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Abstract

In this paper we locally classify the surfacesM2
s in the 3-dimensional Lorentz-Minkowski

spaceL3 verifying the equation∆x = Ax + B, whereA is an endomorphism ofL3 andB
is a constant vector.

We obtain that classification by proving thatM2
s has constant mean curvature and in a second

step we deduceM2
s is isoparametric.

0. Introduction

In [FL92] the last two authors obtain a classification of surfacesM2
s in the 3-dimensional

Lorentz-Minkowski space satisfying the condition∆H = λH, for a real constantλ, whereH
is the mean curvature vector field. That equation is nothing but a system of partial differential
equations, so that the problems quoted in [FL92] can be framed in a more general situation: clas-
sify semi-Riemannian submanifolds by means of some characteristic differential equations. In
this line, the technique of finite type submanifolds, created and developed by B.Y. Chen, has been
shown as a fruitful tool to inquire into not only the intrinsic configuration of the submanifold, but
also in the extrinsic one, because the Laplacian of the isometric immersion is essentially the mean
curvature vector field of the submanifold.

Following Chen’s idea, Garay [Gar88] has got a characterization of connected, complete sur-
faces of revolution inE3 whose component functions inE3 are eigenfunctions of its Laplacian
with possibly distinct eigenvalues. In a second step, in [Gar90], Garay found that the only Eu-
clidean hypersurfaces whose coordinate functions are eigenfunctions for its Laplacian are open
pieces of a minimal hypersurface, a hypersphere or a generalized circular cylinder.

More recently, in [DPV90], Dillen-Pas-Verstraelen pointed out that Garay’s condition is not
coordinate invariant as a circular cylinder inE3 shows. Then they study and classify the surfaces
in E3 which satisfy∆x = Ax + B, where∆ is the Laplacian on the surface,x represents the
isometric immersion inE3, A ∈ E3×3 andB ∈ R3.

It is well known that when the ambient space is the 3-dimensional Lorentz-Minkowski space
L3, then the surfaceM2

s can be endowed with a Riemannian metric (spacelike surface) or a
Lorentzian metric (Lorentzian surface) and therefore, as we pointed out in [FL92], a richer classi-
fication is hoped. So, the following geometric question seems coming up in a natural way:

“Which are the surfaces inL3 satisfying the condition∆x = Ax + B, whereA is a
endomorphism ofL3 andB is a constant vector?”
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To solve this question we follow the same way of reasoning as in [FL92], which is quite
different to that used by Dillen-Pas-Verstraelen in [DPV90]. We would like to remark that our
proof also works in the Riemannian case, so that the Theorem in [DPV90] can be obtained as a
consequence of our main result.

1. Some examples

Let f : L3 −→ R be a real function defined byf(x, y, z) = −δ1x
2 + y2 + δ2z

2, whereδ1 and
δ2 belong to the set{0, 1} and they do not vanish simultaneously. Takingr > 0 andε = ±1, the
setf−1(εr2) is a surface inL3 provided that(δ1, δ2, ε) 6= (0, 1,−1).

A straightforward computation shows that the unit normal vector field is written asN =
(1/r)(δ1x, y, δ2z) and the principal curvatures areµ1 = −δ1/r andµ2 = −δ2/r. Then the mean
curvature is given byα = (ε/2)(µ1 + µ2) = (−ε/2r)(δ1 + δ2) and by using the well known
formula∆x = −2H = −2αN we obtain∆x = Ax, where

A =
ε(δ1 + δ2)

r2




δ1 0 0
0 1 0
0 0 δ2


 .

The adjoint table collects all above possibilities.

Equation Surface A

y2 + z2 = r2 L × S1(r)

0@ 0 0 0
0 1/r2 0
0 0 1/r2

1A

−x2 + y2 = −r2 H1(r)× R
0@ −1/r2 0 0

0 −1/r2 0
0 0 0

1A

−x2 + y2 = r2 S1
1(r)× R

0@ 1/r2 0 0
0 1/r2 0
0 0 0

1A

−x2 + y2 + z2 = −r2 H2(r)

0@ −2/r2 0 0
0 −2/r2 0
0 0 −2/r2

1A

−x2 + y2 + z2 = r2 S2
1(r)

0@ 2/r2 0 0
0 2/r2 0
0 0 2/r2

1A
TABLE 1

2



Luis J. Alı́as, Angel Ferrández and Pascual Lucas, Surfaces in the 3-dimensional Lorentz-Minkowski space satisfying ∆x = Ax + B

2. Setup

Let M2
s be a surface inL3 with indexs = 0, 1. Throughout this paper we will denote byσ,

S, H,∇ and∇̄ the second fundamental form, the shape operator, the mean curvature vector field,
the Levi-Civita connection onM2

s and the usual flat connection onL3, respectively. LetN be a
unit vector field normal toM2

s and letα be the mean curvature with respect toN , i.e.,H = αN .
Let x : M2

s −→ L3 be an isometric immersion satisfying the equation

∆x = Ax + B,

whereA is an endomorphism ofL3 andB is a constant vector inL3. If we take covariant derivative
in (1) and use the well known equation∆x = −2H, by applying the Weingarten formula we have

AX = 2αSX − 2X(α)N,

for any vector fieldX tangent toM2
s . From here and the self-adjointness ofS one easily gets

< AX, Y >=< X,AY >,

for any tangent vector fieldsX andY .
Covariant derivative in (3) yields

< Aσ(X, Z), Y > − < Aσ(Y,Z), X >= (4)

< σ(X, Z), AY > − < σ(Y, Z), AX > .

Now, by applying the Laplacian on both sides of (1) and taking into account the formula for
∆H obtained in [FL92], we have

AH = 2S(∇α) + 2εα∇α + {∆α + εα|S|2}N, (5)

where∇α stands for the gradient ofα andε =< N, N >.
As for the structure equations we would like to set the notation that will be used later on. Let

{E1, E2, E3} be a local orthonormal frame and let{ω1, ω2, ω3} and{ωj
i }i,j be the dual frame and

the connection forms, respectively, given by

ωi(X) =< X, Ei >, ωj
i (X) =< ∇̄XEi, Ej > .

Then we have

dωi = −
3∑

j=1

εjω
i
j ∧ ωj , dωj

i = −
3∑

k=1

εkω
j
k ∧ ωk

i .

3. The characterization theorem

All exhibited examples in Section 1 have constant mean curvature. It seems reasonable to ask
for surfaces inL3 satisfying (1) having non constant mean curvature. The answer is negative as
the following proposition shows.

Proposition 3.1 Let x : M2
s −→ L3 be an isometric immersion satisfying∆x = Ax + B. Then

M2
s has constant mean curvature.

3



Pacific J. Math. 156 (1992), 201–208

Proof. Let us start with the open setU = {p ∈ M2
s : ∇α2(p) 6= 0}. We are going to show thatU

is empty. Otherwise, we have

σ(X, Y ) = ε
< SX, Y >

α
H,

for any tangent vector fields onU . Then from (5) we obtain

< Aσ(X,Y ), Z >= 2
< SX, Y >

α
(εSZ(α) + αZ(α)).

Now, by applying (2), (4) and (6) we get

TX(α)SY = TY (α)SX,

whereT is the self-adjoint operator given byTX = 2αX + εSX.
Case 1:T (∇α) 6= 0 on U . Then there exists a tangent vector fieldX such thatTX(α) 6= 0,
which implies by using (7) thatS has rank one onU . Thus we can choose a local orthonormal
frame{E1, E2, E3} with SE1 = 2εαE1, SE2 = 0 andE3 = N . From here and again from (7)
we haveE2(α) = 0. Let {ω1, ω2, ω3} and{ωj

i }i,j be the dual frame and the connection forms,
respectively. It is easy to see that

ω1
3 = −2εαω1,

ω2
3 = 0,

dα = ε1E1(α)ω1.

Taking exterior diferentiation in (8) and using (10) and the structure equations we obtaindω1 = 0
and therefore we locally haveω1 = du, for a certain functionu. Now, from (10) we getdα∧du =
0 and thenα depends onu, α = α(u), and thereforeE1(α) = ε1α

′(u).
Taking into account (9) anddω1 = 0 we deduceω1

2 = 0. Then we have

∆α = −
∑

i

εi{EiEi(α)−∇EiEi(α)} = −ε1E1E1(α) = −ε1α
′′.

On the other hand, from (2), (5) and (11) the associated matrix to the endomorphismA with
respect to{E1, E2, N} is given by




4εα2 0 6εα′

0 0 0

−2ε1α
′ 0 −ε1

α′′

α
+ 4εα2


 .

By considering the invariant elements ofA, we obtain the following differential equations:

ε1α
′′ = 8εα3 − λ1α,

−4εε1αα′′ + 16α4 + 12εε1(α′)2 = λ2,

whereλ1 andλ2 are two real constants.

Let us takeβ = (α′)2. Then
dβ

dα
= 2α′′ and from (12) we have

β = 4εε1α
4 − λ1ε1α

2 + C,
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whereC is a constant.
Now, from (12) and (13) we get

12β = λ2εε1 + 16εε1α
4 − 4λ1ε1α

2.

Finally, we deduce from (14) and (15) thatα is locally constant onU , which is a contradiction.
Case 2:There exists a pointp in U such thatT (∇α)(p) = 0. Thus from (2) and (5) we have

< AH,X > (p) = −2εα(p)X(α)(p) =< H, AX > (p),

which implies, jointly with (3), thatA is a self-adjoint endomorphism inL3. Then the above
equation remains valid everywhere onU and therefore we get

S(∇α) = −2εα∇α.

Since−2εα is an eigenvalue ofS and trS = 2εα thenS is diagonalizable and we can choose
a local orthonormal frame{E1, E2, E3} such thatE3 = N , SE1 = −2εαE1 with E1 parallel to
∇α andSE2 = 4εαE2. Let{ω1, ω2, ω3} and{ωj

i }i,j be the dual frame and the connection forms,
respectively. Then

ω1
3 = 2εαω1,

ω2
3 = −4εαω2,

dα = ε1E(α)ω1.

Taking again exterior differentiation in (17) and using the structure equations we havedω1 = 0.
Therefore one locally hasω1 = du, for some functionu, and thusα depends onu, α = α(u) and
E1(α) = ε1α

′.
By exterior differentiation in (18) and using again the structure equations we obtain

3ε1αω1
2 = 2α′ω2.

A straightforward computation from (20) leads to

3αα′′ = 5(α′)2 − 36εε1α
4.

If we putβ = (α′)2 then the last equation can be rewritten as

3
2
α

dβ

dα
= 5β − 36εε1α

4,

whose solution is given by
β = Cα10/3 − 36εε1α

4,

whereC is a constant.
On the other hand, from the definition of∆α, the fact thatE1 is parallel to∇α and (20) we

obtain

α∆α = −ε1αα′′ +
2ε1

3
(α′)2.

Now, from (2) and (5) it is easy to get

α∆α = λα2 − 24εα4, λ = tr(A),
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that jointly with (24) yields

3αα′′ = 72εε1α
4 − 3λε1α

2 + 2(α′)2.

Finally, a similar reasoning as in Case 1 by using now (21), (23) and (25) leads toα is locally
constant onU , which is again a contradiction with the definition ofU .

Anyway, we deduceU is empty and thenM2
s has constant mean curvature.

¤
Now, we are ready to show the main theorem of this paper.

Theorem 3.2 Letx : M2
s −→ L3 be an isometric immersion. Then∆x = Ax + B if and only if

one of the following statements holds good:
1) M2

s has zero mean curvature everywhere.
2) M2

s is an open piece of one of the following surfaces:L × S1(r), H1(r) × R, S1
1(r) × R,

H2(r), S2
1(r).

Proof. Let M2
s be a surface inL3 such that∆x = Ax + B. From Proposition 3.1 we knowM2

s

has constant mean curvatureα. If α = 0 there is nothing to prove. So, supposeα 6= 0. Then from
(2) and (5) we get {

AX = 2αSX,
AN = ε|S|2N

and therefore
tr(A) = 2αtr(S) + ε|S|2 = 4εα2 + ε|S|2,

from which we deduce|S|2 is constant and thenM2
s is a isoparametric surface. Ifs = 0, M is

an open piece ofH2(r) orH1(r) × R. Whens = 1, it follows from [Mag85] thatM is an open
piece of one of the following surfaces:S2

1(r), S1
1(r) × R, L × S1(r) and a B-scroll. However a

straightforward calculation shows that the B-scroll does not satisfy the condition∆x = Ax + B.
¤

As we have pointed out in the Introduction, our proof also works when the ambient space is
E3. Then the Theorem of Dillen-Pas-Verstraelen in [DPV90] can be viewed as a consequence of
our Theorem:

Corollary 3.3 Let x : M2 −→ E3 an isometric immersion. ThenM satisfies∆x = Ax + B if
and only if it is an open piece of a minimal surface, a sphere or a circular cylinder.
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