Classifying hypersurfaces in the Lorentz-Minkowski space
with a characteristic eigenvector

Angel Ferandez and Pascual Lucas
Tokyo J. Math. 15 (1992), 451-459

(Partially supported by DGICYT grant PB91-0705)

1. Introduction

In a famous paper3], Cheng and Yau solved the Bernstein problem in the Lorentz-Minkowski
spacel."*! showing that the only entire maximal hypersurfaces are hyperplanes. Maximal and
constant mean curvature (CMC) hypersurfaces play a chief role in relativity theory as it is pointed
out in a series of papers by Choquet, Fischer and MarsdgénSfumbles, 15], and Marsden
and Tipler, L3]. CMC hypersurfaces are often closely related to either an eigenvalue problem
or a differential equation stemming from the Laplacian. Perhaps the most remarquable case is
that concerning to vanishing constant mean curvature xldgnote an isometric immersion of a
hypersurfacel! in the Lorentz-Minkowski spack”*! and letH be the mean curvature vector
field. In a recent paper, MarkvorseiZ], gives a pseudo-Riemannian version of the well-known
Takahashi’s theorem showing that the coordinate functions of the immersimeigenfunctions
of the Laplaciam\ of M, associated to the same eigenvalyé and only if M is a vanishing CMC
hypersurfaceX = 0), a de Sitter spacé}*(r) (A > 0) or a hyperbolic spac&™(r) (A < 0). That
means that vanishing mean curvature hypersurfac&& i are the only ones having harmonic
coordinate functions.

More recently, Garay and Romer@][ask for hypersurfaces ih" ! satisfying the condition
AH = C, beingC a constant vector af.”*! which is normal to)M at every point, and show
thatC should vanish. As for surfaces i, we have shown in7] that vanishing mean curvature
surfaces are the only ones satisfyidg? = 0, so that it seems natural to ask for the following
geometric question:

Does the equatio H = 0 characterize the vanishing CMC hypersurfacegbf'?

That equation motivates ourselves to study a certain generalization of Takahashi’s condition in or-
der to deal with hypersurfaces whose mean curvature vector field is an eigenvector for the Lapla-
cian, inshortAH = MAH, X € R (see p], [7]). This equation jointly with constant mean curvature
yields toM has zero mean curvature everywherdbhas constant scalar curvature. On the other
hand, putting together the constancy of both mean and scalar curvatures the hypersurface must
satisfyAH = \H, for a real constank. Therefore, the following problem also arises in a natural
way:

Are the non-vanishing constant mean curvature and constant scalar curvature hyper-
surfaces of the Lorentz-Minkowski space characterized by the equafiba- A\H?

An interesting class of hypersurfaces to which the above two problems can be considered is that
of the Einstein ones. It is not difficult to see that the shape opesatdian Einstein hypersurface



Tokyo J. Math. 15 (1992), 451-459

M satisfies the equatio§? — tr(S)S + epI = 0, beinge the sign of M and p the constant
involved when you write down the proportionality between the Ricci curvatur@/ofnd the
metric. Then, in a more general situation, it is worth studying the fafilgf those hypersurfaces

in L™+ satisfying the conditiodMH = M\H, for a real constanh, and such that the minimal
polynomial of the shape operator is at most of degree two. Throughout this paper we shall deal
with hypersurfaces i@, and get the size of this family.

2. Basic results

Let M be a hypersurface ih"+1 with indexs = 0,1. Denote byo, A, H, V andV the
second fundamental form, the shape operator, the mean curvature vector field, the Levi-Civita
connection ofM and the usual flat connection bf**!, respectively. LetV be a unit normal
vector field of M and leta denotes the mean curvature with respecvtd.e., H = aN.

Our first task will be to comput& H at a pointp of M. To do that, le{ Ey,...,E,} be a
local orthonormal frame such th&tg, £;(p) = 0. Then we have

Vi Ve H = FEE(a)N - 2E;(a)AE; — a (Vg,A) E; — ac(AE;, E;),
from which we deduce
AH =2A(Va) + atrVA + {Aa + eatr(A*)} N

wheres =< N, N >, trV A=trac(X,Y) — (VxA)Y'} andV« is the gradient ofv.
In order to find a good expression o¥A, let z;; the components of the second fundamental
form,i.e.,h;; =< o(E;, Ej), N >=< AE;, E; >. Then we have

n c c n
AE‘z = Z&?jhij’Ej, o = EtTA = ﬁ ZEJL“
]:1 =1
Now, from the Codazzi equation we get
Ei(hij) = Ej(hii),

and therefore we deduce

trVA = Zsl (Vg,A)E ZelvE (AE;))
= Zsié‘j z' z] j = ZEZEJ
= 253 (nea)Ej = neVa.

From here and equation (1) we obtain the following useful result (§ee [

Lemma 2.1 Let M be a hypersurface ib"*! with indexs = 0, 1. Then
AH = 24(Va) + %vcﬁ + {Aa + catr(A2)IN

whereVa is the gradient ol ande =< N, N >.
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From this lemma, we get the following easy consequence.

Corollary 2.2 Let M™ be a hypersurface ifi."*! such thatAH = \H for a real constant\.
ThenVa? is a principal direction with associated principal curvature%a in the open set

U={pe M:Va?(p) #0}.
Throughout this paper the method of moving frames will be used, so we are going to give the
structure equations because they look slightly different in Lorentz space with regard to the Rie-

mannian case. LtE,, . .., E,41} be alocal orthonormal frame "+ and let{w!, ..., w™ "1}
and{w!}; ; be the dual frame and the connection forms, respectively, given by

W(X)=<X,E; >  w(X)=<VxEi,E;>.

Then we have the structure equations

n+1 n+1
dw' = — E gjw; Aw?, dw! = — E Ekwi/\wf,
Jj=1 k=1

wheree; =< E;, E; >.

3. Some examples

In this section we are describing some examples of hypersurfadgs-insatisfying the con-
diton AH = AH, A € R.

Example 3.1 Takek € {1,2,...,n — 1} and letf : L"*! — R be a real function defined by
flan, o anp) = 01(—af + a3 + -+ af) + 2y + B(ain oo+ an ),

whered; andd, belong to the sef0, 1} and they do not vanish simultaneously. Taking 0 and
e = +1, the setM = f~!(er?) is a hypersurface di" ! provided(dy, 52, ¢) # (0,1, —1).
A straightforward computation shows that the unit normal vector field is written as

N = (1/7“)((511’1, ey 51-%'197 Th+1, 52xk+2, ey 521'11—&—1)7

and the principal curvatures agg = —d,/r andus = —dq/r with multiplicities £ andn — k,
respectively. Thud/ is an isoparametric hypersurfacelgf™! and therefore, by Lemma 2.1, we
getAH = etr(A2)H, with tr(A?) = koL + (n = k),

5 . The adjoint table shows all possibilities
,
(see L)):
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0| 62| € Hypersurface AH
n—=k
0| 1] 1] LFxStk(r) ;- H
e k
10 |-1|HF>r) xR * —T—QH
k n—k k
10| 1) S¥(r)xR T—zH
n n
171]-1 H"™(r) —T—QH
1111 ST(r) r2H

Example 3.2 In [9], L.K. Graves constructs a new surfacelif as follows. Letz(s) be a null
curve inL? with Cartan framg 4, B, C}, i.e.,{ A, B, C} is a pseudo-orthonormal frame of vector
fields alongz(s) satisfying:

T ,

A=k(s)C, k(s) #0,

B =aC, abeinga nonzero constant,
C =aA+k(s)B.

If we defineW(s,u) = z(s) + uB(s), then¥ determines a Lorentz surface which is called a
B-scroll. An easy computation leads 1(s, u) = —auB(s) — C(s) andH = aN. Then we have
AH = 2d*H.

As a generalization of that surface we construct the following hypersurfacel@eedlet z(s)
be a null curve inL"*! with local pseudo-orthonormal framd, B, C, X1, ..., X, _»} along
x(s) satisfying (1). LetM be the hypersurface ih™ ! locally defined as follows:

\I/(S,U,(El,...’l'n_g) ( +UB +Zﬂfj —*C( )

It is not difficult to see that

N(s,u,x1,...,Tn—2) = —auB(s) —

is the unit normal vector field td/ and the shape operator can be put, in the usual frame, in the
form

a 0 0
k(s) a
0 a



Angel Ferrandez and Pascual Lucas, Classifying hypersurfaces in the Lorentz-Minkowski space with a characteristic eigenvector

Thus the minimal polynomial oft is p(t) = (t — a)? and we getn = a and t(A?) = na?.

Therefore Lemma 2.1 allows us to writeH = na?H. Then M is said to be ayeneralized
umbilical hypersurface

4. The characterization theorems

In this section we are going to describe the&etThen the shape operator of a hypersurface
M in Cy takes one of the following forms (se&1]):

H1 0 _ -

—®
= O

I. m I1. 6 II1. [ p 'V]
2 ) -y B

0 pa | i i

Lemma 4.1 Let M be a hypersurface di”+! in the seC,. ThenM has constant mean curvature
or, at the points of the open st the shape operatad is diagonalizable. Moreover, if this is the

case,—7a is a principal curvature with multiplicity one.

Proof. Let us suppos# is not empty and lep be any point oi/. By Corollary 2.2 we know that
—%Ea is a principal curvature o/ and therefore case Ill cannot be hold.Af falls in case Il,

then it must bed = ca = %y and soa(p) = 0, which is a contradiction with the choice of
p. ThusA, always falls in case I. As for last statementl4fis not empty there are exactly two
distinct principal curvatureg; # us, with uy = —%a. Let D be the distribution associated with

wr andlet{ £y, ..., E,} be alocal orthonormal frame of principal directions such figis in the
direction of Va?2. If we assume di» > 1, we can work as inJ4] and we deduceX (u;) = 0,
for any vector fieldX in D. In particular,E1 () = 0 on{, so that being?; andVa? parallel,

we geta is constant o/, which is a contradiction. Therefore%ga is a principal curvature with
multiplicity one.
Now, we are going to show the following major result.

Theorem 4.2 Let M be a hypersurface dt"*! in the setC,. ThenM is a CMC hypersurface.

Proof. We aim to show/ is empty. Otherwise, from Lemma 4.1 we know that, at the points of
U, —%a is principal curvature of multiplicity one with principal directiéha?. Thus, ori/, we

can choose a local orthonormal fraf@,, . . ., E, 1} adapted ta\/, such thaf £, ..., E, } are

eigenvectors ofl with associated eigenvalué¢g, . . ., i, }, with E; in the direction ofVa? and
3

E, 11 normal toM. Thereforeu; = —%a andus = -+ =y = 2(77“51)0[' Let {w!,...,w"}
n —_—

and{wf}m the dual frame and the connection forms of the chosen frame, respectively. Then we

5
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have

1 ne 1

Wnpp = Saw, (1)
i 3ne ;
J = ———aw =2,... 2
wn_t,_l 2(n_1)aw 9 ] 9 ana ( )
do = e1Ei(a)w'. 3)

If we take exterior diferentiation in (1) and use the well-known structure equations we deduce
dw' = 0. Thus one locally has' = du, for a certain function:, which along with (3) implies
da A du = 0. Thena depends on, o = a(u), and we obtainla = o/du = o/ (u)w! which
implies By () = g1/

Taking exterior diferentiation in (2) and the structure equations we have

(n+ 2)0@}- =3cd/w!, j=2,...,n (4)

Now, taking once more exterior diferentiation in (4) and using (1) and (2) we obtain the following
second order differential equation:
4(n+5)

doa” - =@+

n%(n +2)

551a4 =0.
n—1

do\? . .
If we puty = <da> , the above equation turns into
U

dy 4(n+5) n(n+2) 4
2% ANTO), TS
ada TL+2 Yy g€l «

n—1 ’

whose solution is given by

2(n+5) 2\ 2
y(a) = Ca n+2 —egg <n(n+ )> a?,
whereC' is a constant.
Now we use the definition o, the fact that?, is parallel toVa? and equation (4) to get

3(n—1)e;

Ao = — " / 2‘
alAo graa + ) ()
On the other hand, sindd is a hypersurface i@y, one hastAa = (A —etr(A42))a? and therefore
we obtain
en?(n + 8) o

4(n—1)

Putting together the two last displayed equations we have

alAa = \a? —

3(n—1)
"o N2 _ 2
oo’ — = o (a') Aera” +

eein?(n+8) 4
4(n—1)

We deduce, by using (5), (6) and (7), thais locally constant o, which is a contradiction with
the definition of/.
The following theorem gives the size 6f.
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Theorem 4.3 Let M be a hypersurface di”*! in the seC,. Then one of the following statements
holds:

1) M has zero mean curvature everywhere.

2) M is an open piece of one of the following hypersurfaddig(r), H*(r) x R*~*, L* x
SR (r), Sk (r) x Rk, S (r).

3) M is a B-scroll.

4) M is a generalized umbilical hypersurface.

Proof. Since the mean curvatutreis constant, then either vanishes everywhere aif or, from
Lemma 2.1¢r(A?) = eX. ThenM is isoparametric becausg(4?) and the minimal polynomial
of A are constant. If the shape operatoridfis diagonalizable we get statement (2) froip [
Theorem 5.1]; otherwise, fromip, Theorem 4.5] we obtain (3) and (4).

5. Applications

From Theorem 4.3 we completely characterize theCsetor a real constank. In particular,
it is worthwhile to analize the s€&}. Concretely we obtain the following

Corollary 5.1 Let M be a hypersurface ih"+!. ThenM is inCy if and only if M has zero mean
curvature everywhere.

This solution is quite similar from that given in the Euclidean case because, accordéjg to [
minimal hypersurfaces iR"*! are the only ones if.

An special and interesting subsetdfis that of spacelike hypersurfaces. In this case, we have
the following

Corollary 5.2 Let M be a spacelike hypersurface &' in C,. Then one of the following
statements holds:

1) M is a maximal hypersurface;

2) M is an open piece of the hyperbolic spade(r);

3) M is an open piece of a hyperbolic cylindgF (r) x R,

As a final application, our main result can also be considered under the viewpoint of the finite
type submanifolds (se&]). In fact, it can be shown that an immersion satisfying the equation
AH = \H is either of infinite type or has zero mean curvature everywhere whei and either
of 1-type or of null 2-type when # 0. In this context we give

Corollary 5.3 Let M be a hypersurface dt.”*! in C,. ThenM is of null 2-type if and only if it
is an open piece of one of the following hypersurfaces: a hyperbolic cyliidier) x R**, a
Lorentzian cylindef.* x S"~*(r), a cylinder over a De Sitter spad4 (r) x R"~*.

We finish by noticing that Corollary 5.3 give us the following characterization of the hyperbolic
cylinder.

Corollary 5.4 Let M be a spacelike hypersurface bf**! in Cy. ThenM is of null 2-type if and
only if it is an open piece of a hyperbolic cylinder.
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