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1. Introduction

The study of minimal surfaces has a long and rich history, and the connection between them
and soap films motivated the celebrated Plateau’s problem, which has remain completely unsolved
for any non-planar contour until the last third of the nineteenth century. However, in the late
twenties of this century, Jesse Douglak3[[ [19] and [20]) and Tibor Rad ([41], [42] and [43])
have, quite independently of each other, been successful in developing new methods for solving
Plateau’s problem. Douglas’s work was important both for the simplicity of the method of proof,
using calculus of variations of a certain functional, and for the result itself, since the desired
minimal surface is nothing but that where the minimun of the above functional is achieved.

It is well known that minimal immersions of a differentiable manifdld in the Euclidean
sphereS™ are just those immersions whose coordinate functions in the ambient Euclidean space
are eigenfunctions of the Laplacian operator in the induced metric with eigenvatuedim(M).
Moreover, Takahashi's resulgf], is particularly useful in studing isometric minimal immersions
of Riemannian symmetric spaces into spheres, since it shows that such immersions correspond
precisely to the isometric immersions inky which can be achieved by eigenfunctions of the
Laplacian operator with the same non-zero eigenvalue. This will be the starting viewpoint of our
study in order to obtain further natural extensions, all of them showing minimal immersions as
trivial solutions.

The quoted theorem of Takahashi gives a characterization of minimally immersed submani-
folds in nonnegatively curved space forms. That is given in terms of the coordinate eigenfunctions
of the isometric immersion: : M™ — R™. Actually, Takahashi’'s result is dealing with the
eigenvalue equation

Az = Az,

being A the Laplacian onV/ coming from the induced metric anda real constant. Then either
A = 0andM is minimal orA > 0 andM is minimal inS™~1(r) c R™, wherer = \/n/\.

Takahashi's theorem can be seen as a result of classifying submanifolds satisfying a certain
differential equation in the Laplacian of the immersion. Then the following general problem comes
out in a natural way:

Classify submanifolds by means of some Laplacian differential equation involving the
isometric immersion.
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On the other hand, the equatiar) 6ays that minimal submanifolds in nonnegatively curved space
forms are the only ones whose immersion is associated to exactly one eigenvalue of its Laplacian.

Then, from this viewpoint and considering a first extension of Takahashi’'s theorem, B.Y. Chen,
based on the equatior)( built up and developed a fruitful and interesting technique, the so-called
finite type submanifoldésee P]), chiefly directed to characterize certain families of Euclidean
submanifolds. For instance, a Chen-type question states as follows:

Could you characterize Euclidean submanifolds whose isometric immersion is asso-
ciated to two distinct eigenvalues of its Laplacian?

In particular, if M™ is a compact hypersurface of the sph&fie! in R"+2 having constant mean
curvaturea and constant scalar curvaturethen either) is a small hypersphere is"*! con-
structed inR™*2 by using eigenfunctions associated to only one eigenvalue of its Laplacigh or
lies in R"*2 by means of eigenfunctions associated to exactly two distinct eigenvalues, which in
addition completely determine the geometric quantitiendr of M. Therefore, the family of
Euclidean submanifolds which can be built by using only two eigenvalues of the Laplacian is large
enough to pay attention on it, since it contains, among others, those spherical hypersurfaces with
constant principal curvatures.

A second extension of Takahashi’'s theorem can be viewed as follows. For any isometric
immersionz : M" — R™ it is well known the formulaAxz = —nH, that along with £) yields
to

AH = \H,

where H states for the mean curvature vector field of the immersion. Let us dendlg the

family of submanifolds satisfying equatiof)( It is not dificult to see that cylinders are @ but

they do not satisfy«(), so thatC, contains Takahashi’s family as a proper one. HoweveY/ ifs
compact, both equations define the same family. Then it seems natural to ask for the following
geometric question:

Which is the size af,?

One hopes to find i@, other submanifolds apart from cylinders and those of Takahashi’s family.
Notice that this problem is closely related to those of Chen, because an immersion satigfying (
is (i) either minimal or of infinite type, i = 0, or (ii) either of 1-type or of null 2-type, provided
A does not vanish.

Furthermore, it is worth exploring the existence of non-minimal submanifolds having har-
monic mean curvature vector field.

As a third attempt to generalize Takahashi’s condition, O.J. G&€ly,dointed out that if you
extend the Laplacian in a natural wayR&'-valued functions o/", then equations) character-
izes those submanifolds whose coordinate functiof®’irrestricted tal/™ are eigenfunctions of
its Laplacian, all of them associated to the same eigenvalue. There he deals with Euclidean hyper-
surfaces whose coordinate functions are eigenfunctions of its Laplacian but not necessarily for the
same eigenvalue, expecting for enough examples apart from those given by Takahashi. Garay’s
condition can be written as a Laplacian coordinate equation as follows

A]Ii:)\il’i, izl,...,m,
wherex = (z1,...,x,), beingz; the coordinate functions; or even, as a matricial equation
Ax = Az,
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where A = diag(A1, ..., ). Nevertheless, Dillen, Pas and Verstraeldi§],[ pointed out that
Garay'’s condition is not coordinate invariant as a circular cylind&3rshows. Then they study
and classify those surfaceslt? satisfying the new following equation

Axr = Ax + B,

whereA is an endomorphism d&3 and B is a constant vector iR?.

One immediately asks for the geometric meaning of equatiprBgfore giving an answer we
first notice that both equationg)(and ¢) are equivalent for surfaces R? (see [L6] and [21]),
but that situation is quite different for surfaces in the 3-dimensional Lorentz-Minkowski space. In
this ambient space those equations show its power, bringing ous4erolls as an interesting
and own family which cannot be given in the definite case and in his turn satjjidmit not
(). Furthermore, it is worthwhile to set off that both equations work as constant mean curvature
conditions, so that we are on the track of an isoparametric problem which allows us to reach the
asked classification.

In the past few years we have made some contributions to each one of the problems above
stated, so that this paper will be a sort of survey in the following sense. We will revisit our
recent results concerning to the quoted extensions of Takahashi’s theorem rather emphasizing on
those we have got about hypersurfaces in the realm of Lorentzian geometry and that revision will
include not only published or accepted papers for publication, but also unpublished and others in
preparation results in order to make a self-contained article. Finally, we should like to take this
opportunity to propose some open problems.

2. Spherical 2-type hypersurfaces

This section is devoted to get a nice characterization of those submanifolds that can be con-
structed by using exactly two eigenvalues of its Laplacian in terms of its mean and scalar cur-
vatures, which in his turn allows us to solve a series of problems stated by B.Y. Chgh in [

As an interesting consequence, provided the number of principal curvatures is bounded above, a
classification of spherical Dupin hypersurfaces constructef’iby means of two eigenvalues is
given.

A connected (not necessarily compact) submanifdlti of a pseudo-Euclidean m-spa@Q&*
is calledof finite typeif its position vector field: can be written as a finite sum of eigenfunctions
of its Laplacian; more precisely/" is said to beof finite k-typéf its position vector field: admits
the following spectral decomposition

k
T =xg+ E T,
t=1

whereAz;, = Nz, t = 1,...,k, A1 < --- < A\, o IS a constant vector i)™ andz, (¢t =
1,..., k) are non-constar®™-valued maps od/™. Otherwise M" is said to beof infinite type
In particular, if one of the eigenvalues vanishes, thed/™ is said to beof null k-type(see B]).
Let M be a hypersurface of the unit hypersph@tg! in R”+2 which we will assume (without
loss of generality) centred at the origin®Rf+2. Denote byz the position vector of\/ in R"**2
and byV and D the Levi-Civita connection of/ and the normal connection aff in R"*2, re-
spectively. We also denote oy S andH (H') the second fundamental form of in R"*+2, the
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shape operator af/ in S**! and the mean curvature vector field fof in R"*2 (S"*!, respec-
tively). If A denotes the Laplacian d@ff, then the following formula folA H was computed in

[12]:
AH = gvoﬂ +2tSppr + (Aa + alo|?)N — (na® + n)z,

where H' = aN, being N the unit normal vector field of/ in S”*1. HereVa? denotes the
gradient ofo? andtrSpy = > Sp, mEi, where{Ey, ..., E,} is alocal orthonormal frame
tangent tal/. '

Now, assume that/ is of 2-type. Then its position vector "2 can be written as

r=x0+ 1+ T2, with A.’L’l =\ and Al’g = )\2%2,

wherez is a constant vector iR”+2 andz;, z, areR"?—valued non-constant differentiable
functions onM.
From (22) and the well known fackx = —nH, we have

AH =bH + ¢(x — x9),
1
whereb = \; + \g andc = — A1 \s.
n

Remark 2.1 Through this section, we can assume that 0, otherwise last two authors have
proved in R2] the non-existence of such hypersurfaces. Of coursH, if compact them # 0.

From (21) and (23) one gets the following formulae:
na2—|—n:b—c—|—c<x,xo>

and
<AH, X >=—c<x9,X >,

for any vector fieldX tangent tal/.
By using (24) and (25) a nice expression for the tangential componexiois found:

(AH)T = —nVa?.
On the other hand, from (21) one has
(AH)T = ngﬂ +2trSpp.
Finally, an easy computation involving (26), (27) and Codazzi equation gives
S(Va) =trSpy = —%Va?
Therefore, the following lemma is proved.

Lemma 2.2 [12] Let M be a 2-type hypersurface & +1. ThenVa? is a principal direction
with principal curvature—%na on the open séi = {p € M : Va?(p) # 0}.

Next lemma, which can also be found it?], allows us to get a good information about the
above quoted open it

Lemma 2.3 Let M be a 2-type hypersurface 8f 1. Then either M has constant mean curvature
or U/ is dense in M.
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2.1. Main results

Before going any further, some computations are needed. For short, wéwfité—|o|?)a—
A« andg = na? +n + ¢ — b, and use (21), (23) and (26) to get

cxo = nVa? + hN + gz.

Now, working onl{, choose a local orthonormal frame of principal directi¢s, ..., E, }
with associated principal curvaturég, . . ., i, }, being E; in the direction ofVa?, so thatu; =

—%na. By using (29) we find the following auxiliar result.

Lemma 2.4 Let M be a 2-type hypersurface 8f!. Then the following formulae hold @

3n? 9
Ey(h) = TaEl(a )s (210)
Ej(h)=0, j=2,...,n, (211)
nE By (o) + :%nah +g=0. (212)

Finally, an easy computation from (210), (211) and Lemma 2.3 gives
h=n2a®+k, (213)

for a constank, holding anywhere oi/.
We are going to computAa? in two different ways. First, by using (24) we find

nAa® = A < cxg,x >= —n < cxo, H > +n < cxg, x >

and then, from (29), we get
Ao? = —ah +g.

On the other hand,

Acd? = 20Aa—2|Val?
= 2(b—|o*)a? — 2ah — 2|Val*. (215)

Now, a straightforward computation (seg)[yields to

Proposition 2.5 Let M be a 2-type hypersurface 8f*!. Then the mean curvature does not
vanish anywhere on M.

Next, we are going to prove one of the chief results of this section, which gives an affirmative

answer to an open problem stated by B.Y. Cr&n.p].

Theorem 2.6 Let M be a 2-type hypersurface 8f*!. Then M has constant mean curvature if
and only if M has constant scalar curvature.
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Proof. If o is a constant, theh so is because (213) and theri? is also a constant. As a conse-
guence, we use the Gauss equation

lo|> =n?a® —n(n—1)7+n (216)

to getM has constant scalar curvature.
Conversely, suppose naW has constant scalar curvature. From (29) we find
1

[Va|? = 4n2a2{62|m0|2 — h? — g},

that jointly with (214) and (215) leads to
4n? (b — |o)?)at + (h — 2n%a®)h + (g — 2n*a?)g — Plxo> = 0.

Finally, from here, (213) and Gauss equatiermust be a root of a polynomial with constant
coefficients and therefore is a constanm

Let M be a 2-type hypersurface 8f*t! c R"*2. Consider again the open gétwhich is
dense inM unless it was empty and 9d has constant mean curvature (see Lemma 2.3)p bet
any point ofi/ and denote by (¢) the integral curve o¥«a? through the poinp € U. Now, (213)
allows us to rewrite (212) along(¢) as follows:

>, 5 3 94 5 3 1
ﬁ(a )—i—En a” +a +§ka+;(n+c—b) =0.
2
Let s = Z—? . Then it is easy to see that equation (219) can be reduced to the following first

order differential equation:

ds 3 ,. 5 3 1
ada+ Ié] gl —a 2/-ca n(n+c b)

From this equation we obtain the following solution:

3
an2a’p = —§n4a4 —2n%a? — 6kn’a
—4n(n +c¢—b)In(a) + C4, (221)

where(; is some constant.
On the other hand, from (29) one has

4n*a’p = Alzo)?* — (n*a® + k)% — (na* + n+c—b)2 (222)
Therefore, (221) and (222) prove the following

Theorem 2.7 Let M be a 2-type hypersurface 8! ¢ R"*2. Then M has constant mean
curvature.

The following result gives a nice characterization of compact 2-type hypersurfaces in the hy-
perspher&™ ! ¢ R"*2 and partially solves an open problem stated by B.Y. Clgeh4].
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Corollary 2.8 Let M be a compact hypersurface 8f+t! ¢ R”*2 which is not a small hyper-
sphere ofS™*!. Then M is of 2-type if and only if M has non-zero constant mean curvatared
constant scalar curvature. Moreover, if M is of 2-typeqr and 7 are completely determined for
the eigenvalue$);, A2} involved in the 2-type condition.

Proof. The necessary condition follows automatically from Theorems 2.7 and 2.6. Navantl
T are constant, thef|? is also constant and so (21) allows us to write

AH = (|S]* +n)H + (|S)? — na?)z,

where we have useH = H' — z. As a consequence there exist two constantsysayds, such
that AH = rH + sz, with s # 0 because\/ is not a small hypersphere 8f+!. Therefore, we
use Theorem 2.2 oB] p. 257] to get thab/ is of 2-type. Last claim of the statement follows from
Theorem 4.2 of9, p. 276].m

Next result gives a partial answer to another open problem stated by B.Y. Het].[

Corollary 2.9 Let M be a compact 2-type hypersurface$5f*! ¢ R"*2, Then M is mass-
symmetric irS” 1,

Proof. First, we use Theorem 2.7 to have (223), where both coefficjéiitsi- n and|S|? — na?
are constant. Moreovel§|> — na? # 0 becauséV/ is assumed to be of 2-type R**2 (notice
that|S|? = na? implies M is a small hypersphere and so of 1-type in some hyperplai@é tf
and then of 1-type ilR"*?). Thus we have

O—/ AHd’U—(\SP—i—n)/ Hd’u+(\5\2—na2)/ xdv,
M M M

/ xdv = 0,
M

this means, the center of massidfis nothing but the origin oR"*2. m

and so

Remark 2.10 We would like to point out that Theorem 2.7 and Corollaries 2.8 and 2.9 have been
also obtained, simultaneously and independently, by Hasanis and Vlacldi$, where they use
a different method of proof.

2.2. Applications

A hypersurfaceV/ of S"+! ¢ R"*2 is called a Dupin hypersurface if the multiplicity of each
principal curvature is constant avf and each principal curvature is constant along its associated
principal directions. In§] it is proved that compact embedded Dupin hypersurfaces are conformal
images of isoparametric hypersurfaces when the nugnbBprincipal curvatures ig < 2, but this
is not the case whep > 3. In [46], G. Thorbergsson proves that, in cohomology level, compact
embedded Dupin hypersurfaces are isoparametric. That result leads to the Cecil-Ryan’s conjecture
[7]: A compact embedded Dupin hypersurface is Lie equivalent to an isoparametric hypersurface.
That holds whery < 3, see p] and [37]; otherwise, it can be found counterexamples to the
conjecture in 38 and [40]. These facts suggest a close relation between compact embedded
Dupin hypersurfaces and isoparametric ones.
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It is a well-known fact that isoparametric hypersurfaces®f! ¢ R"2 with ¢ < 2 are
spheres and Riemannian products of spheres. When3, they were completely classified by
E. Cartan §]. They are all homogeneous spaces and the multiplicities of principal curvatures
(m1, me, mg) and dimensions are listed in the adjoint table:

M" (m1,ma,m3) | n
SO(3)/Zs + Zo (1,1,1) 3
SU(3)/T? (2,2,2) 6
SP(3)/SP(1)3 (4,4,4) 12
F,/Spin(8) (8,8,8) 24

Now, we are going to state and prove the following classification result.

Theorem 2.11 Let M be a Dupin hypersurface &**! with at most three distinct principal cur-
vatures which is not a small hypersphere §f*!. Then M is of 2-type if and only if one the
following statements holds:

1) M is an open piece of a Riemannian prod8gtx S"~P.

2) M is an open piece of one of the hypersurfaces exhibited in the above table.

Proof. The sufficient condition follows easily from above results in this section. Now, let us
supposeV/ is a 2-type hypersurface 8!, Then from Theorems 2.7 and 2.6 we know théat
has constant mean curvature and constant scalar curvature. \&ireca Dupin hypersurface it is
not difficult to see thail/ is, in fact, an isoparametric hypersurface. Thus, we obtain the desired
conclusion, becausk/ cannot have only one principal curvatuse.

As a consequence, we obtain the following.

Corollary 2.12 Let M be a Dupin hypersurface &* which is not a small hypersphere. Then
M is of 2-type if and only if M is an open piece of one of the following hypersurfaétles: S?,

3. Hypersurfaces with a characteristic eigenvector field

In this section we will tackle the second extension of Takahashi’s condition set in the Lorentz-
Minkowski ambient. Before starting this task, it will be convenient recalling the pseudo-Riemannian
version of Takahashi's theorem, which can be found.0j find [36]. Let = be an isometric immer-
sion of a submanifold/ in a pseudo-Euclidean spaB&'. Then)/ satisfies equation«f if and
only if M is either minimal inRZ*, or minimal in a pseudo-hyperbolic spaHéZ‘l1 (r), or minimal
in a pseudo-sphet&™ ! (r). Furthermore, from here we obtain that minimal submanifold&’6f
are the only ones having harmonic coordinate functions and therefore there can be characterized
by the equatiom\z = 0.

As we pointed out in the Introduction, the conditior) (neans that the coordinate functions
of the mean curvature vector field are eigenfunctions of the Laplacian associated to the same
eigenvalue, thus that equation connects again with the spectral geometry of the submanifold.

We have already mentioned that information furnished by the equafjas {ifferent from
that of (). However, we wish to give an example in the Lorentzian ambient to ratify this fact.

8
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Let L"*! be the(n + 1)-dimensional Lorentz-Minkowski space with the usual coordinates
(21, ...,2n41) and the standard flat metric given By? = —dx? + da3 + - -- + da? . Letus
consider the differentiable functigh: L' — R defined by

f(xl,...,wn+1):—a:%—i—x%—i—--'—}—xzﬂ—?g,

wherer > 0 andk € {1,2,...,n — 1}. ThenM = f~1(0) is a spacial hypersurface bf**!,
i.e., itis endowed with a Riemannian metric and furthermore isometric to the Riemannian product
H*(r) x R"~*, Bearing in mind the relation between the second fundamental foriié of) x
R"* and H*(r), it is easy to see that both submanifolds satisfy equatirb(t we know that
cylinders do not fall into Takahashi’s family.

In analysing condition}) we will study two cases separatedly, according to the curvature of
the ambient space. To do that we would like to notice that no restriction on the causal character of
the hypersurface is made.

3.1. Flat ambient space

Let M be a hypersurface, with index= 0, 1, in L"*! and letV f denote the gradient of
a diferentiable functiorf. An easy computation allows us to get the following formula for the
Laplacian of the mean curvature vector fiéfd([10],[24]):

AH =25\NVa) + %Voﬂ + {Aa + catr(S?)}N,

whereS stands for the shape operatoridf, o the mean curvaturéy the unit normal vector field
ande =< N, N >.
Assuming that\/ satisfies the equation){ we easily get from (31) the following equations:

S(Va) + %aVa =0, (32)
Aa + (etr(S%) — N)a = 0. (33)

Now we wish to deduce some easy consequences from therés H non-vanishing constant
then (33) implies that t§?) is constant and therefot® also has constant scalar curvature. On
the other hand, if/ has constant mean and scalar curvatures then equa}ibol{s for the real
constant\ = tr(5?). Hence, the following problem arises in a natural way:

(P1) Are the non-vanishing constant mean curvature and constant scalar curvature
hypersurfaces of the Lorentz-Minkowski space characterized by the equatioa:
AH?

Before beginning the study of this problem, we would like to remark that equation (32) can be
obtained by supposing only thd&tH is a vector field normal ta\/. In this way, Garay and
Romero, R7], have recently studied those hypersurfacek’ir! satisfying the conditiod\ H =

C, whereC is a constant vector ih"*! which is normal tal/ at every point, and they show that

C should vanish. Bearing in mind that minimal submanifolds are the only ones whose immersion
is harmonic, i.e.Az = 0, it seems natural to ask for the following geometric question:

(P2) Does the equatiodd H = 0 characterize the vanishing mean curvature hyper-
surfaces of."*1?
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Submanifolds satisfying the conditian/d = 0 are callechiharmonig because they satisty?z =
0, and they have been handled, among otherd,1h [17], [2]], in the Euclidean case, and it{],
in the pseudo-Euclidean case.

In dealing with problem (P1), we are going to find surfacesisatisfying ). At a first stage
we know that minimal surfaces, hyperboli£?(r) and de SitteiS?(r) planes are trivial solutions
of (1), as well as the three cylinders appearing in this ambient sgate:) x R, L x S'(r) and
Si(r) x R. Observe that all quoted examples, as spacial as Lorentzian ones, have diagonalizable
shape operators. Therefore, there arises the following queshimnthere Lorentzian surfaces
satisfying {) and having non-diagonalizable shape operatoi&?get an affirmative answer we
present an example which was first given by Gravag], [

Letz(s) be a null curve i3 with Cartan frame A, B, C}, i.e., A, B andC are vector fields
alongz(s) such that

i(s) = Als),

A(s) = Kk(s)C(s),

B(s) = woC(s),

C(s) = woA(s)+ k(s)B(s),

wherek(s) # 0 andwy is a nonzero constant. Then the map: (s,u) — z(s) + uB(s)
parametrizes a Lorentzian surfacelif, which Graves called &-scroll. An easy computation
shows thaty = wg andtr(S?) = 2w?, and then from (31) we hav& H = 2w3 H. Moreover, the
shape operatd§ can be put, in the usual framfé®, 421, as

wg O
k(s) wo )’
showing that the minimal polynomials () of S is given byps(t) = (t — wp)? and S is not
diagonalizable.
All above examples illustrating equatior) (satisfy a chiefly interesting geometric property:

all of them have constant mean curvature. Then it is reasonable to askfaces if.? satisfying
() and having non-constant mean curvatutdowever we are able to get a negative answer in

[23]:

Theorem 3.1 Every surfaceM/? in L3 satisfying the conditiodMH = MAH has constant mean
curvature.

As a consequence, from here and (33), it is easy to see that the only non-minimal surfaces
in L2 satisfying () are the isoparametric ones, i.e., those whose shape operators have constant
characteristic polynomial. Now bringing here the classification of such surfaces, givas) anf
[39], we get in R3] a complete answer to problem (P1):

Theorem 3.2 Let Ms? be a surface iflL?. ThenAH = \H, for a real constant\, if and only if
M? is either minimal or an open piece of one of the following surfadé¥(r), S7(r), H'(r) xR,
L x S*(r), Si(r) x R and aB-scroll.

Some consequences can be deduced from this theorem. On one hand, we find that minimal
surfaces inL3 are characterized as the only ones having harmonic mean curvature vector field,
solving problem (P2). On the other hand, paying attention on the causal character of the surface,
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we get that the only spacial surfaces satisfyihgare either those having zero mean curvature
(the so-callednaximalones) or open pieces of one of the following surfaces: a hyperbolic plane
H?(r), a hyperbolic cylindefd! (r) x R.

As for then-dimensional case, problems (P1) and (P2) remain open and we have only found
partial solutions. In24] we deal with hypersurfaces in"+! satisfying ¢) and such that the min-
imal polynomial of the shape operator is at most of degree taler this additional hypothesis
we are in a position to show the following.

Proposition 3.3 All hypersurfaces\/ in L"*! satisfyingAH = \H have constant mean cur-
vature.

This result allows us to get an affirmative answer to (P1), under the above additional condi-
tion. Taking into account that theorem and the solution obtained for surfaces, we dare to state the
following conjecture.

(C1) The answer to problem (P1) is affirmative.

Finally, we would like to remark that problem (P1) also involves the Euclidean case and thus we
also guess that conjecture (C1) can be applied to Euclidean hypersurfaces.

3.2. Non-flat ambient space

Let M"*!(c) denote the pseudo-Riemannian space form with indard constant sectional
curvature sgnf)/c?. Without loss of generality, we can assume =+1 and in what follows\/+1
will denote the pseudo-sphef& ! or the pseudo-hyperbolic spag&' !, according ta: = 1 or
c = —1, respectively. Let: be an isometric immersion of a hypersurfadé in M+! and letH
denote the mean curvature vector field\df* in the pseudo-Euclidean spaR& ™ where M+!
is lying. Then it is easy to show thaf is given by

H=aN — cz,

where N denotes a unit vector field normal id;" in M+ anda the mean curvature af/? in
M7+, An easy computation from (34) yields to the following nice formuladdi, [10]:

AH = 28(Va)+neaVa+ {Aa+ catr(S?) + nca} N (35)
—n(1 + eca?)r,
whereS stands for the shape operator of the hypersurface.
If M is a hypersurface satisfying the conditior), (we can use equations (34) and (35) to

obtain the following formulae:

25(Va) + neaVa =0,

Aa+ (etr(S?) + ne — Na = 0,

n(1 +eca®) — Ae = 0.

Now we can combine those equations in order to get the following result, which can be considered
as a first approximation to the solution of problem (P1) in the new ambient space.

Theorem 3.4 A hypersurfacel/” of M"*! satisfies the conditiod H = \H if and only if M
is minimal inM*! or has nonzero constant mean curvatarandtr(S?) = (1/n)tr(S)2.

11



The problem of Plateau: A tribute to Jesse Douglas and Tibor Radé. Ed. Th. M. Rassias, pp. 53-75, 1992, World Sci. Co.

As a first consequence we get the following. Let us suppgdgehas diagonalizable shape
operator, for example provided is a spacial hypersurface. Then the above result impli¢ss
a totally umbilical hypersurface and we can u34 [Theorem 1.4] to find that/!" is an open piece
either of S?(r), or H(r), or R (in the last case, the immersion is constructed from a quadratic
function). As a second consequence we deduce, taking into account the Gauss equation, that non-
minimal hypersurfaces o/ *! satisfying () are characterized by having constant meaand
scalarr curvatures which satify the equation= n(n — 1) < H, H >= n(n — 1)(ca? + ¢).

With the aim of studying in depth the conditiot)(we are going to deal with surfaces. Fol-
lowing [15], we constructB-scrolls over null curves to obtain some surfaces/p satisfying ¢)
and whose shape operators are non-diagonalizable, with minimal polynomials having only real
roots. Nevertheless, it seems natural thinking of surfaceédifrsatisfying ¢) and whose shape
operator has a minimal polynomial with complex roots. However, that cannot happen because of
the conditiontr(S2) = 1tr(S)2.

Let us suppos@d/? is a surface satisfying]. ThenM? has constant mean and scalar curva-
tures and thug/?2 is an isoparametric surface df;’. Now we may carry on an standard reasoning
to obtain the following.

Theorem 3.5 Let M2 be a non-minimal surface @ff; satisfying the conditiod # = AH. Then
M?2 is an open piece either of a totally umbilical surface aBascroll.

This result leads to the characterization of biharmonic surfacés;of

Corollary 3.6 A surfaceM? in M3 is biharmonic if and only if it is either a flat totally umbilical
one or a flatB-scroll.

In order to complete our study, we must consider hypersurfa¢gsin MI"H, where we
guess more promising prospects than in the flat ambient space. We approach the problem by
analising separatedly the different shape operators locally allowed for the hypersurface. In the
diagonalizable case, the problem has been already solved. Let us suppose that the minimal poly-
nomial of S is given, in an open set a¥/?, by ps(t) = (t — B)%(t — 1) -+ - (t — pg). Then
the equatilitytr(S?) = %tr(S)2 implies thaty; = --- = ui = (3 is constant and therefore
MY is an isoparametric hypersurface b with ps(t) = (¢t — 3)?. A standard reasoning
on integral submanifolds leads us to an explicit description of the hypersutfgceThe case
ps(t) = (t — )2 (t — u1) - -~ (t — pg) can be treated in a similar way. Finally, the situation when
the minimal polynomial has complex roots, igs(t) = [(t — 8)? +7?](t — 1) - - - (t — ) with
~v # 0, becomes more complicated, but at the present we think that cannot hold. In this way, we
state the following conjecture.

(C2) There are no hypersurfaces M{L+1 satisfying ¢) and whose shape operators
have minimal polynomials with complex roots.

To finish this section, we would like telling of that the results of this subsection, i.e., the non-flat
ambient space case, are being purified in order to be published elsewhere.

4. Hypersurfaces satisfying the conditioMz = Az + B
As we have pointed out in the Introduction, both conditidns = Az, original from Garay,

and ), due to Dillen, Pas and Verstraelen, were only established for submanifolds and, particu-
larly, hypersurfaces in the Euclidean space and, in this context, they have been recently studied by

12
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some authors13], [16], [25], [26], [30], [32]. However, the pseudo-Riemannian case presents an
own behaviour, mainly because the shape operator need not be diagonalizable, which plays a chief
role in the Riemannian case.

In this section, we will study those pseudo-Riemannian hypersurfaces in pseudo-Riemannian
space forms which are characterized by the matricial conditian ¢he Laplacian of the isometric
immersion. A first step in this way was given by the authors2l Where surfaces in the 3-
dimensional Lorentz-Minkowski space satisfying the equatipmvére classified. The interesting
changes found here with regard to the Euclidean case leaded us to consider that condition not only
for hypersurfaces in a pseudo-Euclidean space, but also for hypersurfaces in a pseudo-spherical or
pseudo-hyperbolic space.

4.1. Flat ambient space

Let R”*! be the(n + 1)-dimensional pseudo-Euclidean space of indexith metric tensor,

in the usual coordinates:y, . . ., x,+1), given by
v n+1
dsQ:—Zda:iQdei—i- Z dr; ® dx;.
i=1 j=v+1

Let M™ be a pseudo-Riemannian hypersurfac&fi! with indexs = v — 1, v and let us write
by H and N the mean curvature and the unit normal vector fields/@fin R?**, respectively, so
thatH = aN, beinga the mean curvature in the direction &t

Letz : M — R”*! be an isometric immersion satisfying)(whereA is now an endomor-
phism ofR?*! and B is a constant vector. From here, the formulaafl given in Section 3 and
the well known formulaAx = —nH, it is not difficult to see that

AX =naSX —nX(a)N,
for any vector fieldX tangent taV/*, and
AH = 2S8(Va) + neaVa + {Aa + catr(S?)}N.

If we suppose nowM ! has non-zero constant mean curvature, then from (41) and (42) we
have

AX = naSX, (43)
AN = etr(S?)N, (44)

from which we deduce t§?) is also a constant and, taking covariant differentiation in (44), we
find that the shape operator satisfies the polynomial equation

S(S — ) =0,

etr(S?)

where )\ is the non-vanishing real constant given by= . That equation means that

07
M? is an isoparametric hypersurfacel¥*! with diagonalizable shape operator and having as
principal curvatures zero, with multiplicity at most— 1, and X # 0, with multiplicity at least
one. Therefore, if\/” is totally umbilical inR”*+! then M is an open piece of a pseudo-sphere
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S7(r) or a pseudo-hyperbolic spaéf’ ,(r). Otherwise, by using similar arguments as those in
[44, Theorem 2.5] and33, Lemma 2],M ! is an open piece of one of the pseudo-Riemannian
productsR: x S™=F(r) andRF x H"=* (). We will refer to these four classes as the standard
examples iR?+1,

On the other hand, besides the trivial case of minimal hypersurfaces, it is not difficult to show
that the standard examples also satisfy equatipn (

Then it seems reasonable to state the following question.

(P3) Does the equatiothx = Ax + B characterize to the family of minimal hyper-
surfaces and standard examplesifi*!?

We have just obtained an affirmative answer to this question when the mean curvature is constant.
The following result completely solves that probledd, [

Theorem 4.1 The hypersurfaces iR?+! satisfying the conditiod\x = Az + B have constant
mean curvature.

Our result generalize those given, when the ambient spa%'i5, in [16], [13] and [32]. On
the other hand, for hypersurfaces in the Lorentz-Minkowski space we have the following proposi-
tion.

Proposition 4.2 Letx : M? — L"*! be an isometric immersion. Thehr = Ax + B if
and only if M7 is either minimal or an open piece of one of the following hypersurfasgsr),
H"™(r), SF(r) x R"F, L% x S"*(r), H*(r) x R*F,

Remark 4.3 We wish to pointed out that both equatioAd! = M\H andAx = Az + B char-
acterize the same family of surfaces in the Euclidean case, but they make notably differences in
Lorentzian ambient. In fact, we have seen that-acroll, which has constant mean curvature but
non-diagonalizable shape operator, satisfies the former but not the latter.

4.2. Non-flat ambient space

Through this section, we will keep the notation fixed in Section 3.2. A hypersuffgte
in M7+ can also be viewed as a codimension two submanifold in the corresponding pseudo-
Euclidean spac®} "2, whereM! is canonically immersed, and therefore we can ask ourselves
for those hypersurfaces M”*+! whose isometric immersion: M? — M7+ ¢ R satisfies
the condition f), being A and endomorphism (R?“ and B a constant vector iﬂ?@?”.

In order to guide our study, we are going to give some examples. A first trivial one is provided
by minimal hypersurfaces it/ +1. Consider now a totally umbilical hypersurfat€? in M7+,
Bearing in mind the classification given i84], we know that, according to the causal character
of H, M is an open piece of a pseudo-Riemannian space form. It is not difficult to see that both
S?(r) and H](r) satisfy the asked condition, so that the most interesting situacion comes up in

the flat case, wher# is a null vector. Here the isometric immersion R? — M7+ ¢ Rgﬁ

is given byz = f — xo, beingz, a fixed vector inR”/? and f : R? — R”1? the function
defined byf (ui,...,un) = (q(u),u1, ..., un, q(u)), whereg(u) = a < u,u > + < b,u > +c,

a # 0. Now we haveAzr = (—2na, 0, ...,0, —2na), showing that this hypersurface also satisfies
equation f) with A = 0 andB = (—2na, 0, ...,0, —2na). Finally, a straightforward computation

shows that those hypersurfaceshiff'*! built up as the following pseudo-Riemannian products
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SE(r1) x S™7F(ro), HY (r1) x HF(ry) andSk(ry) x H-F(ry) also satisfy that condition (see
[3]). These hypersurfaces will be called the standard pseudo-Riemannian produ€s in

Now, letz : M —s MPT! C R;‘” be an isometric immersion satisfying the conditigh (
Then the well known formuld\z = —nH and the expresions fdi andA H obtained in Section
3.2lead to

AX = naSX +ncX —nX(a)N,
aAN = 2S8(Va)+neaVa+ {Aa +ca tr(S?)}N — nesa’s — ¢B, (45)
Axr = —naN + ncx — B,

for any tangent vector field.
Then we have< AX, z >= 0 and taking covariant derivative we deduce that

<Ao(X,)Y),x>=— < AX,Y >,
that along with (45) leads to
< SX —eaX,Y >< B,z >=0.

In a first aproximation to our problem, let us suppose that the mean curvatiufg of /1
is a non-zero constant. /7 is not totally umbilical (46) implies< B,z >= 0 and, reasoning as
in [3, Lemma 3.1],B = 0. Now, (45) can be rewritten as

AX = naSX +ncX,
AN = etr(S*)N — nceax, (47)

Axr = —nalN + ncx.

From these equations we dedub£” is an isoparametric hypersurface ii”+! whose shape
operatorS satisfies the polynomial equation

nc — etr(S?)
no

S?% 4 S —cel = 0. (48)

The last equation plays a key role in the following reasoning. i diagonalizable and/? is
not totally umbilical inA/ ! from (48) we get\V " is isoparametric with two principal curvatures
and, by using similar arguments as #4] Theorem 2.5] and33, Lemma 2], it is an open piece
of one of the standard pseudo-Riemannian products. In particular, we have got a first solution
to the problem when the ambient space is either spherical or hyperbolic, that is,whkeb.
Otherwise M could be endowed with an indefinite metric and then the shape operator needs not
be diagonalizable.

Now, we will consider the simplest situation where one can find a non-diagonalizable shape
operator, that is, a Lorentzian surfag€? in M3, satisfying condition i) and having non-zero
constant mean curvature. To do that, we knbi§f is an isoparametric surface i} and the
characteristic polynomial of is given by (48), being. = 2 ande = 1. From here we find/7 is
aflat surface in/$ c R with non diagonalizable shape operator and parallel second fundamental
formin R}. Therefore, by using¥4, Theorem 1.15 and Theorem 1.17] we deduce such a situation
only appears whed/} = H3 and, in that case)/? is an open piece either of a complex circle,
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[34, Example 1.12], or of the surface exhibited 84] Example 1.13]. Now it is not difficult to see
that both surfaces satisfy the asked condition.

In conclusion, we have found a first significant difference in studying the conditjon ion-
flat pseudo-Riemannian space forms with respect to the similar one in the flat case. In fact, we have
seen in Section 4.1 that hypersurface®Rjji! satisfying that condition must have diagonalizable
shape operators. However we have just obtained some examples of surfatesdtisfying ()
and having non-diagonalizable shape operators.

In order to generalize these examples to affyt! we profit by Hahn's ideas2p)]. Let L be a
self-adjoint endomorphism dﬁ;‘”, consider the quadratic functigh: M?+! — R defined by
f(x) =< Lz, z > and assume that the minimal polynomiallofs given bypy, (t) = t> + at + b,

a,b € R. Then the level sed/ = f~1(r), wherer is a real constant such that (cr) # 0,
is an isoparametric hypersurface i *!. A straightforward computation shows that the mean
curvature vector field od/™ in M7+ is given by

a+tr(L) —cnr
enpr(er)

from which we deduce thakx = Ax, A being the following matrix

H =

(Lx — crx),

cnr —a — tr(L)L n rtr(L) + (n + 1)ar + cnb
cpr(er) pr(er)

We will refer this example as quadratic hypersurface It is worth noticing that in the above
family all possibilities for the shape operator can appear, depending on the siga-afb.

At this point, it seems reasonable to ask for non-constant mean curvature hypersurfaces satis-
fying (1). In this caseld = {p € M? : Va?(p) # 0} is a non-empty open set and the equation
(46) leads to< B,z >= 0 onlU. Taking covariant derivative here we dedugBeshould vanish.
From equation (45) we have AX,Y >=< X, AY > which yields

A - In+2-

<Ao(X,Z),Y >—-<Ao(Y,Z),X >=
<o(X,2),AY > -<o(Y,Z),AX >.

Finally, from (45) we obtain
TX(a)SY =TY (a)SX, (49)

whereT denotes the self-adjoint operator definedlb¥ = naX + SX. This equation is the
key to show the following result3].

Theorem 4.4 Letz : M — M "' be an isometric immersion such that: = Az + B. Then
M has constant mean curvature.

Proof. (Outline) We consider two cases.

(A) T(Va) # 0 onlU. Then the shape operatSthas rank one oi¥ and thus we can choose a
local orthonormal framéFEy, ..., E, } suchthatSE, = neaEy, SE; = 0,i = 2,...,n. Working
on the characteristic polynomials of bothand.S it can be deduced thatis a root of a polynomial
with constant coefficients and therefore it is locally constart/pwhich is a contradiction.

(B) There exists a poing € U such thatl'(Va)(p) = 0. Then from (45) we havel is a
self-adjoint endomorphism d%?“ and7T(Va) = 0 onU. MoreoverVe is a non-null vector
which allows us to take a local orthonormal fragi@,, . . ., E,, } with E; parallel tovVa. Working
again on the characteristic polynomials we obtain the same contradiction as in case (A).

Now we are ready to state the main result of this subsection.
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Theorem 4.5 Letx : M® — M+ be an isometric imnmersion. Thekr = Az + B if and
only if one of the following statements holds:

a) M7 is a minimal hypersurface,

b) M is a totally umbilical hypersurface,

c) M is one of the standard pseudo-Riemannian products.

d) M7 is a quadratic hypersurface with non-diagonalizable shape operator.

Proof. We knowa is constant. Itx = 0 there is nothing to prove, so we can assumg 0. When
S is diagonalizable, we have seen that either (b) or (c) holds. Otherwise, from (46) and (47) we
get

A? — (etr(S?) 4+ en) A + nec(tr(S?) — na?) 1,49 = 0,

and therefore the minimal polynomial(¢) of A is given bypa(t) = t*> + at + b, where
a = —(etr(S?) + cn) andb = nec(tr(S?) — na?). From (45) we knowA is a self-adjoint
endomorphism oR?™ and < Axz,z > is constant oM. Hence, it is an open piece of a
qguadratic hypersurface with non-diagonalizatlaa

Bibliography

[1] L.J.Alias, A. Ferandez and P. Lucas. Submanifolds in pseudo-Euclidean spaces satisfying
the conditionAz = Az + B. Geom. Dedicatad2 (1992), 345-354.

[2] L. J. Alias, A. Ferandez and P. Lucas. Surfaces in the 3-dimensional Lorentz-Minkowski
space satisfyind\x = Ax + B. Pacific J. Math, 156 (1992), 201-208.

[3] L.J.Alias, A. Ferandez and P. Lucas. Hypersurfaces in space forms satisfying the condition
Az = Az + B. Trans. Amer. Math. Soc. 347 (1995), 1793-1801.

[4] M. Barros, A. Ferandez and P. Lucas. Hipersuperficiegeshs de tipo 2. Publicaciones del
Departamento de Mateaticas (Trabajo de Investigéei) 1, Universidad de Murcia, 1991.
In English.

[5] E. Cartan. Sur des familles remarquables d’hypersurfaces isopaigues dans les espaces
spterigues.Math. Z, 45(1939), 335-367.

[6] T. Cecil and P. Ryan. Focal sets, taut embeddings and the cyclides of Dpih. Ann,
236(1978), 177-190.

[7] T. Cecil and P. Ryan.Tight and Taut Immersions of Manifoldgolume 107 ofResearch
Notes in Math.Pitman, London, 1985.

[8] B. Y. Chen. Some open problems and conjectures on finite type submanifolds. Preprint
(revised version, 1989).

[9] B.Y. Chen. Total Mean Curvature and Submanifolds of Finite Typaume 1 ofSeries in
Pure Math.World Scientific, Singapur, 1984.

[10] B.Y. Chen. Finite-type pseudo-Riemannian submanifoldsnkang J. of Math17 (1986),
137-151.

17



The problem of Plateau: A tribute to Jesse Douglas and Tibor Radé. Ed. Th. M. Rassias, pp. 53-75, 1992, World Sci. Co.

[11] B. Y. Chen. Some open problems and conjectures on submanifolds of finiteSgpehow
J. Math, 17(1991), 169-188.

[12] B. Y. Chen, M. Barros and O. J. Garay. Spherical finite type hypersurfAtgshras, Groups
and Geometriest (1987), 58—72.

[13] B. Y. Chen, F. Dillen, L. Verstraelen and L. Vrancken. Submanifold of restricted type.
Preprint, 1990.

[14] B. Y. Chen and S. Ishikawa. Biharmonic surfaces in pseudo-euclidean spaces. Special issue
dedicated to Prof. T. Otsuki on the occasion of his 75th birthday.

[15] M. Dajczer and K. Nomizu. On flat surfaces$# andHs. In Manifolds and Lie Groups
pages 71-108. Univ. Notre Dame, Indiana, Bixtkker, 1981.

[16] F. Dillen, J. Pas and L. Verstraelen. On surfaces of finite type in euclidean 3-dpadai
Math. J, 13(1990), 10-21.

[17] I. Dimitric. Quadric Representation and Submanifolds of Finite T thesis, Michigan
State University, 1989.

[18] J. Douglas. A general formulation of the problem of plate&ull. Amer. Math. So¢.36
(1930), p. 50.

[19] J. Douglas. Solution of the problem of platedwans. Amer. Math. So33(1931), 263—-321.
[20] J. Douglas. The problem of plateaBull. Amer. Math. So¢39(1933), 227-251.

[21] A. Ferrandez, O. J. Garay and P. Lucas. On a certain class of conformally flat Euclidean
hypersurfaces. In Ferus, Pinkall, Simon and Wegner, edi@uahal Differential Geometry
and Global Analysis, Berlin 199(ages 48-54, 1991. Lecture Notes in Mathematics, n.
1481.

[22] A. Ferfandez and P. Lucas. Null finite type hypersurfaces in space fdtatiai Math. J, 14
(1991), 406—4109.

[23] A. Ferrandez and P. Lucas. On surfaces in the 3-dimensional Lorentz-Minkowski space.
Pacific J. Math, 152(1992), 93—-100.

[24] A. Ferrandez and P. Lucas. Classifying hypersurfaces in the Lorentz-Minkowski space with
a characteristic eigenvector. Tokyo J. Math. 17 (1994), 447-454,

[25] O.J. Garay. On a certain class of finite type surfaces of revolutiodai Math. J, 11 (1988),
25-31.

[26] O. J. Garay. An extension of Takahashi’s theorébeometriae DedicateB4 (1990), 105—
112.

[27] O. J. Garay and A. Romero. An isometric embedding of the complex hyperbolic space in a
pseudo- euclidean space and its applications to the study of real hypersufaok&aba J.
Math, 14 (1990), 293-313.

18



Luis J. Alias, Angel Ferrandez and Pascual Lucas, Classifying pseudo-Riemannian hypersurfaces by means of certain characteristic differential equations

[28] L. Graves. Codimension one isometric immersions between Lorentz spaaes. A.M.S.
252(1979), 367-392.

[29] J. Hahn. Isoparametric hypersurfaces in the pseudo-riemannian space KathsZ, 187
(1984), 195-208.

[30] T. Hasanis and T. Vlachos. Coordinate finite-type submanif@@am. Dedicata37(1991),
155-165.

[31] T. Hasanis and T. Vlachos. Spherical 2-type hypersurfated.Geom.(1991), 82—-94.

[32] T. Hasanis and T. Vlachos. HypersurfacesRéft! satisfyingAz = Az + B. J. Austral.
Math. Soc., Series,A3(1992), 377-384.

[33] H. Lawson. Local rigidity theorems for minimal hypersurfacésin. of Math, 89 (1969),
187-197.

[34] M. A. Magid. Isometric immersions of Lorentz space with parallel second fundamental
forms. Tsukuba J. Math8 (1984), 31-54.

[35] M. A. Magid. Lorentzian isoparametric hypersurfac&acific J. Math, 118 (1985), 165—
197.

[36] S. Markvorsen. A characteristic eigenfunction for minimal hypersurfaces in space forms.
Math. Z, 202(1989), 375-382.

[37] R. Miyaoka. Compact Dupin hypersurfaces with three principal curvatwkedh. Z, 187
(1984), 433-452.

[38] R. Miyaoka and T. Ozawa. Construction of taut embeddings and Cecil-Ryan conjecture. In
Proc. of Symp. in Diff. Geom1988.

[39] K. Nomizu. On isoparametric hypersurfaces in the lorentzian space fdapsn J. Math.
7(1981), 217-226.

[40] U. Pinkall and G. Thorbergsson. Deformations of Dupin hypersurfaes. A.M.S,. 107
(1989), 1037-1043.

[41] T. Radb. On plateau’s problemAnn. of Math, 31 (1930), 457—-469.

[42] T. Radb. The problem of the least area and the problem of platédath. Z, 32 (1930),
763-796.

[43] T. Rad. On the functional of mr. douglagnn. of Math, 32 (1931), 785-803.

[44] P.J. Ryan. Homogeneity and some curvature conditions for hypersurfdtesku Math. J.
21(1969), 363—-388.

[45] T. Takahashi. Minimal immersions of Riemannian manifold$4ath. Soc. Japari8(1966),
380-385.

[46] G. Thorbergsson. Dupin hypersurfac8sill. London Math. So¢15 (1983), 493—-498.

19



