
Classifying pseudo-Riemannian hypersurfaces by means of
certain characteristic differential equations
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1. Introduction

The study of minimal surfaces has a long and rich history, and the connection between them
and soap films motivated the celebrated Plateau’s problem, which has remain completely unsolved
for any non-planar contour until the last third of the nineteenth century. However, in the late
twenties of this century, Jesse Douglas ([18], [19] and [20]) and Tibor Rad́o ([41], [42] and [43])
have, quite independently of each other, been successful in developing new methods for solving
Plateau’s problem. Douglas’s work was important both for the simplicity of the method of proof,
using calculus of variations of a certain functional, and for the result itself, since the desired
minimal surface is nothing but that where the minimun of the above functional is achieved.

It is well known that minimal immersions of a differentiable manifoldM in the Euclidean
sphereSn are just those immersions whose coordinate functions in the ambient Euclidean space
are eigenfunctions of the Laplacian operator in the induced metric with eigenvalueλ = −dim(M ).
Moreover, Takahashi’s result, [45], is particularly useful in studing isometric minimal immersions
of Riemannian symmetric spaces into spheres, since it shows that such immersions correspond
precisely to the isometric immersions intoRn which can be achieved by eigenfunctions of the
Laplacian operator with the same non-zero eigenvalue. This will be the starting viewpoint of our
study in order to obtain further natural extensions, all of them showing minimal immersions as
trivial solutions.

The quoted theorem of Takahashi gives a characterization of minimally immersed submani-
folds in nonnegatively curved space forms. That is given in terms of the coordinate eigenfunctions
of the isometric immersionx : Mn −→ Rm. Actually, Takahashi’s result is dealing with the
eigenvalue equation

∆x = λx,

being∆ the Laplacian onM coming from the induced metric andλ a real constant. Then either
λ = 0 andM is minimal orλ > 0 andM is minimal inSm−1(r) ⊂ Rm, wherer =

√
n/λ.

Takahashi’s theorem can be seen as a result of classifying submanifolds satisfying a certain
differential equation in the Laplacian of the immersion. Then the following general problem comes
out in a natural way:

Classify submanifolds by means of some Laplacian differential equation involving the
isometric immersion.
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On the other hand, the equation (∗) says that minimal submanifolds in nonnegatively curved space
forms are the only ones whose immersion is associated to exactly one eigenvalue of its Laplacian.

Then, from this viewpoint and considering a first extension of Takahashi’s theorem, B.Y. Chen,
based on the equation (∗), built up and developed a fruitful and interesting technique, the so-called
finite type submanifolds(see [9]), chiefly directed to characterize certain families of Euclidean
submanifolds. For instance, a Chen-type question states as follows:

Could you characterize Euclidean submanifolds whose isometric immersion is asso-
ciated to two distinct eigenvalues of its Laplacian?

In particular, ifMn is a compact hypersurface of the sphereSn+1 in Rn+2 having constant mean
curvatureα and constant scalar curvatureτ , then eitherM is a small hypersphere inSn+1 con-
structed inRn+2 by using eigenfunctions associated to only one eigenvalue of its Laplacian orM
lies inRn+2 by means of eigenfunctions associated to exactly two distinct eigenvalues, which in
addition completely determine the geometric quantitiesα andτ of M . Therefore, the family of
Euclidean submanifolds which can be built by using only two eigenvalues of the Laplacian is large
enough to pay attention on it, since it contains, among others, those spherical hypersurfaces with
constant principal curvatures.

A second extension of Takahashi’s theorem can be viewed as follows. For any isometric
immersionx : Mn −→ Rm it is well known the formula∆x = −nH, that along with (∗) yields
to

∆H = λH,

whereH states for the mean curvature vector field of the immersion. Let us denote byCλ the
family of submanifolds satisfying equation (†). It is not dificult to see that cylinders are inCλ but
they do not satisfy (∗), so thatCλ contains Takahashi’s family as a proper one. However, ifM is
compact, both equations define the same family. Then it seems natural to ask for the following
geometric question:

Which is the size ofCλ?

One hopes to find inCλ other submanifolds apart from cylinders and those of Takahashi’s family.
Notice that this problem is closely related to those of Chen, because an immersion satisfying (†)
is (i) either minimal or of infinite type, ifλ = 0, or (ii) either of 1-type or of null 2-type, provided
λ does not vanish.

Furthermore, it is worth exploring the existence of non-minimal submanifolds having har-
monic mean curvature vector field.

As a third attempt to generalize Takahashi’s condition, O.J. Garay, [26], pointed out that if you
extend the Laplacian in a natural way toRm-valued functions onMn, then equation (∗) character-
izes those submanifolds whose coordinate functions inRm restricted toMn are eigenfunctions of
its Laplacian, all of them associated to the same eigenvalue. There he deals with Euclidean hyper-
surfaces whose coordinate functions are eigenfunctions of its Laplacian but not necessarily for the
same eigenvalue, expecting for enough examples apart from those given by Takahashi. Garay’s
condition can be written as a Laplacian coordinate equation as follows

∆xi = λixi, i = 1, . . . , m,

wherex = (x1, . . . , xm), beingxi the coordinate functions; or even, as a matricial equation

∆x = Ax,
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whereA = diag(λ1, . . . , λm). Nevertheless, Dillen, Pas and Verstraelen, [16], pointed out that
Garay’s condition is not coordinate invariant as a circular cylinder inR3 shows. Then they study
and classify those surfaces inR3 satisfying the new following equation

∆x = Ax + B,

whereA is an endomorphism ofR3 andB is a constant vector inR3.
One immediately asks for the geometric meaning of equation (‡). Before giving an answer we

first notice that both equations (†) and (‡) are equivalent for surfaces inR3 (see [16] and [21]),
but that situation is quite different for surfaces in the 3-dimensional Lorentz-Minkowski space. In
this ambient space those equations show its power, bringing out theB-scrolls as an interesting
and own family which cannot be given in the definite case and in his turn satifies (†) but not
(‡). Furthermore, it is worthwhile to set off that both equations work as constant mean curvature
conditions, so that we are on the track of an isoparametric problem which allows us to reach the
asked classification.

In the past few years we have made some contributions to each one of the problems above
stated, so that this paper will be a sort of survey in the following sense. We will revisit our
recent results concerning to the quoted extensions of Takahashi’s theorem rather emphasizing on
those we have got about hypersurfaces in the realm of Lorentzian geometry and that revision will
include not only published or accepted papers for publication, but also unpublished and others in
preparation results in order to make a self-contained article. Finally, we should like to take this
opportunity to propose some open problems.

2. Spherical 2-type hypersurfaces

This section is devoted to get a nice characterization of those submanifolds that can be con-
structed by using exactly two eigenvalues of its Laplacian in terms of its mean and scalar cur-
vatures, which in his turn allows us to solve a series of problems stated by B.Y. Chen in [8].
As an interesting consequence, provided the number of principal curvatures is bounded above, a
classification of spherical Dupin hypersurfaces constructed inSn by means of two eigenvalues is
given.

A connected (not necessarily compact) submanifoldMn of a pseudo-Euclidean m-spaceQm

is calledof finite typeif its position vector fieldx can be written as a finite sum of eigenfunctions
of its Laplacian; more precisely,Mn is said to beof finite k-typeif its position vector fieldx admits
the following spectral decomposition

x = x0 +
k∑

t=1

xt,

where∆xt = λtxt, t = 1, . . . , k, λ1 < · · · < λk, x0 is a constant vector inQm andxt (t =
1, . . . , k) are non-constantQm-valued maps onMn. Otherwise,Mn is said to beof infinite type.
In particular, if one of the eigenvaluesλt vanishes, thenMn is said to beof null k-type(see [9]).

Let M be a hypersurface of the unit hypersphereSn+1 inRn+2 which we will assume (without
loss of generality) centred at the origin ofRn+2. Denote byx the position vector ofM in Rn+2

and by∇ andD the Levi-Civita connection ofM and the normal connection ofM in Rn+2, re-
spectively. We also denote byσ, S andH (H ′) the second fundamental form ofM in Rn+2, the
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shape operator ofM in Sn+1 and the mean curvature vector field ofM in Rn+2 (Sn+1, respec-
tively). If ∆ denotes the Laplacian ofM , then the following formula for∆H was computed in
[12]:

∆H =
n

2
∇α2 + 2 trSDH′ + (∆α + α|σ|2)N − (nα2 + n)x,

whereH ′ = αN , beingN the unit normal vector field ofM in Sn+1. Here∇α2 denotes the
gradient ofα2 andtrSDH′ =

∑n
i=1 SDEi

H′Ei, where{E1, . . . , En} is a local orthonormal frame
tangent toM .

Now, assume thatM is of 2-type. Then its position vector inRn+2 can be written as

x = x0 + x1 + x2, with ∆x1 = λ1x1 and ∆x2 = λ2x2,

wherex0 is a constant vector inRn+2 andx1, x2 areRn+2–valued non-constant differentiable
functions onM .

From (22) and the well known fact∆x = −nH, we have

∆H = bH + c(x− x0),

whereb = λ1 + λ2 andc =
1
n

λ1λ2.

Remark 2.1 Through this section, we can assume thatc 6= 0, otherwise last two authors have
proved in [22] the non-existence of such hypersurfaces. Of course, ifM is compact thenc 6= 0.

From (21) and (23) one gets the following formulae:

nα2 + n = b− c + c < x, x0 >

and
< ∆H, X >= −c < x0, X >,

for any vector fieldX tangent toM .
By using (24) and (25) a nice expression for the tangential component of∆H is found:

(∆H)T = −n∇α2.

On the other hand, from (21) one has

(∆H)T =
n

2
∇α2 + 2 trSDH′ .

Finally, an easy computation involving (26), (27) and Codazzi equation gives

S(∇α) = trSDH′ = −3n

4
∇α2.

Therefore, the following lemma is proved.

Lemma 2.2 [12] Let M be a 2-type hypersurface ofSn+1. Then∇α2 is a principal direction

with principal curvature−3n

2
α on the open setU = {p ∈ M : ∇α2(p) 6= 0}.

Next lemma, which can also be found in [12], allows us to get a good information about the
above quoted open setU .

Lemma 2.3 Let M be a 2-type hypersurface ofSn+1. Then either M has constant mean curvature
or U is dense in M.
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2.1. Main results

Before going any further, some computations are needed. For short, we writeh = (b−|σ|2)α−
∆α andg = nα2 + n + c− b, and use (21), (23) and (26) to get

cx0 = n∇α2 + hN + gx.

Now, working onU , choose a local orthonormal frame of principal directions{E1, . . . , En}
with associated principal curvatures{µ1, . . . , µn}, beingE1 in the direction of∇α2, so thatµ1 =

−3n

2
α. By using (29) we find the following auxiliar result.

Lemma 2.4 Let M be a 2-type hypersurface ofSn+1. Then the following formulae hold onU :

E1(h) =
3n2

2
αE1(α2), (210)

Ej(h) = 0, j = 2, . . . , n, (211)

nE1E1(α2) +
3n

2
αh + g = 0. (212)

Finally, an easy computation from (210), (211) and Lemma 2.3 gives

h = n2α3 + k, (213)

for a constantk, holding anywhere onM .
We are going to compute∆α2 in two different ways. First, by using (24) we find

n∆α2 = ∆ < cx0, x >= −n < cx0,H
′ > +n < cx0, x >

and then, from (29), we get

∆α2 = −αh + g.

On the other hand,

∆α2 = 2α∆α− 2|∇α|2
= 2(b− |σ|2)α2 − 2αh− 2|∇α|2. (215)

Now, a straightforward computation (see [4]) yields to

Proposition 2.5 Let M be a 2-type hypersurface ofSn+1. Then the mean curvatureα does not
vanish anywhere on M.

Next, we are going to prove one of the chief results of this section, which gives an affirmative
answer to an open problem stated by B.Y. Chen [8, I.6].

Theorem 2.6 Let M be a 2-type hypersurface ofSn+1. Then M has constant mean curvature if
and only if M has constant scalar curvature.
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Proof. If α is a constant, thenh so is because (213) and then|σ|2 is also a constant. As a conse-
quence, we use the Gauss equation

|σ|2 = n2α2 − n(n− 1)τ + n (216)

to getM has constant scalar curvature.
Conversely, suppose nowM has constant scalar curvature. From (29) we find

|∇α|2 =
1

4n2α2
{c2|x0|2 − h2 − g2},

that jointly with (214) and (215) leads to

4n2(b− |σ|2)α4 + (h− 2n2α3)h + (g − 2n2α2)g − c2|x0|2 = 0.

Finally, from here, (213) and Gauss equationα must be a root of a polynomial with constant
coefficients and thereforeα is a constant.

Let M be a 2-type hypersurface ofSn+1 ⊂ Rn+2. Consider again the open setU which is
dense inM unless it was empty and soM has constant mean curvature (see Lemma 2.3). Letp be
any point ofU and denote byγ(t) the integral curve of∇α2 through the pointp ∈ U . Now, (213)
allows us to rewrite (212) alongγ(t) as follows:

d2

dt2
(α2) +

3
2
n2α4 + α2 +

3
2
kα +

1
n

(n + c− b) = 0.

Let β =
(

dα

dt

)2

. Then it is easy to see that equation (219) can be reduced to the following first

order differential equation:

α
dβ

dα
+ 2β = −3

2
n2α4 − α2 − 3

2
kα− 1

n
(n + c− b).

From this equation we obtain the following solution:

4n2α2β = −3
2
n4α4 − 2n2α2 − 6kn2α

− 4n(n + c− b) ln(α) + C1, (221)

whereC1 is some constant.
On the other hand, from (29) one has

4n2α2β = c2|x0|2 − (n2α3 + k)2 − (nα2 + n + c− b)2. (222)

Therefore, (221) and (222) prove the following

Theorem 2.7 Let M be a 2-type hypersurface ofSn+1 ⊂ Rn+2. Then M has constant mean
curvature.

The following result gives a nice characterization of compact 2-type hypersurfaces in the hy-
persphereSn+1 ⊂ Rn+2 and partially solves an open problem stated by B.Y. Chen [8, I.4].
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Corollary 2.8 Let M be a compact hypersurface ofSn+1 ⊂ Rn+2 which is not a small hyper-
sphere ofSn+1. Then M is of 2-type if and only if M has non-zero constant mean curvatureα and
constant scalar curvatureτ . Moreover, if M is of 2-type,α andτ are completely determined for
the eigenvalues{λ1, λ2} involved in the 2-type condition.

Proof. The necessary condition follows automatically from Theorems 2.7 and 2.6. Now, ifα and
τ are constant, then|S|2 is also constant and so (21) allows us to write

∆H = (|S|2 + n)H + (|S|2 − nα2)x,

where we have usedH = H ′ − x. As a consequence there exist two constants, sayr ands, such
that∆H = rH + sx, with s 6= 0 becauseM is not a small hypersphere ofSn+1. Therefore, we
use Theorem 2.2 of [9, p. 257] to get thatM is of 2-type. Last claim of the statement follows from
Theorem 4.2 of [9, p. 276].

Next result gives a partial answer to another open problem stated by B.Y. Chen [8, I.1].

Corollary 2.9 Let M be a compact 2-type hypersurface ofSn+1 ⊂ Rn+2. Then M is mass-
symmetric inSn+1.

Proof. First, we use Theorem 2.7 to have (223), where both coefficients|S|2 + n and|S|2 − nα2

are constant. Moreover,|S|2 − nα2 6= 0 becauseM is assumed to be of 2-type inRn+2 (notice
that |S|2 = nα2 impliesM is a small hypersphere and so of 1-type in some hyperplane ofRn+2

and then of 1-type inRn+2). Thus we have

0 =
∫

M
∆Hdv = (|S|2 + n)

∫

M
Hdv + (|S|2 − nα2)

∫

M
xdv,

and so ∫

M
xdv = 0,

this means, the center of mass ofM is nothing but the origin ofRn+2.

Remark 2.10 We would like to point out that Theorem 2.7 and Corollaries 2.8 and 2.9 have been
also obtained, simultaneously and independently, by Hasanis and Vlachos in [31], where they use
a different method of proof.

2.2. Applications

A hypersurfaceM of Sn+1 ⊂ Rn+2 is called a Dupin hypersurface if the multiplicity of each
principal curvature is constant onM and each principal curvature is constant along its associated
principal directions. In [6] it is proved that compact embedded Dupin hypersurfaces are conformal
images of isoparametric hypersurfaces when the numberg of principal curvatures isg 6 2, but this
is not the case wheng > 3. In [46], G. Thorbergsson proves that, in cohomology level, compact
embedded Dupin hypersurfaces are isoparametric. That result leads to the Cecil-Ryan’s conjecture
[7]: A compact embedded Dupin hypersurface is Lie equivalent to an isoparametric hypersurface.
That holds wheng 6 3, see [6] and [37]; otherwise, it can be found counterexamples to the
conjecture in [38] and [40]. These facts suggest a close relation between compact embedded
Dupin hypersurfaces and isoparametric ones.
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It is a well-known fact that isoparametric hypersurfaces ofSn+1 ⊂ Rn+2 with g 6 2 are
spheres and Riemannian products of spheres. Wheng = 3, they were completely classified by
E. Cartan [5]. They are all homogeneous spaces and the multiplicities of principal curvatures
(m1,m2,m3) and dimensionsn are listed in the adjoint table:

Mn (m1,m2,m3) n

SO(3)/Z2 + Z2 (1, 1, 1) 3
SU(3)/T 2 (2, 2, 2) 6
SP (3)/SP (1)3 (4, 4, 4) 12
F4/Spin(8) (8, 8, 8) 24

Now, we are going to state and prove the following classification result.

Theorem 2.11 Let M be a Dupin hypersurface ofSn+1 with at most three distinct principal cur-
vatures which is not a small hypersphere ofSn+1. Then M is of 2-type if and only if one the
following statements holds:

1) M is an open piece of a Riemannian productSp × Sn−p.
2) M is an open piece of one of the hypersurfaces exhibited in the above table.

Proof. The sufficient condition follows easily from above results in this section. Now, let us
supposeM is a 2-type hypersurface ofSn+1. Then from Theorems 2.7 and 2.6 we know thatM
has constant mean curvature and constant scalar curvature. SinceM is a Dupin hypersurface it is
not difficult to see thatM is, in fact, an isoparametric hypersurface. Thus, we obtain the desired
conclusion, becauseM cannot have only one principal curvature.

As a consequence, we obtain the following.

Corollary 2.12 Let M be a Dupin hypersurface ofS4 which is not a small hypersphere. Then
M is of 2-type if and only if M is an open piece of one of the following hypersurfaces:S1 × S2,
SO(3)/Z2 + Z2.

3. Hypersurfaces with a characteristic eigenvector field

In this section we will tackle the second extension of Takahashi’s condition set in the Lorentz-
Minkowski ambient. Before starting this task, it will be convenient recalling the pseudo-Riemannian
version of Takahashi’s theorem, which can be found in [10] and [36]. Let x be an isometric immer-
sion of a submanifoldM in a pseudo-Euclidean spaceRm

s . ThenM satisfies equation (∗) if and
only if M is either minimal inRm

s , or minimal in a pseudo-hyperbolic spaceHm−1
s−1 (r), or minimal

in a pseudo-sphereSm−1
s (r). Furthermore, from here we obtain that minimal submanifolds ofRm

s

are the only ones having harmonic coordinate functions and therefore there can be characterized
by the equation∆x = 0.

As we pointed out in the Introduction, the condition (†) means that the coordinate functions
of the mean curvature vector fieldH are eigenfunctions of the Laplacian associated to the same
eigenvalue, thus that equation connects again with the spectral geometry of the submanifold.

We have already mentioned that information furnished by the equation (†) is different from
that of (∗). However, we wish to give an example in the Lorentzian ambient to ratify this fact.
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Let Ln+1 be the(n + 1)-dimensional Lorentz-Minkowski space with the usual coordinates
(x1, . . . , xn+1) and the standard flat metric given byds2 = −dx2

1 + dx2
2 + · · · + dx2

n+1. Let us
consider the differentiable functionf : Ln+1 −→ R defined by

f(x1, . . . , xn+1) = −x2
1 + x2

2 + · · ·+ x2
k+1 − r2,

wherer > 0 andk ∈ {1, 2, . . . , n − 1}. ThenM = f−1(0) is a spacial hypersurface ofLn+1,
i.e., it is endowed with a Riemannian metric and furthermore isometric to the Riemannian product
Hk(r)× Rn−k. Bearing in mind the relation between the second fundamental forms ofHk(r)×
Rn−k andHk(r), it is easy to see that both submanifolds satisfy equation (†), but we know that
cylinders do not fall into Takahashi’s family.

In analysing condition (†) we will study two cases separatedly, according to the curvature of
the ambient space. To do that we would like to notice that no restriction on the causal character of
the hypersurface is made.

3.1. Flat ambient space

Let Mn
s be a hypersurface, with indexs = 0, 1, in Ln+1 and let∇f denote the gradient of

a diferentiable functionf . An easy computation allows us to get the following formula for the
Laplacian of the mean curvature vector fieldH ([10],[24]):

∆H = 2S(∇α) +
nε

2
∇α2 + {∆α + εαtr(S2)}N,

whereS stands for the shape operator ofM , α the mean curvature,N the unit normal vector field
andε =< N, N >.

Assuming thatM satisfies the equation (†), we easily get from (31) the following equations:

S(∇α) +
nε

2
α∇α = 0, (32)

∆α + (εtr(S2)− λ)α = 0. (33)

Now we wish to deduce some easy consequences from there. Ifα is a non-vanishing constant
then (33) implies that tr(S2) is constant and thereforeM also has constant scalar curvature. On
the other hand, ifM has constant mean and scalar curvatures then equation (†) holds for the real
constantλ = εtr(S2). Hence, the following problem arises in a natural way:

(P1) Are the non-vanishing constant mean curvature and constant scalar curvature
hypersurfaces of the Lorentz-Minkowski space characterized by the equation∆H =
λH?

Before beginning the study of this problem, we would like to remark that equation (32) can be
obtained by supposing only that∆H is a vector field normal toM . In this way, Garay and
Romero, [27], have recently studied those hypersurfaces inLn+1 satisfying the condition∆H =
C, whereC is a constant vector inLn+1 which is normal toM at every point, and they show that
C should vanish. Bearing in mind that minimal submanifolds are the only ones whose immersion
is harmonic, i.e.,∆x = 0, it seems natural to ask for the following geometric question:

(P2) Does the equation∆H = 0 characterize the vanishing mean curvature hyper-
surfaces ofLn+1?
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Submanifolds satisfying the condition∆H = 0 are calledbiharmonic, because they satisfy∆2x =
0, and they have been handled, among others, in [11], [17], [21], in the Euclidean case, and in [14],
in the pseudo-Euclidean case.

In dealing with problem (P1), we are going to find surfaces inL3 satisfying (†). At a first stage
we know that minimal surfaces, hyperbolicH2(r) and de SitterS2

1(r) planes are trivial solutions
of (†), as well as the three cylinders appearing in this ambient space:H1(r)× R, L × S1(r) and
S1

1(r)× R. Observe that all quoted examples, as spacial as Lorentzian ones, have diagonalizable
shape operators. Therefore, there arises the following question:Are there Lorentzian surfaces
satisfying (†) and having non-diagonalizable shape operators?To get an affirmative answer we
present an example which was first given by Graves, [28].

Let x(s) be a null curve inL3 with Cartan frame{A,B, C}, i.e.,A, B andC are vector fields
alongx(s) such that

ẋ(s) = A(s),
Ȧ(s) = k(s)C(s),
Ḃ(s) = w0C(s),
Ċ(s) = w0A(s) + k(s)B(s),

wherek(s) 6= 0 andw0 is a nonzero constant. Then the mapΦ : (s, u) −→ x(s) + uB(s)
parametrizes a Lorentzian surface inL3, which Graves called aB-scroll. An easy computation
shows thatα = w0 andtr(S2) = 2w2

0, and then from (31) we have∆H = 2w2
0H. Moreover, the

shape operatorS can be put, in the usual frame{∂Φ
∂s , ∂Φ

∂u }, as

(
w0 0
k(s) w0

)
,

showing that the minimal polynomialpS(t) of S is given bypS(t) = (t − w0)2 andS is not
diagonalizable.

All above examples illustrating equation (†) satisfy a chiefly interesting geometric property:
all of them have constant mean curvature. Then it is reasonable to ask forsurfaces inL3 satisfying
(†) and having non-constant mean curvature. However we are able to get a negative answer in
[23]:

Theorem 3.1 Every surfaceM2
s in L3 satisfying the condition∆H = λH has constant mean

curvature.

As a consequence, from here and (33), it is easy to see that the only non-minimal surfaces
in L3 satisfying (†) are the isoparametric ones, i.e., those whose shape operators have constant
characteristic polynomial. Now bringing here the classification of such surfaces, given in [35] and
[39], we get in [23] a complete answer to problem (P1):

Theorem 3.2 Let M2
s be a surface inL3. Then∆H = λH, for a real constantλ, if and only if

M2
s is either minimal or an open piece of one of the following surfaces:H2(r), S2

1(r), H1(r)×R,
L × S1(r), S1

1(r)× R and aB-scroll.

Some consequences can be deduced from this theorem. On one hand, we find that minimal
surfaces inL3 are characterized as the only ones having harmonic mean curvature vector field,
solving problem (P2). On the other hand, paying attention on the causal character of the surface,

10
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we get that the only spacial surfaces satisfying (†) are either those having zero mean curvature
(the so-calledmaximalones) or open pieces of one of the following surfaces: a hyperbolic plane
H2(r), a hyperbolic cylinderH1(r)× R.

As for then-dimensional case, problems (P1) and (P2) remain open and we have only found
partial solutions. In [24] we deal with hypersurfaces inLn+1 satisfying (†) and such that the min-
imal polynomial of the shape operator is at most of degree two.Under this additional hypothesis,
we are in a position to show the following.

Proposition 3.3 All hypersurfacesMn
s in Ln+1 satisfying∆H = λH have constant mean cur-

vature.

This result allows us to get an affirmative answer to (P1), under the above additional condi-
tion. Taking into account that theorem and the solution obtained for surfaces, we dare to state the
following conjecture.

(C1) The answer to problem (P1) is affirmative.

Finally, we would like to remark that problem (P1) also involves the Euclidean case and thus we
also guess that conjecture (C1) can be applied to Euclidean hypersurfaces.

3.2. Non-flat ambient space

Let M̄n+1
ν (c) denote the pseudo-Riemannian space form with indexν and constant sectional

curvature sgn(c)/c2. Without loss of generality, we can assumec = ±1 and in what followsM̄n+1
ν

will denote the pseudo-sphereSn+1
ν or the pseudo-hyperbolic spaceHn+1

ν , according toc = 1 or
c = −1, respectively. Letx be an isometric immersion of a hypersurfaceMn

s in M̄n+1
ν and letH

denote the mean curvature vector field ofMn
s in the pseudo-Euclidean spaceRn+2

t whereM̄n+1
ν

is lying. Then it is easy to show thatH is given by

H = αN − cx,

whereN denotes a unit vector field normal toMn
s in M̄n+1

ν andα the mean curvature ofMn
s in

M̄n+1
ν . An easy computation from (34) yields to the following nice formula for∆H, [10]:

∆H = 2S(∇α) + nεα∇α + {∆α + εαtr(S2) + ncα}N (35)

−n(1 + εcα2)x,

whereS stands for the shape operator of the hypersurface.
If Mn

s is a hypersurface satisfying the condition (†), we can use equations (34) and (35) to
obtain the following formulae:

2S(∇α) + nεα∇α = 0,

∆α + (εtr(S2) + nc− λ)α = 0,

n(1 + εcα2)− λc = 0.

Now we can combine those equations in order to get the following result, which can be considered
as a first approximation to the solution of problem (P1) in the new ambient space.

Theorem 3.4 A hypersurfaceMn
s of M̄n+1

ν satisfies the condition∆H = λH if and only ifMn
s

is minimal inM̄n+1
ν or has nonzero constant mean curvatureα andtr(S2) = (1/n)tr(S)2.

11
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As a first consequence we get the following. Let us supposeMn
s has diagonalizable shape

operator, for example providedMn
s is a spacial hypersurface. Then the above result impliesMn

s is
a totally umbilical hypersurface and we can use [34, Theorem 1.4] to find thatMn

s is an open piece
either ofSn

s (r), or Hn
s (r), orRn

s (in the last case, the immersion is constructed from a quadratic
function). As a second consequence we deduce, taking into account the Gauss equation, that non-
minimal hypersurfaces of̄Mn+1

ν satisfying (†) are characterized by having constant meanα and
scalarτ curvatures which satify the equationτ = n(n− 1) < H, H >= n(n− 1)(εα2 + c).

With the aim of studying in depth the condition (†), we are going to deal with surfaces. Fol-
lowing [15], we constructB-scrolls over null curves to obtain some surfaces inM̄3

1 satisfying (†)
and whose shape operators are non-diagonalizable, with minimal polynomials having only real
roots. Nevertheless, it seems natural thinking of surfaces inM̄3

1 satisfying (†) and whose shape
operator has a minimal polynomial with complex roots. However, that cannot happen because of
the conditiontr(S2) = 1

2tr(S)2.
Let us supposeM2

s is a surface satisfying (†). ThenM2
s has constant mean and scalar curva-

tures and thusM2
s is an isoparametric surface of̄M3

1 . Now we may carry on an standard reasoning
to obtain the following.

Theorem 3.5 LetM2
s be a non-minimal surface of̄M3

1 satisfying the condition∆H = λH. Then
M2

s is an open piece either of a totally umbilical surface or aB-scroll.

This result leads to the characterization of biharmonic surfaces ofM̄3
1 .

Corollary 3.6 A surfaceM2
s in M̄3

1 is biharmonic if and only if it is either a flat totally umbilical
one or a flatB-scroll.

In order to complete our study, we must consider hypersurfacesMn
s in M̄n+1

1 , where we
guess more promising prospects than in the flat ambient space. We approach the problem by
analising separatedly the different shape operators locally allowed for the hypersurface. In the
diagonalizable case, the problem has been already solved. Let us suppose that the minimal poly-
nomial of S is given, in an open set ofMn

s , by pS(t) = (t − β)2(t − µ1) · · · (t − µk). Then
the equatilitytr(S2) = 1

ntr(S)2 implies thatµ1 = · · · = µk = β is constant and therefore
Mn

s is an isoparametric hypersurface of̄Mn+1
1 with pS(t) = (t − β)2. A standard reasoning

on integral submanifolds leads us to an explicit description of the hypersurfaceMn
s . The case

pS(t) = (t− β)3 (t− µ1) · · · (t− µk) can be treated in a similar way. Finally, the situation when
the minimal polynomial has complex roots, i.e.,pS(t) = [(t− β)2 + γ2](t−µ1) · · · (t−µk) with
γ 6= 0, becomes more complicated, but at the present we think that cannot hold. In this way, we
state the following conjecture.

(C2) There are no hypersurfaces inMn+1
1 satisfying (†) and whose shape operators

have minimal polynomials with complex roots.

To finish this section, we would like telling of that the results of this subsection, i.e., the non-flat
ambient space case, are being purified in order to be published elsewhere.

4. Hypersurfaces satisfying the condition∆x = Ax + B

As we have pointed out in the Introduction, both conditions∆x = Ax, original from Garay,
and (‡), due to Dillen, Pas and Verstraelen, were only established for submanifolds and, particu-
larly, hypersurfaces in the Euclidean space and, in this context, they have been recently studied by

12
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some authors, [13], [16], [25], [26], [30], [32]. However, the pseudo-Riemannian case presents an
own behaviour, mainly because the shape operator need not be diagonalizable, which plays a chief
role in the Riemannian case.

In this section, we will study those pseudo-Riemannian hypersurfaces in pseudo-Riemannian
space forms which are characterized by the matricial condition (‡) in the Laplacian of the isometric
immersion. A first step in this way was given by the authors in [2], where surfaces in the 3-
dimensional Lorentz-Minkowski space satisfying the equation (‡) were classified. The interesting
changes found here with regard to the Euclidean case leaded us to consider that condition not only
for hypersurfaces in a pseudo-Euclidean space, but also for hypersurfaces in a pseudo-spherical or
pseudo-hyperbolic space.

4.1. Flat ambient space

Let Rn+1
ν be the(n + 1)-dimensional pseudo-Euclidean space of indexν with metric tensor,

in the usual coordinates(x1, . . . , xn+1), given by

ds2 = −
ν∑

i=1

dxi ⊗ dxi +
n+1∑

j=ν+1

dxj ⊗ dxj .

Let Mn
s be a pseudo-Riemannian hypersurface inRn+1

ν with indexs = ν − 1, ν and let us write
by H andN the mean curvature and the unit normal vector fields ofMn

s in Rn+1
ν , respectively, so

thatH = αN , beingα the mean curvature in the direction ofN .
Let x : Mn

s −→ Rn+1
ν be an isometric immersion satisfying (‡), whereA is now an endomor-

phism ofRn+1
ν andB is a constant vector. From here, the formula for∆H given in Section 3 and

the well known formula∆x = −nH, it is not difficult to see that

AX = nαSX − nX(α)N,

for any vector fieldX tangent toMn
s , and

AH = 2S(∇α) + nεα∇α + {∆α + εαtr(S2)}N.

If we suppose nowMn
s has non-zero constant mean curvature, then from (41) and (42) we

have

AX = nαSX, (43)

AN = εtr(S2)N, (44)

from which we deduce tr(S2) is also a constant and, taking covariant differentiation in (44), we
find that the shape operator satisfies the polynomial equation

S(S − λI) = 0,

whereλ is the non-vanishing real constant given byλ =
εtr(S2)

nα
. That equation means that

Mn
s is an isoparametric hypersurface inRn+1

ν with diagonalizable shape operator and having as
principal curvatures zero, with multiplicity at mostn − 1, andλ 6= 0, with multiplicity at least
one. Therefore, ifMn

s is totally umbilical inRn+1
ν thenMn

s is an open piece of a pseudo-sphere

13
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Sn
ν (r) or a pseudo-hyperbolic spaceHn

ν−1(r). Otherwise, by using similar arguments as those in
[44, Theorem 2.5] and [33, Lemma 2],Mn

s is an open piece of one of the pseudo-Riemannian
productsRk

u × Sn−k
ν−u (r) andRk

u ×Hn−k
ν−u−1(r). We will refer to these four classes as the standard

examples inRn+1
ν .

On the other hand, besides the trivial case of minimal hypersurfaces, it is not difficult to show
that the standard examples also satisfy equation (‡).

Then it seems reasonable to state the following question.

(P3) Does the equation∆x = Ax + B characterize to the family of minimal hyper-
surfaces and standard examples inRn+1

ν ?

We have just obtained an affirmative answer to this question when the mean curvature is constant.
The following result completely solves that problem, [1].

Theorem 4.1 The hypersurfaces inRn+1
ν satisfying the condition∆x = Ax + B have constant

mean curvature.

Our result generalize those given, when the ambient space isRn+1, in [16], [13] and [32]. On
the other hand, for hypersurfaces in the Lorentz-Minkowski space we have the following proposi-
tion.

Proposition 4.2 Let x : Mn
s −→ Ln+1 be an isometric immersion. Then∆x = Ax + B if

and only ifMn
s is either minimal or an open piece of one of the following hypersurfaces:Sn

1 (r),
Hn(r), Sk

1 (r)× Rn−k, Lk × Sn−k(r), Hk(r)× Rn−k.

Remark 4.3 We wish to pointed out that both equations∆H = λH and∆x = Ax + B char-
acterize the same family of surfaces in the Euclidean case, but they make notably differences in
Lorentzian ambient. In fact, we have seen that aB-scroll, which has constant mean curvature but
non-diagonalizable shape operator, satisfies the former but not the latter.

4.2. Non-flat ambient space

Through this section, we will keep the notation fixed in Section 3.2. A hypersurfaceMn
s

in M̄n+1
ν can also be viewed as a codimension two submanifold in the corresponding pseudo-

Euclidean spaceRn+2
t , whereM̄n+1

ν is canonically immersed, and therefore we can ask ourselves
for those hypersurfaces in̄Mn+1

ν whose isometric immersionx : Mn
s −→ M̄n+1

ν ⊂ Rn+2
t satisfies

the condition (‡), beingA and endomorphism ofRn+2
t andB a constant vector inRn+2

t .
In order to guide our study, we are going to give some examples. A first trivial one is provided

by minimal hypersurfaces in̄Mn+1
ν . Consider now a totally umbilical hypersurfaceMn

s in M̄n+1
ν .

Bearing in mind the classification given in [34], we know that, according to the causal character
of H, Mn

s is an open piece of a pseudo-Riemannian space form. It is not difficult to see that both
Sn

s (r) andHn
s (r) satisfy the asked condition, so that the most interesting situacion comes up in

the flat case, whereH is a null vector. Here the isometric immersionx : Rn
s −→ M̄n+1

ν ⊂ Rn+2
s+1

is given byx = f − x0, beingx0 a fixed vector inRn+2
s+1 andf : Rn

s −→ Rn+2
s+1 the function

defined byf(u1, . . . , un) = (q(u), u1, . . . , un, q(u)), whereq(u) = a < u, u > + < b, u > +c,
a 6= 0. Now we have∆x = (−2na, 0, . . . , 0,−2na), showing that this hypersurface also satisfies
equation (‡) with A = 0 andB = (−2na, 0, . . . , 0,−2na). Finally, a straightforward computation
shows that those hypersurfaces in̄Mn+1

ν built up as the following pseudo-Riemannian products

14
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Sk
u(r1)× Sn−k

s−u (r2), Hk
u(r1)×Hn−k

s−u (r2) andSk
u(r1)×Hn−k

s−u (r2) also satisfy that condition (see
[3]). These hypersurfaces will be called the standard pseudo-Riemannian products inM̄n+1

ν .
Now, letx : Mn

s −→ M̄n+1
ν ⊂ Rn+2

t be an isometric immersion satisfying the condition (‡).
Then the well known formula∆x = −nH and the expresions forH and∆H obtained in Section
3.2 lead to

AX = nαSX + ncX − nX(α)N,

αAN = 2S(∇α) + nεα∇α + {∆α + εα tr(S2)}N − ncεα2x− cB, (45)

Ax = −nαN + ncx−B,

for any tangent vector fieldX.
Then we have< AX, x >= 0 and taking covariant derivative we deduce that

< Aσ(X,Y ), x >= − < AX, Y >,

that along with (45) leads to

< SX − εαX, Y >< B, x >= 0.

In a first aproximation to our problem, let us suppose that the mean curvature ofMn
s in M̄n+1

ν

is a non-zero constant. IfMn
s is not totally umbilical (46) implies< B, x >= 0 and, reasoning as

in [3, Lemma 3.1],B = 0. Now, (45) can be rewritten as

AX = nαSX + ncX,

AN = εtr(S2)N − ncεαx, (47)

Ax = −nαN + ncx.

From these equations we deduceMn
s is an isoparametric hypersurface in̄Mn+1

ν whose shape
operatorS satisfies the polynomial equation

S2 +
nc− εtr(S2)

nα
S − cεI = 0. (48)

The last equation plays a key role in the following reasoning. IfS is diagonalizable andMn
s is

not totally umbilical inM̄n+1
ν from (48) we getMn

s is isoparametric with two principal curvatures
and, by using similar arguments as in [44, Theorem 2.5] and [33, Lemma 2], it is an open piece
of one of the standard pseudo-Riemannian products. In particular, we have got a first solution
to the problem when the ambient space is either spherical or hyperbolic, that is, whenν = 0.
Otherwise,Mn

s could be endowed with an indefinite metric and then the shape operator needs not
be diagonalizable.

Now, we will consider the simplest situation where one can find a non-diagonalizable shape
operator, that is, a Lorentzian surfaceM2

1 in M̄3
1 , satisfying condition (‡) and having non-zero

constant mean curvature. To do that, we knowM2
1 is an isoparametric surface in̄M3

1 and the
characteristic polynomial ofS is given by (48), beingn = 2 andε = 1. From here we findM2

1 is
a flat surface inM̄3

1 ⊂ R4
t with non diagonalizable shape operator and parallel second fundamental

form inR4
t . Therefore, by using [34, Theorem 1.15 and Theorem 1.17] we deduce such a situation

only appears whenM3
1 = H3

1 and, in that case,M2
1 is an open piece either of a complex circle,
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[34, Example 1.12], or of the surface exhibited in [34, Example 1.13]. Now it is not difficult to see
that both surfaces satisfy the asked condition.

In conclusion, we have found a first significant difference in studying the condition (‡) in non-
flat pseudo-Riemannian space forms with respect to the similar one in the flat case. In fact, we have
seen in Section 4.1 that hypersurfaces inRn+1

ν satisfying that condition must have diagonalizable
shape operators. However we have just obtained some examples of surfaces inH3

1 satisfying (‡)
and having non-diagonalizable shape operators.

In order to generalize these examples to anyM̄n+1
ν we profit by Hahn’s ideas, [29]. Let L be a

self-adjoint endomorphism ofRn+2
t , consider the quadratic functionf : M̄n+1

ν −→ R defined by
f(x) =< Lx, x > and assume that the minimal polynomial ofL is given bypL(t) = t2 + at + b,
a, b ∈ R. Then the level setM = f−1(r), wherer is a real constant such thatpL(cr) 6= 0,
is an isoparametric hypersurface in̄Mn+1

ν . A straightforward computation shows that the mean
curvature vector field ofMn

s in M̄n+1
ν is given by

H ′ =
a + tr(L)− cnr

cnpL(cr)
(Lx− crx),

from which we deduce that∆x = Ax, A being the following matrix

A =
cnr − a− tr(L)

cpL(cr)
L +

rtr(L) + (n + 1)ar + cnb

pL(cr)
In+2.

We will refer this example as aquadratic hypersurface. It is worth noticing that in the above
family all possibilities for the shape operator can appear, depending on the sign ofa2 − 4b.

At this point, it seems reasonable to ask for non-constant mean curvature hypersurfaces satis-
fying (‡). In this case,U = {p ∈ Mn

s : ∇α2(p) 6= 0} is a non-empty open set and the equation
(46) leads to< B, x >= 0 onU . Taking covariant derivative here we deduceB should vanish.
From equation (45) we have< AX, Y >=< X,AY > which yields

< Aσ(X, Z), Y > − < Aσ(Y,Z), X >=
< σ(X, Z), AY > − < σ(Y, Z), AX > .

Finally, from (45) we obtain
TX(α)SY = TY (α)SX, (49)

whereT denotes the self-adjoint operator defined byTX = nαX + εSX. This equation is the
key to show the following result, [3].

Theorem 4.4 Letx : Mn
s −→ M̄n+1

ν be an isometric immersion such that∆x = Ax + B. Then
Mn

s has constant mean curvature.

Proof. (Outline) We consider two cases.
(A) T (∇α) 6= 0 onU . Then the shape operatorS has rank one onU and thus we can choose a

local orthonormal frame{E1, . . . , En} such thatSE1 = nεαE1, SEi = 0, i = 2, . . . , n. Working
on the characteristic polynomials of bothA andS it can be deduced thatα is a root of a polynomial
with constant coefficients and therefore it is locally constant onU , which is a contradiction.

(B) There exists a pointp ∈ U such thatT (∇α)(p) = 0. Then from (45) we haveA is a
self-adjoint endomorphism ofRn+2

t andT (∇α) = 0 on U . Moreover∇α is a non-null vector
which allows us to take a local orthonormal frame{E1, . . . , En} with E1 parallel to∇α. Working
again on the characteristic polynomials we obtain the same contradiction as in case (A).

Now we are ready to state the main result of this subsection.
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Theorem 4.5 Let x : Mn
s −→ M̄n+1

ν be an isometric immersion. Then∆x = Ax + B if and
only if one of the following statements holds:

a) Mn
s is a minimal hypersurface,

b) Mn
s is a totally umbilical hypersurface,

c) Mn
s is one of the standard pseudo-Riemannian products.

d) Mn
s is a quadratic hypersurface with non-diagonalizable shape operator.

Proof. We knowα is constant. Ifα = 0 there is nothing to prove, so we can assumeα 6= 0. When
S is diagonalizable, we have seen that either (b) or (c) holds. Otherwise, from (46) and (47) we
get

A2 − (εtr(S2) + cn)A + nεc(tr(S2)− nα2)In+2 = 0,

and therefore the minimal polynomialpA(t) of A is given bypA(t) = t2 + at + b, where
a = −(εtr(S2) + cn) and b = nεc(tr(S2) − nα2). From (45) we knowA is a self-adjoint
endomorphism ofRn+2

t and < Ax, x > is constant onMn
s . Hence, it is an open piece of a

quadratic hypersurface with non-diagonalizableS.
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