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Abstract

Let M2 be a surface in the 3-dimensional Lorentz-Minkowski sgatand denote byd its
mean curvature vector field. This paper locally classifies those surfaces verifying the condition
AH = \H, where) is a real constant.

The classification is done by proving thBf2 has zero mean curvature everywhere or it is
isoparametric, i.e., its shape operator has constant minimal polynomial.

1. Introduction

Letz : M? — R? be an isometric immersion of a surfatg” in the 3-dimensional Euclidean
space and denote b its Laplacian. A well-known result due to Takahashi states that minimal
surfaces and spheres are the only surfaceR’isatisfying the conditiom\z = Az, for a real
constant\. From the formulaAz = —2H, whereH is the mean curvature vector field, we know
that those surfaces also verify the conditiddl = AH. Thus, it is worthwhile to explore the
existence of other surfaces satisfying that condition. The answer is given in [FGL], where the
authors (jointly with O.J. Garay) obtain the following theorem, which is a consequence of [FGL,
Th. 3.2]:

Theorem 1.1 Let M? be a surface irR3. ThenAH = \H if and only if M2 is minimal or an
open piece of one of the following surfaces: a spl#te’) or a right circular cylinderS! (r) x R.

Now, if the ambient space is the 3-dimensional Lorentz-Minkowski spiggehe surfacel/?

can be endowed with a Riemannian metric (spacelike surface) or a Lorentzian metric (Lorentzian
surface) and then it seems natural to hope that a richer classification can be achieved. Indeed, we
state a first question:

PROBLEM 1.Classify all surfaces ifi.? satisfying the conditiod\ H = \H, where
H is the mean curvature vector field.

A maximal surface ifl.3 is a spacelike surface with zero mean curvature everywhere. Obviously,
those surfaces satistyH = 0. Then, another question arises naturally:

PROBLEM 2. Are there any other surfaces, appart from maximal ones, satisfying
AH =07?

In this paper, see Section 3, we solve the above two problems.
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2. The Laplacian of the mean curvature vector field

Let M2 be a surface ifl.? with indexs = 0,1. Denote byo, A, H, V andV the second
fundamental form, the shape operator, the mean curvature vector field, the Levi-Civita connection
of M2 and the usual flat connectionbf, respectively. LefV be a unit vector field normal td/?2
and leta be the mean curvature with respectNgi.e., H = aN.

In order to computé\ H at a pointp € M2, choose a local orthonormal frani&;, £} such
thatVg, E;(p) = 0. From the formula

Vi, Ve H = EE(a)N - 2E;(a)AE; — a (Vg,A) E; — ac(AE;, E;),

one has
AH =2A(Va) + atrVA + {Aa +ca|A*}N,

wheretrVA = trace{(X,Y) — (VxA) Y} ande =< N, N >.

To find a nice expression of V A, we distinguish three cases, according to the canonical form
of A.

Case 1.A is diagonalizable. Lef X1, X, } be a local orthonormal basis of eigenvectorsiof
i.e., AX; = u; X;. Then from the connection equations one has

2
trVA = Y £ (VxA)X, 2)
i=1

= {;1X1(/~61) + a2 — p1)wy (X2) 1 X3
+ {eaXa(p2) + e1(pn — p2)wi(X1)}Xo,

wheree; =< X;, X; >.
Now, from the Codazzi’s equatidiVx, A) X2 = (Vx,A4) X1, we get

ei(pi — Mj)%j(Xi) = & X; (i),
which, jointly with (2), yields

trVA = e Xi(p + p2) X1 +e2Xo(pr + p2)Xo (3)
= 2V
Case 2. A is not diagonalizable and its minimal polynomial(is — 3)2. Now, it has to be
e = 1 and we can choose a local null frafh&, X»}, i.e., < X1, X1 >=< X, Xy >= 0 and
< X1,X9 >= —1,suchthatd X; = 6X; + X, andAX, = 3X,. Now we have

trVA = —(Vx,A) Xy — (Vx,A) X, (4)
= —2X1(3)Xo.

By using again the Codazzi's equation we déf(5) = 0 and considering that is the mean
curvature, one obtains frofa) that

trVA = -2X;(a)X2 = 2Va. (5)
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Case 3.4 is not diagonalizable and its minimal polynomial(is — 3)? + 42, v # 0. Here,
it must bee = 1 and we can choose and local orthonormal frafg, X»} such thatAX; =
6X1 —vXs, AXy = vX1 + BXo. Writing e; =< X;, X; >, we have
trVA = {a1X1(f) — e1ws(X1) — e1qwi(X1) + €2 Xa(7) } X1 (6)
+ {22 X(8) + eaywy (X2) + eywi(X2) — e1X1(y)} Xa.
From the Lorentzian structure of the tangent space, oneshas w!, and using once more the
Codazzi's equation we find

trVA =2{e1 X1(8) X1 + e2X2(8) X2} = 2Va. 7
Summarizing, for a surfacMSQ, s=0,1, inL.? we have got the desired formula

AH = 2A(Va) +eVa? + {Aa + cal A*}N,
whereVa is the gradient ofy ande =< N, N >.

3. Some examples of surfaces with H = A\H

We are going to describe some examples of surfacks$ satisfying the conditiod H = \H
for a real constank.

Example 3.1 Let f : L3 — R be a real function defined bf(x,y, z) = —6122 + y? + 5222,
whered; andd, belong to the sef0, 1} and they do not vanish simultaneously. Taking 0 and
e = +1, the setf ~(er?) is a surface if.3 provided that(, do, €) # (0,1, —1).

A straightforward computation shows that the unit normal vector field is writtefV as
%(61x,y,5gz); the principal curvatures arg; = —d;/r anduy = —d2/r. Then, the mean
curvature is given by = (£/2)(u1 + u2) = (—/2r)(61 + 62) and it is easy to show thatl|? =
u3 + 3 = (1/r?)(81 + 62). Therefore, by using formules), we haveAH = (g/r%) (51 + 52) H.

We have list all possibilities in the adjoint table.

01 | 02 | € Equation Surface Shape operator @ AH
2, 2 _ .2 1 0 0 1 1

0|11 Yy +zi=r L xS (r) <O “1/r oy r2H
- 2,2 .2 1 —-1/r 0 11

1,0]-1 iyt =-—r H (r) xR < 0 0 o 7ﬂQH
2, .2 _ .2 1 —-1/r 0 IR

1,011 4y =7 Si(r) xR < 0 0 o 7“2H
B 2 2 2 _ .2 2 —1/r 0 1 _3

1 1 1 T +y +z°=-—r H*(r) < 0 mys " 742H
2 2 2 9 2 —1/r 0 1 2

11| 1] =4y +27=r 5i(r) < 0 —1/r r| e

TABLE 1
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Example 3.2 (B-scroll, see [Gr]). Let:(s) be a null curve inl? with Cartan frameg{A, B, C?},
i.e., A, B, C are vector fields along(s) satisfying the following conditions:

<A A>=<B,B>=0, <A,B>=-1,
<A C>=<B,C>=0, <C,C>=1,
and

= A

= k(s)C

= weC, wg being a non zero constant,
C = woA +k(s)B.

oy Bl SO SN

If we consider the immersiod : (s,u) — xz(s) + uB(s), thenV¥ defines a Lorentz surface
that L.K. Graves call8-scroll. An easy computation leads #6(s, u) = —wouB(s) — C(s) and
H = woN. Then, from the formulds), we getAH = 2w2H.

We wish to finish this section noticing that in the Riemannian case the spRérgand the
right circular cylinderS* (r) x R are the only non minimal surfaces satisfying the conditidfii =
AH, but in the Lorentzian situation we find a richer family of surfaces satisfying that condition,
as the above examples show. In particular, we would like to point out the chief difference among
the B-scroll example and the other ones. In fact, in the first five cases (see Table 1) the shape
operator is diagonalizable, whereas in a B-scroll it takes, in the usual ffadgos, 0¥ /ou},

the following form
wo 0
k(s) wo )’
and its minimal polynomial i$z — wy)?.

4. Main results

This section is devoted to show the following major result.

Theorem 4.1 Let M2, s = 0,1, be a surface in the Lorentz-Minkowski spdcé Then M2
satisfies the equatioA H = \H if and only if one the following statements is true:

1) M? has zero mean curvature everywhere.

2) M2 is an open piece of a B-scroll.

3) M2 is an open piece of one of the surfaces exhibited in Table 1.

Proof. Take in)M?2 the open seld = {p € M2 : Va?(p) # 0}. Our first goal is showing that
is empty, i.e.qv is constant. Otherwise, by assumption @8gwe have got

A(Va?) = —eaVa?,

and
Aa + (e|A2 = Na =0
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at the points ot/. ThereforeVa? is a principal direction with principal curvaturesa: on /.
Now, we claim that the shape operator is diagonalizable at the poidts &irst, from (1), we
see that the minimal polynomial of can not have the fornw — 3)2 + 2, v # 0. On the
other hand, neither can lfe — 3); otherwise, we would havél + c2)a(p) = 0 and therefore
Va?(p) = 0, which can not be hold ot¥. Finally, a similar reasoning shows that the minimal
polynomial neither can have the forfn — 3)2.

Let us take, at a point @, a local orthonormal fram¢FE, Es, E5} such thatFs = N and
{E4, E,} are eigenvectors of andF; is parallel toVa?. Then eigenvalues of are given by-c«
and3eca. Let {w',w? w3} and{w’} be the dual frame and the connection forms, respectively. It
is easy to see that

w3 = caw’,
wg = —3eaw?,
do = Ey(a)w?.

Taking exterior differentiation iti3) and using the structure equations we obtaih = 0. There-
fore, one locally has'' = dv, for some function, that jointly with (5) yieldsda A dv = 0. Then,
« depends om, a = a(v), and thereforéa = o'dv = o/w! andE; (o) = o'.

Now, by exterior diferentiation ii4) and using again the structure equations, one gets

1 /2
daw; = 3e1e20/ W7,

wheres; =< E;, E; >. Then a direct computation fro6) allows us to write down the following
differential equation
4ac” —T7(a)? + 1610 = 0.

It is easy to see that a first integral is given by
(a)? = Ca™/? — 16ee10?,

where(' is a constant.
From the fact thafz; is parallel toVa? and equatiori6) we find

daAa = —deoa” + 31 (o).
On the other hand, sindel|? = 10a?, by using equation&2) and(9) we have
—4a0” 4+ 3(a/)? = 41 (X — 10ea?)a?,

that jointly with (7) gives
(o)? = —e1\a? + 14ee 0t

We deduce, by usingg) and(10), thata is locally a constant ot¥, which is a contradiction with
the definition of the sel/. As a consequence, is a constant od/2. Then, again fron{2), we
deduce that eitheb/? has zero mean curvature everywherd 4 = ¢\ and therefore A|? is
also a constant. That implies that the minimal polynomialdt constant and therefor®/? is
isoparametric. Then, if = 0, M¢ is an open piece of/?(r) or H(r) x R. Whens = 1, it
follows from [Ma] that M is an open piece of one of the following surfac&$(r), S (r) x R,
L x S'(r) and the B-scroll of Example 3.2.
Theorem 4.1 gives the best solution to the stated Problem 1, so that additional hypothesis
should be given in order to characterize those surfaces with zero mean curvature everywhere.
The following results can be deduced from Theorem 4.1.
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Corollary 4.2 Let M? be a surface inL®. ThenAH = 0 if and only if M2 has zero mean
curvature everywhere.

This is the solution of the Problem 2. It is worth noticing that this solution is quite similar from
that given for surfaces in the 3-dimensional Euclidean space, because according to Theorem 1.1
minimal surfaces ifR? are the only ones satisfying the conditidd? = 0.

Corollary 4.3 LetMs2 be a surface ifi.? with non zero mean curvature. Th&H = \H, \ > 0,
if and only if M2 is an open piece of a Lorentzian cylinder bf? is a B-scroll.

Corollary 4.4 Let M? a spacelike surface ifi.’. ThenAH = )\H if and only if one of the
following statements holds:

a) M? is maximal.

b) M? is an open piece of the hyperbolic plafé (r).

c) M? is an open piece of the hyperbolic cylindgr (r) x R.
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