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Abstract

In this paper, under certain hypothesis, we characterize generalized hyperbolic cylinders as
the only null 2-type hypersurfaces in a Lorentz space.

1. Introduction

In last years, the problem of characterizing or classifying null 2-type hypersurfaces or, in general,
submanifolds appears to be quite interesting. In [3], B.Y. Chen has given a classification theo-
rem of null 2-type surfaces in the Euclidean three-space and he has proved that they are circular
cylinders. In a later paper [4], he shows that helical cylinders are the only surfaces of null 2-type
and constant mean curvature of the Euclidean four-space. Thus, it seems that cylinders are an
important family in the classification of finite type submanifolds and, in particular, null finite type
submanifolds. In fact, the authors (jointly with O.J. Garay) [5], have shown that for a particular
class of ruled manifoldd/* over a given compact spherical submanifdfd generalized cylinders

over a finite type submanifoldl/ are the only finite type manifolds.

In this paper, we discuss a pseudo-Riemannian version of that problem and obtain a result similiar
to Chen’s. Now, in this context, hyperbolic cylinders play the same role as circular cylinders in
the Euclidean case. Actually, in this paper, we generalize this theorem to n-dimensional case and
with the additional assumption of having at most two distinct principal curvatures, we prove that
a space-like hypersurface of the Lorentz spicg ™ is of null 2-type if and only if it is locally
isometric to a generalized hyperbolic cylinder.

2. Preliminaries

LetIRY" be them-dimensional pseudo-Euclidean space with metric tensor

S m
<, >= —dej ® dx’ + Z da? ® da’,
j=1 j=s+1

where(z1, ..., z,,) are usual coordinates IRY". (IRY, <, >) is a flat pseudo-Riemannian man-
ifold of signature(s, m — s). Whens = 1, R}" is called the Lorentz space. Let: M'—IRY"

be an isometric immersion of a connected n-dimensional manifgfdof indext in IR{*. We
represent by\ the Laplacian operator a¥/;* (with respect to the induced metric) acting on the
space of smooth functiori$° (1;*). The manifold)/;" is said to be of-type if its position vector

x can be decomposed in the following form:

J/‘:.’I?O—f-l'il‘i“‘"'—ﬂfik,

1



Canad. Math. Bull. 35 (1992), 354-360

where
A.’Eij = )\ij l‘i].,

Aip < -+ < Ai, To IS a constant vector ilR;' andA is the extension of the Laplace operator to
IR™-valued smooth functions al/;" in a natural way. The manifold is said to be of finite type if
it is of k-type for some natural numbér otherwise, it is said to be of infinite type. When some
Ai; = 0 thenM" is called of nullk-type or null finite type.

If M} is of finite type, for example of-type, from (1) there exists a monic polynomial, $a¢),
such thatQ(A)(z — o) = 0. If we suppose thaf(t) = t* 4 dit" 1 + - - - +dy_1t + di then, by
the formulaAz = —nH, whereH is the mean curvature vector field of* in IRY", we have the
following differential equation:

d
AFTH 4 i AF2H 4 dp o H — ;’“(a: — x9) = 0.

We note thatd;, = 0 when the manifold is of nulk-type and therefore (3) only contains terms
involving the mean curvature vectéf. For the general knowledge on finite type submanifolds in
pseudo-Euclidean spaces, see for instance [1, 2].

If M} is a hypersurface of the Lorentz space, then either 0 and we will write A/™ by Mg,

M™ inherits a Riemannian metric add™ is said to be a space-like hypersurfacet et 1, the
induced metric onV/{* is Lorentzian andV/]* is said to be a Lorentzian hypersurface. Throught
this paper we will deal only with space-like hypersurfaces. To fix the notation will be used later
on, letV be the flat connection on the Lorentz space an&Id&ke the Levi-Civita connection on
the hypersurface. LeX, Y be two vector fields tangent ff™ and¢ a vector field normal ta/™.
The second fundamental forenof M acting onX andY is defined as the normal component
of VxY and the Weingarten mag in the direction off asA:X = —(Vx¢). The well known
relation betweem and A is given by

<AX,)Y >=<0(X,Y),{>.

Let N be a unit vector field normal td/™ and write A by Ayx. Then sinceM™ is space like,
< N,N >= —1,i.e., N is time-like, and therefore

o(X,)Y)=—-<o(X,Y),N>N=—-<AX,Y > N.

, , . , 1
We notice that the mean curvature vector fiéldof A" is defined as-tr(c), that can also be

n
. 1 . . 1 :
written asH = ——tr(A)N, so that the functiom given bya: = ——tr(A) is the mean curvature
n n
of M™ (in the direction ofV) and we usually writdd = aV.
Let{E1,..., E,, E,+1} be anadapted local orthonormal frame of the Lorentz space€,ke,, .., E,}

is a local orthonormal frame tangent 3¢™ and E,, .1 is a unit time-like vector field normal to
M". Letw® be the 1-forms defined hyi(Z) =< E;, Z >, fori = 1,...,n + 1, and any vec-
tor field Z on the Lorentz space. As it is well knowst+! = 0 on the hypersurface. Now the
connection 1-formgw?}, 4,7 = 1,...,n + 1 are defined by means of the expression

B n+1 )
VXEZ‘ = Zwi(X)EJ
7=1
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An easy and standard computation yields to structure equations

n
dw* = —Zw}g/\wk, i=1,...,n
k=1
n+1
dwg = —Zwi/\w?, ,j=1,...,n+1,
k=1
withwf:—w;'-fori,j:1,...,n,andw;¢+1:wgﬂforz’:l,...,n.

3. Basic Results

In order to make a study of null 2-type hypersurfaces of the Lorentz space, we start with a formula
for AH.

Lemma 3.1 Letx : M”—>]R‘11+1 be a space-like orientable hypersurface. Then
AH =2A(Va) — gvoﬁ +{Aa — a|A]2}N,
whereN is a global unit normal vector field andi|? stands for tf A2).

Proof. Letp be inM™, {E;, ..., E,} alocal orthonormal frame tangentié™ such thaV g, E; (p) =
0. From the formula

Ve Ve H = EE(a)N —2E;(a)AE; — o{(VE,A)E; + 0(AE;, E;)}

we have
AH =2A(Va) + atr(VA) + {Aa — a|A]*}N,

wheretr(VA) = (Vg A)E;.

i=1
To compute tr(VA), let {Xy,...,X,} be the local orthonormal frame of eigenvectors of the
Weingarten map, i.eAX; = u; X;. Then, using the well-known connection equations, we have

r(VA) = > Xj(p) X5 + (i — py)w] (Xi) X
i=1 i#]

Now, from Codazzi's equatioVy, A) X; = (Vx; A) X;, one gets
Xj(pa) = (i — pg)w] (X3).

_ 1 @ _
Then, sincey = — — 2 115, we obtain
n =1

tr(VA) = —nVa

and the lemma follows from here and (1).
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Now, if M™ is of 2-type, i.e. AH = bH + cx (Where we assume without loss of generality that
xg is the origin oﬂR‘f“), from the above lemma we have

cx =2A(Va) — gVaQ +{Aa — a]A]* — ba}N.
This formula allow us to get the following easy and interesting consequence.
Corollary 3.2 If M™ is a space-like hypersurface of null 2-type in the Lorentz space, then
A(Va?) = gaVQQ
in the open sel = {p € M : Va?(p) # 0}.

The problem of characterizing space-like hypersurfaces of null 2-type does not seem an easy task
without additional hypothesis. The constancy of the mean curvature does not even provide, in
principle, enough information to get such characterization. Nevertheless, we have the following
result. LetC denote the family of space-like hypersurfaces of the Lorentz space with at most two
distinct principal curvatures.

Proposition 3.3 Let M™ € C. ThenM™ is of null 2-type and constant mean curvature if and only
if it is locally isometric to a hyperbolic cylinddRP x H™~P(r).

Proof. If M™ is of null 2-type and has constant mean curvature, by using (5) we |hgvés

a constant. Furthermore, the hypothesis on principal curvatures yieltis’tbas exactly two
constant principal curvatures. From [6, SectionM]} is an open piece dRP x H" P(r). The
converse is trivial.

In the proof of the above proposition, it has been crucial to deduceliffais isoparametric and

for that to be possible we have needed the hypothesis on principal curvatures. To get down to work
in a more general situation we need a previous lemma.

Lemma 3.4 Let M™ € C. ThenV is empty or, at the points of, ga is a principal curvature with
multiplicity one.

Proof. Let us suppos#®’ is not empty. At the points df, by using Corollary 3.2%
curvature with associated principal directi®?. LetV; be a connected component¥f Then
Vi is not empty and oiiv; there are exactly two distinct principal curvatures, gay= 5o andps.
Choose the local orthonormal franj&, . . ., £, } of principal directions such thdt; is parallel
to Va? and letD; = {X e TV : AX = u; X}, 1 = 1,2, be the distribution associated with
the eigenvalue.;, which is differentiable in the open s&. If we assume dify; > 1, we can
take two linearly independent vector fields andY in D; and working as in the proof of [7,
Proposition 2.3] we haveA — 111)[X, Y] = X (u1)Y — Y (1) X. The hypothesis on the principal
curvatures implies that(t) = (¢t — p1)(t — p2) is the minimal polynomial of4 and therefore the
left hand side of that equation lies iD; and Dy. But Dy N Dy = {0}, so X (u1) = 0 for any
vector fieldX € D;. In particular,E; («) = 0 on V4, so that being”; andVo? parallel, we gety

is a constant o}, which is a contradiction. Therefore, dim = 1 and%a has multiplicity one.

ais a principal
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4. The Characterization Theorem
This section is devoted to prove the following theorem.

Theorem 4.1 Let M™ € C. ThenM™ is of null 2-type if and only if it is locally isometric to a
hyperbolic cylindedRP x H" P (r).

Proof. Supposel/™ is a space-like hypersurface. Our goal is to prove Mi&thas constant mean
curvature. Ifa were not constant, then by the Lemma 3.4 we havethiat not empty and the

vectorVa? is an eigenvector ofl corresponding to the eigenvalgex with multiplicity 1. Choose

alocal orthonormal fram@Ey, ..., E,1}, in an open set op, satisfying that 1, ..., E,, } are
eigenvectors ofl, £, is parallel toVa? andE,, | is normal toM .
Now by hypothesis\ H = bH so that from Lemma 3.1 we have

Aa=(b+|AP)a;  A(Va)— gaVa = 0.
Let {w!,...,w"} and{w{}, i,j = 1,...,n+ 1, the dual frame and the connection forms of the

chosen frame. Then we have

1 no 1 J n

3 i
wn+1:—§aw; wn+1=§n_1aw,j:2,...,n.
do = Ey(a)w.
From the first equation of (2) we have
dwkH = —gadwl.

Using now the second equation of (2) and the structure equations, one has

3 n
dw%H =5 1adw1
These two last equations mean that
dw! = 0.

Therefore one locally has' = du, for a certain function:, which along with (3) imply that
da A du = 0. Thusa depends om, a = a(u). Thenda = o/du = o/ (u)w! and soE; (a) = «'.
Taking differentiation in the second equation of (2) we have

: 3 n T :
dw! | = Sy 10/w AN + 3 ladwj,
and, also by the structure equations:
; 3 n - onn+2) 5
dw%+1:§n_ladwj+mOZW{/\w .

From both equations we get

{(n + 2)aw{ + 3w/} AWl =0.
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Then we can write A
n+2)aw! 4+ 3w’ = fuwl,
( 1

wheref is the function given by '
f=(n+2)aw](E).

Now from (6) and the structure equations we find

1
0= dwl(El, Ej) == —iwjl-(El),

and thusf = 0. Consequently (9) implies that
(n+2)aw! +3d/w! =0, j=2,...,n.
Now, differentiating (10) we have
(n +2){a’w' A w{ + adw{} +3{a""w' AW 4 d/duw?} =0,
and using (2), (10) and the structure equations we get

3 o/dj{ 9 (a)? 3 n?
(

— —dw + - a2}w1/\wj.
n—+2a«

dw =
“1 n+2)? o> 4n-1

Bringing (12) into (11) we find

3(n+5) (o/)? B 3n%(n+2) 4

3//_ 1/\ ]:0
“ n+2 « 4(n1)a}w “ ’

and therefore we have the following differential equation

4(n+5)
4 " AW
oo — 1o (o)

2
2
_ni(n+2) 4

n—1
If we puty = ()2, the above equation turns into

dy An+5)  n2(n+2)
202d _ —
ada n+2 y n—1 el

and then

2(n+5) n(n+2)\°
= 2 = n+2 —_— 4
y=(a)"=Ca +<2(n—1)> a”,

with C' a constant.
Now we use the definition ahq, the fact that; is parallel toVa? and equation (10) to obtain

(n +2)aAa = —(n+ 2)aa” + 3(n — 1)(d/)2

n%(n + 8)
4(n —1)

Since|A]* = o?, combining (16) and the first equation of (1), we have

s 3n-1) , n?(n + 8) B
aq _(71—1—2)(04)2+(b+4(n—1)a2) o? =0.
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Thus, putting together (13) and (17) one has

2(n —4)
n+ 2

n2(n+5) 4

(/)2 = 20— 1) ot + ba?.

We deduce, using (15) and (18) thats locally constant oY, which is a contradiction with the
definition of V. Hencea is constant oM™ and the result follows from Proposition 3.3. The
converse is trivial and the proof finishes.

Remark 4.2 If IR‘l1+1 is the Euclidean-spadB?, Theorem 4.1 has been proved by B.Y. Chen in
[3].
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