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Abstract

In this paper we locally classify the surfacA$? in the 3-dimensional Lorentz-Minkowski
spacel.? verifying the equatiom\z = Az + B, whereA is an endomorphism dt? and B
is a constant vector.

We obtain that classification by proving thaf? has constant mean curvature and in a second
step we deducd/? is isoparametric.

0. Introduction

In [FL92] the last two authors obtain a classification of surfat€sin the 3-dimensional
Lorentz-Minkowski space satisfying the conditidn = M\H, for a real constank, where H
is the mean curvature vector field. That equation is nothing but a system of partial differential
eqguations, so that the problems quoted in [FL92] can be framed in a more general situation: clas-
sify semi-Riemannian submanifolds by means of some characteristic differential equations. In
this line, the technique of finite type submanifolds, created and developed by B.Y. Chen, has been
shown as a fruitful tool to inquire into not only the intrinsic configuration of the submanifold, but
also in the extrinsic one, because the Laplacian of the isometric immersion is essentially the mean
curvature vector field of the submanifold.

Following Chen’s idea, Garay [Gar88] has got a characterization of connected, complete sur-
faces of revolution ifE? whose component functions & are eigenfunctions of its Laplacian
with possibly distinct eigenvalues. In a second step, in [Gar90], Garay found that the only Eu-
clidean hypersurfaces whose coordinate functions are eigenfunctions for its Laplacian are open
pieces of a minimal hypersurface, a hypersphere or a generalized circular cylinder.

More recently, in [DPV90], Dillen-Pas-Verstraelen pointed out that Garay’s condition is not
coordinate invariant as a circular cylinderlid shows. Then they study and classify the surfaces
in E2 which satisfyAz = Az + B, whereA is the Laplacian on the surface,represents the
isometric immersion ifE?, A € E3*3 andB € R3.

It is well known that when the ambient space is the 3-dimensional Lorentz-Minkowski space
L3, then the surfacé/? can be endowed with a Riemannian metric (spacelike surface) or a
Lorentzian metric (Lorentzian surface) and therefore, as we pointed out in [FL92], a richer classi-
fication is hoped. So, the following geometric question seems coming up in a natural way:

“Which are the surfaces ifi.® satisfying the conditiodz = Az 4 B, whereA is a
endomorphism di? and B is a constant vector?”
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To solve this question we follow the same way of reasoning as in [FL92], which is quite
different to that used by Dillen-Pas-Verstraelen in [DPV90]. We would like to remark that our
proof also works in the Riemannian case, so that the Theorem in [DPV90] can be obtained as a

consequence of our main result.

1. Some examples

Let f : L3 — R be areal function defined bf(z, y, z) = —§122 + y* + 6222, whered; and
2 belong to the sef0, 1} and they do not vanish simultaneously. Taking 0 ande = +1, the
setf~!(er?) is a surface i3 provided that6y, 42, ) # (0,1, —1).

A straightforward computation shows that the unit normal vector field is writtefV as:
(1/r)(d1z,y, d22z) and the principal curvatures arg = —¢;/r anduy = —d2/r. Then the mean
curvature is given byy = (¢/2)(u1 + p2) = (—¢/2r)(01 + d2) and by using the well known
formulaAz = —2H = —2aN we obtainAz = Ax, where

01 0 0
01+
A=t . 2 (9 1 0
" 0 0 &
The adjoint table collects all above possibilities.
Equation Surface A
0 0 0
2% =2 L x S'(r) 0 1/r? 0
0 0 1/r?

0 0
1/r2 0 0
—z? 4 y? =12 St(r) xR 0 1/r* 0
0 0 0

—2/r? 0 0
—x? 4y 42 = —? H?(r) 0 —2/r? 0

2/r2 0 0
Y N S2(r) 0o 2/ 0

TABLE 1
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2. Setup

Let M2 be a surface ifi.? with indexs = 0, 1. Throughout this paper we will denote by
S, H, V andV the second fundamental form, the shape operator, the mean curvature vector field,
the Levi-Civita connection od/? and the usual flat connection @, respectively. LetV be a
unit vector field normal tdW§ and leta be the mean curvature with respectNgi.e., H = aN.

Letz : M2 — L3 be an isometric immersion satisfying the equation

Axr = Ax + B,

whereA is an endomorphism @f? andB is a constant vector ih3. If we take covariant derivative
in (1) and use the well known equatidaw = —2H, by applying the Weingarten formula we have

AX =2aSX —2X(a)N,
for any vector fieldX tangent taM/2. From here and the self-adjointnessSbbne easily gets
<AX)Y >=< X, AY >,

for any tangent vector field& andY’.
Covariant derivative in (3) yields

<Ao(X,Z),Y > —-<Ao(Y,Z), X >= 4)
<o(X,2),AY > —-<o(Y,Z),AX >.

Now, by applying the Laplacian on both sides of (1) and taking into account the formula for
AH obtained in [FL92], we have

AH =28(Va) + 2eaVa + {Aa +ca|S]*}N, (5)

whereVa stands for the gradient ef ande =< N, N >.

As for the structure equations we would like to set the notation that will be used later on. Let
{E\, E», E5} be alocal orthonormal frame and let!, w?, w3} and{w’}; ; be the dual frame and
the connection forms, respectively, given by

W(X)=<X,E; >  w/(X)=<VxEi,E;>.
Then we have

3 3
dw' = — E gjw; A w’, dw] = — g Epwy, AWk,
j=1 k=1

3. The characterization theorem

All exhibited examples in Section 1 have constant mean curvature. It seems reasonable to ask
for surfaces ifL3 satisfying (1) having non constant mean curvature. The answer is negative as
the following proposition shows.

Proposition 3.1 Letx : M2 — LL? be an isometric immersion satisfyidgr = Az + B. Then
M? has constant mean curvature.
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Proof. Let us start with the open set= {p € M2 : Va?(p) # 0}. We are going to show that
is empty. Otherwise, we have
< S8X,Y >

o(X,)Y)=e2200 T,
[0

for any tangent vector fields @s. Then from (5) we obtain

<SX)Y >

<Ao(X,)Y),Z >=2 (eSZ(a) + aZ(a)).

Now, by applying (2), (4) and (6) we get
TX(a)SY =TY (a)SX,

whereT is the self-adjoint operator given lyX = 2aX +SX.

Case 1:T(Va) # 0 onU. Then there exists a tangent vector fiéldsuch thatl’ X («) # 0,
which implies by using (7) tha$ has rank one of{. Thus we can choose a local orthonormal
frame{E1, Eo, E3} with SEy = 2eaFy, SE; = 0 andE3 = N. From here and again from (7)
we haveEs(a) = 0. Let {w!,w? w3} and{w!}; ; be the dual frame and the connection forms,
respectively. Itis easy to see that

w% = —2caw!,

w% =0,
do = lel(a)wl.

Taking exterior diferentiation in (8) and using (10) and the structure equations we dbtaia 0
and therefore we locally have' = du, for a certain function.. Now, from (10) we getla A du =
0 and ther depends om, o = a(u), and thereford?; (o) = 1/ (u).

Taking into account (9) andv! = 0 we deducev} = 0. Then we have

Ao = — ZEi{EiEi(O‘) — Ve Ei(a)} = —e1E1E(0) = —e10”.

On the other hand, from (2), (5) and (11) the associated matrix to the endomorghisth
respect to{ £, Fy, N} is given by

dea? 0 6eod
0 0 0

O/l
—261a 0 —e1— + 4ea?
(8]

By considering the invariant elements.4f we obtain the following differential equations:
g1 = 8202 — N\«

—4eciad’ + 16a* + 12661(0/)2 = o,
where)\; and )\, are two real constants.
ag

Let us takes = (a)?. Thend— = 20" and from (12) we have
(0%

8= 4551a4 - )\151012 + C,

4



Luis J. Alias, Angel Ferrandez and Pascual Lucas, Surfaces in the 3-dimensional Lorentz-Minkowski space satisfying Az = Az + B

where(C is a constant.
Now, from (12) and (13) we get

128 = Xoeeq + 16ce1a® — 4X\ 16102,

Finally, we deduce from (14) and (15) thais locally constant o&/, which is a contradiction.
Case 2:There exists a point in U/ such thatl’(Va)(p) = 0. Thus from (2) and (5) we have

< AH, X > (p) = —2ea(p) X () (p) =< H, AX > (p),

which implies, jointly with (3), thatd is a self-adjoint endomorphism ih®. Then the above
equation remains valid everywhere rand therefore we get

S(Va) = —2eaVa.

Since—2¢c« is an eigenvalue of and ttiS = 2z« then.S is diagonalizable and we can choose
a local orthonormal framéE, Ey, E5} such thatEs = N, SE; = —2eaE, with E; parallel to
VaandSE; = 4caEs. Let{w',w?, w?} and{w’}; ; be the dual frame and the connection forms,
respectively. Then
w3 = 2eaw’,

w2 = —4eaw?,
do = €1E(a)w1.

Taking again exterior differentiation in (17) and using the structure equations weilave 0.
Therefore one locally has! = du, for some function:, and thusy depends om, o = a(u) and
El (a) = 510/.

By exterior differentiation in (18) and using again the structure equations we obtain

3e10wy = 20/w?.
A straightforward computation from (20) leads to
3aa” = 5(a/)? — 36ee1a,
If we put 3 = (o’)? then the last equation can be rewritten as

3 d

§a£ =503 — 36ee1a?,
whose solution is given by

0= Cal3 — 36ee1at,

whereC' is a constant.
On the other hand, from the definition &fc, the fact thatF; is parallel toVa and (20) we

obtain

2
alAa = —cjad” + %(O/)Q.

Now, from (2) and (5) it is easy to get

alAa = \a? — 24ea, A =tr(A),
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that jointly with (24) yields
3ad” = T2ee1a® — 3Xe1a® + 2(a)2

Finally, a similar reasoning as in Case 1 by using now (21), (23) and (25) leadsstiocally
constant ord/, which is again a contradiction with the definitionlef

Anyway, we deducé/ is empty and thed/2 has constant mean curvature.
O

Now, we are ready to show the main theorem of this paper.

Theorem 3.2 Letz : M2 — IL? be an isometric immersion. Theéxw = Az + B if and only if
one of the following statements holds good:

1) M2 has zero mean curvature everywhere.

2) M2 is an open piece of one of the following surfacksx S*(r), H!(r) x R, Si(r) x R,
H2(r), S2(r).

Proof. Let M2 be a surface ifi.? such thatAx = Az + B. From Proposition 3.1 we know/?
has constant mean curvaturelf o = 0 there is nothing to prove. So, suppesée: 0. Then from
(2) and (5) we get
AX =2aS5X,
{ AN = ¢|S]°PN

and therefore
tr(A) = 2atr(S) + |S|* = 4ea’® + €| S|,

from which we deducéS|? is constant and thef/? is a isoparametric surface. 4f= 0, M is
an open piece afl?(r) or H!(r) x R. Whens = 1, it follows from [Mag85] that) is an open
piece of one of the following surfaceS?(r), Si(r) x R, L x S!(r) and a B-scroll. However a
straightforward calculation shows that the B-scroll does not satisfy the conditios Ax + B.
O

As we have pointed out in the Introduction, our proof also works when the ambient space is
E3. Then the Theorem of Dillen-Pas-Verstraelen in [DPV90] can be viewed as a consequence of
our Theorem:

Corollary 3.3 Letxz : M? — E3 an isometric immersion. Thel satisfiesAz = Az + B if
and only if it is an open piece of a minimal surface, a sphere or a circular cylinder.
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