open piece of one of the following surfaces:S2
1(r), S1

1(r) × R,
L × S1(r) and the B-scroll of Example 3.2.

Theorem 4.1 gives the best solution to the stated Problem 1, so that additional hypothesis
should be given in order to characterize those surfaces with zero mean curvature everywhere.

The following results can be deduced from Theorem 4.1.
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Corollary 4.2 Let M2
s be a surface inL3. Then∆H = 0 if and only if M2

s has zero mean
curvature everywhere.

This is the solution of the Problem 2. It is worth noticing that this solution is quite similar from
that given for surfaces in the 3-dimensional Euclidean space, because according to Theorem 1.1
minimal surfaces inR3 are the only ones satisfying the condition∆H = 0.

Corollary 4.3 LetM2
s be a surface inL3 with non zero mean curvature. Then∆H = λH, λ > 0,

if and only ifM2
s is an open piece of a Lorentzian cylinder orM2

s is a B-scroll.

Corollary 4.4 Let M2 a spacelike surface inL3. Then∆H = λH if and only if one of the
following statements holds:
a) M2 is maximal.
b) M2 is an open piece of the hyperbolic planeH2(r).
c) M2 is an open piece of the hyperbolic cylinderH1(r)× R.
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[FGL] A. Ferŕandez, O.J. Garay and P. Lucas,On a certain class of conformally flat Euclidean
hypersurfaces.Lecture Notes in Math., n. 1481, (1991), 48–54.

[Gr] L.K. Graves,Codimension one isometric immersiones between Lorentz spaces.Trans.
Amer. Math. Soc.252(1979), 367-392.

[Ma] M.A. Magid, Lorentzian isoparametric hypersurfaces.Pacific J. Math.,118 (1985), 165-
197.

6


