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Angel Ferŕandez and Pascual Lucas
Tokyo J. Math. 15 (1992), 451–459

(Partially supported by DGICYT grant PB91-0705)

1. Introduction

In a famous paper, [3], Cheng and Yau solved the Bernstein problem in the Lorentz-Minkowski
spaceLn+1 showing that the only entire maximal hypersurfaces are hyperplanes. Maximal and
constant mean curvature (CMC) hypersurfaces play a chief role in relativity theory as it is pointed
out in a series of papers by Choquet, Fischer and Marsden, [4], Stumbles, [15], and Marsden
and Tipler, [13]. CMC hypersurfaces are often closely related to either an eigenvalue problem
or a differential equation stemming from the Laplacian. Perhaps the most remarquable case is
that concerning to vanishing constant mean curvature. Letx denote an isometric immersion of a
hypersurfaceM in the Lorentz-Minkowski spaceLn+1 and letH be the mean curvature vector
field. In a recent paper, Markvorsen, [12], gives a pseudo-Riemannian version of the well-known
Takahashi’s theorem showing that the coordinate functions of the immersionx are eigenfunctions
of the Laplacian∆ of M , associated to the same eigenvalueλ, if and only ifM is a vanishing CMC
hypersurface (λ = 0), a de Sitter spaceSn

1 (r) (λ > 0) or a hyperbolic spaceHn(r) (λ < 0). That
means that vanishing mean curvature hypersurfaces inLn+1 are the only ones having harmonic
coordinate functions.

More recently, Garay and Romero, [8], ask for hypersurfaces inLn+1 satisfying the condition
∆H = C, beingC a constant vector ofLn+1 which is normal toM at every point, and show
thatC should vanish. As for surfaces inL3, we have shown in [7] that vanishing mean curvature
surfaces are the only ones satisfying∆H = 0, so that it seems natural to ask for the following
geometric question:

Does the equation∆H = 0 characterize the vanishing CMC hypersurfaces ofLn+1?

That equation motivates ourselves to study a certain generalization of Takahashi’s condition in or-
der to deal with hypersurfaces whose mean curvature vector field is an eigenvector for the Lapla-
cian, in short,∆H = λH, λ ∈ R (see [5], [7]). This equation jointly with constant mean curvature
yields toM has zero mean curvature everywhere orM has constant scalar curvature. On the other
hand, putting together the constancy of both mean and scalar curvatures the hypersurface must
satisfy∆H = λH, for a real constantλ. Therefore, the following problem also arises in a natural
way:

Are the non-vanishing constant mean curvature and constant scalar curvature hyper-
surfaces of the Lorentz-Minkowski space characterized by the equation∆H = λH?

An interesting class of hypersurfaces to which the above two problems can be considered is that
of the Einstein ones. It is not difficult to see that the shape operatorS of an Einstein hypersurface
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M satisfies the equationS2 − tr(S)S + ερI = 0, beingε the sign ofM andρ the constant
involved when you write down the proportionality between the Ricci curvature ofM and the
metric. Then, in a more general situation, it is worth studying the familyCλ of those hypersurfaces
in Ln+1 satisfying the condition∆H = λH, for a real constantλ, and such that the minimal
polynomial of the shape operator is at most of degree two. Throughout this paper we shall deal
with hypersurfaces inCλ and get the size of this family.

2. Basic results

Let Mn
s be a hypersurface inLn+1 with index s = 0, 1. Denote byσ, A, H, ∇ and∇̄ the

second fundamental form, the shape operator, the mean curvature vector field, the Levi-Civita
connection ofM and the usual flat connection ofLn+1, respectively. LetN be a unit normal
vector field ofM and letα denotes the mean curvature with respect toN , i.e.,H = αN .

Our first task will be to compute∆H at a pointp of M . To do that, let{E1, . . . , En} be a
local orthonormal frame such that∇EiEj(p) = 0. Then we have

∇̄Ei∇̄EiH = EiEi(α)N − 2Ei(α)AEi − α (∇EiA) Ei − ασ(AEi, Ei),

from which we deduce

∆H = 2A(∇α) + αtr∇A + {∆α + εαtr(A2)}N,

whereε =< N, N >, tr∇A=trace{(X, Y ) −→ (∇XA)Y } and∇α is the gradient ofα.
In order to find a good expression of tr∇A, let hij the components of the second fundamental

form, i.e.,hij =< σ(Ei, Ej), N >=< AEi, Ej >. Then we have

AEi =
n∑

j=1

εjhijEj , α =
ε

n
trA =

ε

n

n∑

i=1

εihii.

Now, from the Codazzi equation we get

Ei(hij) = Ej(hii),

and therefore we deduce

tr∇A =
∑

i

εi(∇EiA)Ei =
∑

i

εi∇Ei(AEi)

=
∑

i,j

εiεjEi(hij)Ej =
∑

i,j

εiεjEj(hii)Ej

=
∑

j

εjEj(nεα)Ej = nε∇α.

From here and equation (1) we obtain the following useful result (see [7]).

Lemma 2.1 LetMn
s be a hypersurface inLn+1 with indexs = 0, 1. Then

∆H = 2A(∇α) +
nε

2
∇α2 + {∆α + εαtr(A2)}N,

where∇α is the gradient ofα andε =< N, N >.

2



Angel Ferrández and Pascual Lucas, Classifying hypersurfaces in the Lorentz-Minkowski space with a characteristic eigenvector

From this lemma, we get the following easy consequence.

Corollary 2.2 Let Mn be a hypersurface inLn+1 such that∆H = λH for a real constantλ.

Then∇α2 is a principal direction with associated principal curvature−nε

2
α in the open set

U = {p ∈ M : ∇α2(p) 6= 0}.

Throughout this paper the method of moving frames will be used, so we are going to give the
structure equations because they look slightly different in Lorentz space with regard to the Rie-
mannian case. Let{E1, . . . , En+1} be a local orthonormal frame inLn+1 and let{ω1, . . . , ωn+1}
and{ωj

i }i,j be the dual frame and the connection forms, respectively, given by

ωi(X) =< X, Ei >, ωj
i (X) =< ∇̄XEi, Ej > .

Then we have the structure equations

dωi = −
n+1∑

j=1

εjω
i
j ∧ ωj , dωj

i = −
n+1∑

k=1

εkω
j
k ∧ ωk

i ,

whereεi =< Ei, Ei >.

3. Some examples

In this section we are describing some examples of hypersurfaces inLn+1 satisfying the con-
dition ∆H = λH, λ ∈ R.

Example 3.1 Takek ∈ {1, 2, . . . , n− 1} and letf : Ln+1 −→ R be a real function defined by

f(x1, . . . , xn+1) = δ1(−x2
1 + x2

2 + · · ·+ x2
k) + x2

k+1 + δ2(x2
k+2 + · · ·+ x2

n+1),

whereδ1 andδ2 belong to the set{0, 1} and they do not vanish simultaneously. Takingr > 0 and
ε = ±1, the setM = f−1(εr2) is a hypersurface ofLn+1 provided(δ1, δ2, ε) 6= (0, 1,−1).

A straightforward computation shows that the unit normal vector field is written as

N = (1/r)(δ1x1, . . . , δ1xk, xk+1, δ2xk+2, . . . , δ2xn+1),

and the principal curvatures areµ1 = −δ1/r andµ2 = −δ2/r with multiplicities k andn − k,
respectively. ThusM is an isoparametric hypersurface ofLn+1 and therefore, by Lemma 2.1, we

get∆H = εtr(A2)H, with tr(A2) =
kδ1 + (n− k)δ2

r2
. The adjoint table shows all possibilities

(see [1]):
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δ1 δ2 ε Hypersurface ∆H

0 1 1 Lk × Sn−k(r)
n− k

r2
H

1 0 -1 Hk(r)× Rn−k − k

r2
H

1 0 1 Sk
1(r)× Rn−k k

r2
H

1 1 -1 Hn(r) − n

r2
H

1 1 1 Sn
1 (r)

n

r2
H

Example 3.2 In [9], L.K. Graves constructs a new surface inL3 as follows. Letx(s) be a null
curve inL3 with Cartan frame{A,B,C}, i.e.,{A,B, C} is a pseudo-orthonormal frame of vector
fields alongx(s) satisfying:

ẋ = A,

Ȧ = k(s)C, k(s) 6= 0,

Ḃ = aC, a being a nonzero constant,
Ċ = aA + k(s)B.

If we defineΨ(s, u) = x(s) + uB(s), thenΨ determines a Lorentz surface which is called a
B-scroll. An easy computation leads toN(s, u) = −auB(s)−C(s) andH = aN . Then we have
∆H = 2a2H.

As a generalization of that surface we construct the following hypersurface (see [10]). Let x(s)
be a null curve inLn+1 with local pseudo-orthonormal frame{A, B,C, X1, . . . , Xn−2} along
x(s) satisfying (1). LetM be the hypersurface inLn+1 locally defined as follows:

Ψ(s, u, x1, . . . , xn−2) = x(s) + uB(s) +
n−2∑

j=1

xjXj(s)− 1
a
C(s) +

√√√√ 1
a2
−

n−2∑

j=1

x2
j C(s).

It is not difficult to see that

N(s, u, x1, . . . , xn−2) = −auB(s)−
√√√√1− a2

n−2∑

j=1

x2
j C(s)− a

n−2∑

j=1

xjXj(s)

is the unit normal vector field toM and the shape operator can be put, in the usual frame, in the
form 



a 0 0
k(s) a

...
0 a



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Thus the minimal polynomial ofA is p(t) = (t − a)2 and we getα = a and tr(A2) = na2.
Therefore Lemma 2.1 allows us to write∆H = na2H. ThenM is said to be ageneralized
umbilical hypersurface.

4. The characterization theorems

In this section we are going to describe the setCλ. Then the shape operator of a hypersurface
M in Cλ takes one of the following forms (see [11]):

I.




µ1 0
...

µ1

µ2

...
0 µ2




II.




β 0 0
1 β

β
...

0 β




III.

[
β γ
−γ β

]

Lemma 4.1 LetM be a hypersurface ofLn+1 in the setCλ. ThenM has constant mean curvature
or, at the points of the open setU , the shape operatorA is diagonalizable. Moreover, if this is the

case,−nε

2
α is a principal curvature with multiplicity one.

Proof. Let us supposeU is not empty and letp be any point ofU . By Corollary 2.2 we know that

−nε

2
α is a principal curvature ofM and therefore case III cannot be hold. IfAp falls in case II,

then it must beβ = εα = −nε

2
α and soα(p) = 0, which is a contradiction with the choice of

p. ThusAp always falls in case I. As for last statement, ifU is not empty there are exactly two

distinct principal curvaturesµ1 6= µ2, with µ1 = −nε

2
α. LetD be the distribution associated with

µ1 and let{E1, . . . , En} be a local orthonormal frame of principal directions such thatE1 is in the
direction of∇α2. If we assume dimD > 1, we can work as in [14] and we deduceX(µ1) = 0,
for any vector fieldX in D. In particular,E1(α) = 0 onU , so that beingE1 and∇α2 parallel,

we getα is constant onU , which is a contradiction. Therefore−nε

2
α is a principal curvature with

multiplicity one.
Now, we are going to show the following major result.

Theorem 4.2 LetM be a hypersurface ofLn+1 in the setCλ. ThenM is a CMC hypersurface.

Proof. We aim to showU is empty. Otherwise, from Lemma 4.1 we know that, at the points of

U ,−nε

2
α is principal curvature of multiplicity one with principal direction∇α2. Thus, onU , we

can choose a local orthonormal frame{E1, . . . , En+1} adapted toM , such that{E1, . . . , En} are
eigenvectors ofA with associated eigenvalues{µ1, . . . , µn}, with E1 in the direction of∇α2 and

En+1 normal toM . Thereforeµ1 = −nε

2
α andµ2 = · · · = µn =

3nε

2(n− 1)
α. Let {ω1, . . . , ωn}

and{ωj
i }i,j the dual frame and the connection forms of the chosen frame, respectively. Then we
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have

ω1
n+1 =

nε

2
α ω1, (1)

ωj
n+1 = − 3nε

2(n− 1)
α ωj , j = 2, . . . , n, (2)

dα = ε1E1(α)ω1. (3)

If we take exterior diferentiation in (1) and use the well-known structure equations we deduce
dω1 = 0. Thus one locally hasω1 = du, for a certain functionu, which along with (3) implies
dα ∧ du = 0. Thenα depends onu, α = α(u), and we obtaindα = α′du = α′(u)ω1 which
impliesE1(α) = ε1α

′.
Taking exterior diferentiation in (2) and the structure equations we have

(n + 2)αω1
j = 3ε1α

′ωj , j = 2, . . . , n. (4)

Now, taking once more exterior diferentiation in (4) and using (1) and (2) we obtain the following
second order differential equation:

4αα′′ − 4(n + 5)
n + 2

(α′)2 +
n2(n + 2)

n− 1
εε1α

4 = 0.

If we puty =
(

dα

du

)2

, the above equation turns into

2α
dy

dα
− 4(n + 5)

n + 2
y = −εε1

n2(n + 2)
n− 1

α4,

whose solution is given by

y(α) = Cα
2(n+5)

n+2 − εε1

(
n(n + 2)
2(n− 1)

)2

α4,

whereC is a constant.
Now we use the definition of∆α, the fact thatE1 is parallel to∇α2 and equation (4) to get

α∆α = −ε1αα′′ +
3(n− 1)ε1

n + 2
(α′)2.

On the other hand, sinceM is a hypersurface inCλ, one hasα∆α = (λ−εtr(A2))α2 and therefore
we obtain

α∆α = λα2 − εn2(n + 8)
4(n− 1)

α4.

Putting together the two last displayed equations we have

αα′′ − 3(n− 1)
n + 2

(α′)2 = −λε1α
2 +

εε1n
2(n + 8)

4(n− 1)
α4.

We deduce, by using (5), (6) and (7), thatα is locally constant onU , which is a contradiction with
the definition ofU .

The following theorem gives the size ofCλ.
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Theorem 4.3 LetM be a hypersurface ofLn+1 in the setCλ. Then one of the following statements
holds:

1) M has zero mean curvature everywhere.
2) M is an open piece of one of the following hypersurfaces:Hn(r), Hk(r) × Rn−k, Lk ×

Sn−k(r), Sk
1(r)× Rn−k, Sn

1 (r).
3) M is a B-scroll.
4) M is a generalized umbilical hypersurface.

Proof. Since the mean curvatureα is constant, then eitherα vanishes everywhere onM or, from
Lemma 2.1,tr(A2) = ελ. ThenM is isoparametric becausetr(A2) and the minimal polynomial
of A are constant. If the shape operator ofM is diagonalizable we get statement (2) from [1,
Theorem 5.1]; otherwise, from [10, Theorem 4.5] we obtain (3) and (4).

5. Applications

From Theorem 4.3 we completely characterize the setCλ, for a real constantλ. In particular,
it is worthwhile to analize the setC0. Concretely we obtain the following

Corollary 5.1 LetM be a hypersurface inLn+1. ThenM is in C0 if and only ifM has zero mean
curvature everywhere.

This solution is quite similar from that given in the Euclidean case because, according to [6],
minimal hypersurfaces inRn+1 are the only ones inC0.

An special and interesting subset ofCλ is that of spacelike hypersurfaces. In this case, we have
the following

Corollary 5.2 Let M be a spacelike hypersurface ofLn+1 in Cλ. Then one of the following
statements holds:

1) M is a maximal hypersurface;
2) M is an open piece of the hyperbolic spaceHn(r);
3) M is an open piece of a hyperbolic cylinderHk(r)× Rn−k.

As a final application, our main result can also be considered under the viewpoint of the finite
type submanifolds (see [2]). In fact, it can be shown that an immersion satisfying the equation
∆H = λH is either of infinite type or has zero mean curvature everywhere whenλ = 0 and either
of 1-type or of null 2-type whenλ 6= 0. In this context we give

Corollary 5.3 Let M be a hypersurface ofLn+1 in Cλ. ThenM is of null 2-type if and only if it
is an open piece of one of the following hypersurfaces: a hyperbolic cylinderHk(r) × Rn−k, a
Lorentzian cylinderLk × Sn−k(r), a cylinder over a De Sitter spaceSk

1(r)× Rn−k.

We finish by noticing that Corollary 5.3 give us the following characterization of the hyperbolic
cylinder.

Corollary 5.4 LetM be a spacelike hypersurface ofLn+1 in Cλ. ThenM is of null 2-type if and
only if it is an open piece of a hyperbolic cylinder.
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