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Abstract

In this paper, under certain hypothesis, we characterize generalized hyperbolic cylinders as
the only null 2-type hypersurfaces in a Lorentz space.

1. Introduction

In last years, the problem of characterizing or classifying null 2-type hypersurfaces or, in general,
submanifolds appears to be quite interesting. In [3], B.Y. Chen has given a classification theo-
rem of null 2-type surfaces in the Euclidean three-space and he has proved that they are circular
cylinders. In a later paper [4], he shows that helical cylinders are the only surfaces of null 2-type
and constant mean curvature of the Euclidean four-space. Thus, it seems that cylinders are an
important family in the classification of finite type submanifolds and, in particular, null finite type
submanifolds. In fact, the authors (jointly with O.J. Garay) [5], have shown that for a particular
class of ruled manifoldsM∗ over a given compact spherical submanifoldM , generalized cylinders
over a finite type submanifoldM are the only finite type manifolds.
In this paper, we discuss a pseudo-Riemannian version of that problem and obtain a result similiar
to Chen’s. Now, in this context, hyperbolic cylinders play the same role as circular cylinders in
the Euclidean case. Actually, in this paper, we generalize this theorem to n-dimensional case and
with the additional assumption of having at most two distinct principal curvatures, we prove that
a space-like hypersurface of the Lorentz spaceIRn+1

1 is of null 2-type if and only if it is locally
isometric to a generalized hyperbolic cylinder.

2. Preliminaries

Let IRm
s be them-dimensional pseudo-Euclidean space with metric tensor

<,>= −
s∑

j=1

dxj ⊗ dxj +
m∑

j=s+1

dxj ⊗ dxj ,

where(x1, . . . , xm) are usual coordinates inIRm
s . (IRm

s , <, >) is a flat pseudo-Riemannian man-
ifold of signature(s,m − s). Whens = 1, IRm

1 is called the Lorentz space. Letx : Mn
t −→IRm

s

be an isometric immersion of a connected n-dimensional manifoldMn
t of index t in IRm

s . We
represent by∆ the Laplacian operator ofMn

t (with respect to the induced metric) acting on the
space of smooth functionsC∞(Mn

t ). The manifoldMn
t is said to be ofk-type if its position vector

x can be decomposed in the following form:

x = x0 + xi1 + · · ·+ xik ,
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where
∆xij = λijxij ,

λi1 < · · · < λik , x0 is a constant vector inIRm
s and∆ is the extension of the Laplace operator to

IRm-valued smooth functions onMn
t in a natural way. The manifold is said to be of finite type if

it is of k-type for some natural numberk; otherwise, it is said to be of infinite type. When some
λij = 0 thenMn

t is called of nullk-type or null finite type.
If Mn

t is of finite type, for example ofk-type, from (1) there exists a monic polynomial, sayQ(t),
such thatQ(∆)(x− x0) = 0. If we suppose thatQ(t) = tk + d1t

k−1 + · · ·+ dk−1t + dk then, by
the formula∆x = −nH, whereH is the mean curvature vector field ofMn

t in IRm
s , we have the

following differential equation:

∆k−1H + d1∆k−2H + · · ·+ dk−1H − dk

n
(x− x0) = 0.

We note thatdk = 0 when the manifold is of nullk-type and therefore (3) only contains terms
involving the mean curvature vectorH. For the general knowledge on finite type submanifolds in
pseudo-Euclidean spaces, see for instance [1, 2].
If Mn

t is a hypersurface of the Lorentz space, then eithert = 0 and we will writeMn by Mn
0 ,

Mn inherits a Riemannian metric andMn is said to be a space-like hypersurface; ort = 1, the
induced metric onMn

1 is Lorentzian andMn
1 is said to be a Lorentzian hypersurface. Throught

this paper we will deal only with space-like hypersurfaces. To fix the notation will be used later
on, let∇̄ be the flat connection on the Lorentz space and let∇ be the Levi-Civita connection on
the hypersurface. LetX, Y be two vector fields tangent toMn andξ a vector field normal toMn.
The second fundamental formσ of Mn acting onX andY is defined as the normal component
of ∇̄XY and the Weingarten mapAξ in the direction ofξ asAξX = −(∇̄Xξ). The well known
relation betweenσ andAξ is given by

< AξX, Y >=< σ(X, Y ), ξ > .

Let N be a unit vector field normal toMn and writeA by AN . Then sinceMn is space like,
< N,N >= −1, i.e.,N is time-like, and therefore

σ(X, Y ) = − < σ(X, Y ), N > N = − < AX, Y > N.

We notice that the mean curvature vector fieldH of Mn is defined as
1
n

tr(σ), that can also be

written asH = − 1
n

tr(A)N, so that the functionα given byα = − 1
n

tr(A) is the mean curvature

of Mn (in the direction ofN ) and we usually writeH = αN .
Let{E1, . . . , En, En+1} be an adapted local orthonormal frame of the Lorentz space, i.e.,{E1, . . . , En}
is a local orthonormal frame tangent toMn andEn+1 is a unit time-like vector field normal to
Mn. Let ωi be the 1-forms defined byωi(Z) =< Ei, Z >, for i = 1, . . . , n + 1, and any vec-
tor field Z on the Lorentz space. As it is well knownωn+1 = 0 on the hypersurface. Now the
connection 1-forms{ωj

i }, i, j = 1, . . . , n + 1 are defined by means of the expression

∇̄XEi =
n+1∑

j=1

ωj
i (X)Ej .
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An easy and standard computation yields to structure equations

dωi = −
n∑

k=1

ωi
k ∧ ωk, i = 1, . . . , n

dωj
i = −

n+1∑

k=1

ωj
k ∧ ωk

i , i, j = 1, . . . , n + 1,

with ωj
i = −ωi

j for i, j = 1, . . . , n, andωn+1
i = ωi

n+1 for i = 1, . . . , n.

3. Basic Results

In order to make a study of null 2-type hypersurfaces of the Lorentz space, we start with a formula
for ∆H.

Lemma 3.1 Letx : Mn−→IRn+1
1 be a space-like orientable hypersurface. Then

∆H = 2A(∇α)− n

2
∇α2 + {∆α− α|A|2}N,

whereN is a global unit normal vector field and|A|2 stands for tr(A2).

Proof. Letp be inMn, {E1, . . . , En} a local orthonormal frame tangent toMn such that∇EiEj(p) =
0. From the formula

∇̄Ei∇̄EiH = EiEi(α)N − 2Ei(α)AEi − α{(∇EiA)Ei + σ(AEi, Ei)}

we have
∆H = 2A(∇α) + α tr(∇A) + {∆α− α|A|2}N,

wheretr(∇A) =
n∑

i=1

(∇EiA)Ei.

To compute tr(∇A), let {X1, . . . , Xn} be the local orthonormal frame of eigenvectors of the
Weingarten map, i.e.,AXi = µiXi. Then, using the well-known connection equations, we have

tr(∇A) =
n∑

j=1

Xj(µj)Xj +
∑

i6=j

(µi − µj)ω
j
i (Xi)Xj .

Now, from Codazzi’s equation(∇XiA)Xj = (∇XjA)Xi, one gets

Xj(µi) = (µi − µj)ω
j
i (Xi).

Then, sinceα = − 1
n

n∑

i=1

µi, we obtain

tr(∇A) = −n∇α

and the lemma follows from here and (1).
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Now, if Mn is of 2-type, i.e.,∆H = bH + cx (where we assume without loss of generality that
x0 is the origin ofIRn+1

1 ), from the above lemma we have

cx = 2A(∇α)− n

2
∇α2 + {∆α− α|A|2 − bα}N.

This formula allow us to get the following easy and interesting consequence.

Corollary 3.2 If Mn is a space-like hypersurface of null 2-type in the Lorentz space, then

A(∇α2) =
n

2
α∇α2

in the open setV = {p ∈ M : ∇α2(p) 6= 0}.

The problem of characterizing space-like hypersurfaces of null 2-type does not seem an easy task
without additional hypothesis. The constancy of the mean curvature does not even provide, in
principle, enough information to get such characterization. Nevertheless, we have the following
result. LetC denote the family of space-like hypersurfaces of the Lorentz space with at most two
distinct principal curvatures.

Proposition 3.3 LetMn ∈ C. ThenMn is of null 2-type and constant mean curvature if and only
if it is locally isometric to a hyperbolic cylinderIRp ×Hn−p(r).

Proof. If Mn is of null 2-type and has constant mean curvature, by using (5) we have|A|2 is
a constant. Furthermore, the hypothesis on principal curvatures yields toMn has exactly two
constant principal curvatures. From [6, Section 4],Mn is an open piece ofIRp ×Hn−p(r). The
converse is trivial.
In the proof of the above proposition, it has been crucial to deduce thatMn is isoparametric and
for that to be possible we have needed the hypothesis on principal curvatures. To get down to work
in a more general situation we need a previous lemma.

Lemma 3.4 LetMn ∈ C. ThenV is empty or, at the points ofV,
n

2
α is a principal curvature with

multiplicity one.

Proof. Let us supposeV is not empty. At the points ofV, by using Corollary 3.2,
n

2
α is a principal

curvature with associated principal direction∇α2. Let V1 be a connected component ofV. Then
V1 is not empty and onV1 there are exactly two distinct principal curvatures, sayµ1 = n

2 α andµ2.
Choose the local orthonormal frame{E1, . . . , En} of principal directions such thatE1 is parallel
to ∇α2 and letDi = {X ∈ TV : AX = µiX}, i = 1, 2, be the distribution associated with
the eigenvalueµi, which is differentiable in the open setV1. If we assume dimD1 > 1, we can
take two linearly independent vector fieldsX andY in D1 and working as in the proof of [7,
Proposition 2.3] we have(A−µ1)[X, Y ] = X(µ1)Y −Y (µ1)X. The hypothesis on the principal
curvatures implies thatp(t) = (t− µ1)(t− µ2) is the minimal polynomial ofA and therefore the
left hand side of that equation lies inD1 andD2. But D1 ∩D2 = {0}, soX(µ1) = 0 for any
vector fieldX ∈ D1. In particular,E1(α) = 0 onV1, so that beingE1 and∇α2 parallel, we getα

is a constant onV1, which is a contradiction. Therefore, dimD1 = 1 and
n

2
α has multiplicity one.
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4. The Characterization Theorem

This section is devoted to prove the following theorem.

Theorem 4.1 Let Mn ∈ C. ThenMn is of null 2-type if and only if it is locally isometric to a
hyperbolic cylinderIRp ×Hn−p(r).

Proof. SupposeMn is a space-like hypersurface. Our goal is to prove thatMn has constant mean
curvature. Ifα were not constant, then by the Lemma 3.4 we have thatV is not empty and the

vector∇α2 is an eigenvector ofA corresponding to the eigenvalue
n

2
α with multiplicity 1. Choose

a local orthonormal frame{E1, . . . , En+1}, in an open set ofV, satisfying that{E1, . . . , En} are
eigenvectors ofA, E1 is parallel to∇α2 andEn+1 is normal toM .
Now by hypothesis∆H = bH so that from Lemma 3.1 we have

∆α = (b + |A|2)α; A(∇α)− n

2
α∇α = 0.

Let {ω1, . . . , ωn} and{ωj
i }, i, j = 1, . . . , n + 1, the dual frame and the connection forms of the

chosen frame. Then we have

ω1
n+1 = −n

2
αω1; ωj

n+1 =
3
2

n

n− 1
αωj , j = 2, . . . , n.

dα = E1(α)ω1.

From the first equation of (2) we have

dω1
n+1 = −n

2
αdω1.

Using now the second equation of (2) and the structure equations, one has

dω1
n+1 =

3
2

n

n− 1
αdω1.

These two last equations mean that
dω1 = 0.

Therefore one locally hasω1 = du, for a certain functionu, which along with (3) imply that
dα ∧ du = 0. Thusα depends onu, α = α(u). Thendα = α′du = α′(u)ω1 and soE1(α) = α′.
Taking differentiation in the second equation of (2) we have

dωj
n+1 =

3
2

n

n− 1
α′ω1 ∧ ωj +

3
2

n

n− 1
αdωj ,

and, also by the structure equations:

dωj
n+1 =

3
2

n

n− 1
αdωj +

n(n + 2)
2(n− 1)

αωj
1 ∧ ω1.

From both equations we get

{(n + 2)αωj
1 + 3α′ωj} ∧ ω1 = 0.
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Then we can write
(n + 2)αωj

1 + 3α′ωj = fω1,

wheref is the function given by
f = (n + 2)αωj

1(E1).

Now from (6) and the structure equations we find

0 = dω1(E1, Ej) = −1
2
ω1

j (E1),

and thusf = 0. Consequently (9) implies that

(n + 2)αωj
1 + 3α′ωj = 0, j = 2, . . . , n.

Now, differentiating (10) we have

(n + 2){α′ω1 ∧ ωj
1 + αdωj

1}+ 3{α′′ω1 ∧ ωj + α′dωj} = 0,

and using (2), (10) and the structure equations we get

dωj
1 = − 3

n + 2
α′

α
dωj −

{
9

(n + 2)2
(α′)2

α2
+

3
4

n2

n− 1
α2

}
ω1 ∧ ωj .

Bringing (12) into (11) we find
[
3α′′ − 3(n + 5)

n + 2
(α′)2

α
− 3n2(n + 2)

4(n− 1)
α3

]
ω1 ∧ ωj = 0,

and therefore we have the following differential equation

4αα′′ − 4(n + 5)
n + 2

(α′)2 − n2(n + 2)
n− 1

α4 = 0.

If we puty = (α′)2, the above equation turns into

2α
dy

dα
− 4(n + 5)

n + 2
y =

n2(n + 2)
n− 1

α4,

and then

y = (α′)2 = Cα
2(n+5)

n+2 +
(

n(n + 2)
2(n− 1)

)2

α4,

with C a constant.
Now we use the definition of∆α, the fact thatE1 is parallel to∇α2 and equation (10) to obtain

(n + 2)α∆α = −(n + 2)αα′′ + 3(n− 1)(α′)2.

Since|A|2 =
n2(n + 8)
4(n− 1)

α2, combining (16) and the first equation of (1), we have

αα′′ − 3(n− 1)
(n + 2)

(α′)2 +
(

b +
n2(n + 8)
4(n− 1)

α2

)
α2 = 0.

6



Angel Ferrández and Pascual Lucas, Null 2-type hypersurfaces in a Lorentz space

Thus, putting together (13) and (17) one has

2(n− 4)
n + 2

(α′)2 =
n2(n + 5)
2(n− 1)

α4 + bα2.

We deduce, using (15) and (18) thatα is locally constant onV, which is a contradiction with the
definition ofV. Henceα is constant onMn and the result follows from Proposition 3.3. The
converse is trivial and the proof finishes.

Remark 4.2 If IRn+1
1 is the Euclidean-spaceIR3, Theorem 4.1 has been proved by B.Y. Chen in

[3].
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