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Abstract

In this paper, it is shown that the plane, the sphere and the circular cylinder are the only finite
type surfaces of revolution whose generating curves are also of finite type.

0. Introduction.

The research into Riemannian submanifolds has grown up since 1983, when B.-Y.Chen introduces
the notion of Euclidean immersion of finite type [1], [2], and from that time on it has become a
useful tool in the study of submanifolds, as one can see in the recent literature in this field. That
concept is the natural extension of minimal submanifolds on which many mathematicians have
devoted in the last years.

Although the rigorous definition will be given in the next section, the finite type submanifolds
are those whose immersion into Euclidean sp@€eis constructed with a finite number &f-
valuated eigenfunctions of their Laplacian. The simplest immersions of this kind are built with
one or two eigenfunctions getting the 1-type and 2-type submanifolds, respectively. For exam-
ple, when the eigenfunction is associated to the zero eigenvalue we find a minimal submanifold.
Nevertheless, as far as we know all papers concern with spherical submanifolds and recently that
condition is going to be removed, as one can see in papers by Chen [3], Garay [5] and the authors
(jointly with Garay) [4].

In this way, B.-Y.Chen, [3], laid out the problem to find finite type surfaceBrother than ordi-

nary spheres and minimal ones. With the aim of getting an answer to that question, he studied an
important family of surfaces, the tubes?¥, finding that the circular cylinders are the only tubes

of finite type. One year later, Garay, [5], pays attention in the case of complete surfaces of revolu-
tion whose coordinate functions are eigenfunctions of their Laplacian. Observe that this condition
implies that the surface is at most of 3-type. Then Garay finds that the plane, the catenoid, the
sphere and the circular cylinder are the only surfaces of this kind. Now, notice that the type of all
of them is less than or equal to two.

At this moment, it may be worth to stand out some differences between the above papers. Whereas
Chen considers the finite type tubes with no restriction on the type, Garay studies the surfaces of
revolution of type less than three. It seems reasonable to generalize the problem in order to poke
about finite type surfaces of revolution with no restriction on the type. The problem so stated does
not look easy to solve and in a first attempt we are going to assume that the generating curve is
also of finite type, even if it needs not to be the same type as the surface. Indeed, in this paper we
ask the following geometric question:

PROBLEM:“To what extent the finite type character of a plane curve affects the finite
type condition of the surface of revolution built on it?”
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Evidently, neither a surface of revolution of finite type needs to be generated by a curve of finite
type, nor a curve of finite type has to generate a surface of revolution of finite type. To show that
we will consider the following examples giving all posibilities:

(a) a minimal surface, the catenoid, generated by a curve of infinite type, the catenary (see section
2);

(b) a surface of 1-type, the ordinary sphere, generated by a curve of 1-type, the circle;

(c) a surface of infinite type, the cone, generated by a straight line which is minimal (see section
3); and

(d) a surface of infinite type, the ellipsoid, generated by a curve of infinite type, the ellipse.

In order to solve that problem, we first study finite type curve&fand we show that a plane

circle (or an open piece of a plane circle) and a straight line are the only plane finite type curves.
From that result one obtains that the circle is the only closed curve of finite tyg& iim a second

step, we will prove that a plane, a sphere and a circular cylinder are the only finite type surfaces
of revolution whose generating curves are also of finite type. That result is the answer to the
problem stated before and leads immediately to the sphere as the only finite type closed surface of
revolution which is also generated by a finite type curve. Then one obtains a partial answer to the
Chen’s conjecture, which states that the sphere is the only closed finite type surfite in

Finally, in view of our Theorem 3.1 (see section 3) we may hazard the following:

CONJECTUREThe minimal surfaces, the ordinary spheres and the circular cylin-
ders are the only surfaces of finite typeAH.”

Notice that saying yes to our conjecture will imply, in fact, the Chen’s conjecture.

1. Preliminaries.

Letx : M™ — E™ be an isometric immersion of a connected (needs not to be compact)
n-dimensional Riemannian manifold™ into the Euclidean spacE™. We represent by\ the
Laplacian operator ofi/™ (with respect to the induced metric) acting on the space of smooth
functionsC> (M ). The manifold) ™ is said to be ok-type if the position vector. of M™ can be
decomposed in the following form:

m:w0+xi1+"'+$ik,

where
Az, = Nz,

Aip < - < A, xo represents the center of massiaf* in £ and A is the extension of the
Laplace operator té&"-valuated smooth functions ai¥” in a natural way. A manifold//™ is

said to be of finite type if it is ok-type for some natural numbér otherwise M™ is said to be of
infinite type.

So by regarding the decompositigni), finite type means that one constructs the immersion

by making use only of a finite number of eigenvalues\6f. From this point of view, the easiest
decompositiorf1) corresponds to the manifolds of 1-type, which were characterized by Takahashi,
[6], as the minimal submanifold iR or minimal in some hypersphere af" centered at, and
whose radius is determined by the associated eigenvalue giving the 1-type character.
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In general, ifM™ is a Riemannian manifold of finite type, for examplekefype, from(1) there
exists a monic polynomial, sa@(¢), such thatQ(A)(z — z¢) = 0. If we suppose tha@(t) =
th + ditF=1 4+ ... 4+ di,_1t + dj, then coefficientsl; are given by

k

dl == _ZAH ) d2 — Z)‘iz)\itl ;o dk‘ = (_1)k)\l1)\22 s ')\ika
t=1 t<t!

where{\;,, i, ..., \;, } are the associated eigenvalues givingktgpe character. Therefore, the

immersionz satisfies the following equation:

AFg 4+ A e+ d Az + dy(z — z0) = 0.

Itis also known that in terms of local coordinates, . . ., v, } of M™ the Laplacian can be written

as:
0

1 P g
A= =N % gai-2,
\/g%: 5y, (V99 ayj)

whereg = det(gij), (¢) = (gi;)~* and(g;;) are the components of the metric df" with
respectto{y1,...,yn}-
Let us represent by(t) = (f(¢),0,9(t)), t € I, anyC*> curve in thezz-plane whose domain of
definition I is an open real interval of finite length. The surface of revolufiérin £3 is defined
by

x(t,0) = (f(t)cos, f(t)sinb, g(t)), t € I, 6 € (—m, ).

Now we are going to see some examples:

(a) Sphere We considerf(t) = cost andg(t) = sint, t € (—m, 7). Thena(t) is a circle which
is of 1-type, andV/ is the ordinary spher§? which is also of 1-type.

(b) Cone.We takef(t) = at + b andg(t) = ct + d with a andc nonzero. Them(t) is a straight
line which is minimal, and so of 1-type, wherelkis a cone which is of infinite type (see section
3 and also [4]).

(c) Cylinder. We takef(t) = b andg(t) = ct + d. Now «(t) is again a straight line andl/ is a
circular cylinder, which are both of finite type.

(d) Catenoid.We considerf(t) = acosh(t) andg(t) = at. Thena(t) is a catenary, which is of
infinite type (see section 2) and is a catenoid, which is of 1-type.

(e) Anchor Ring.Finally, we considerf(t) = a + rcost andg(t) = rsint, a > r > 0. In this
examplen(t) is a circle andV/ is an Anchor Ring, which is of infinite type (see [3]).

2. Finite Type Curves in E2.

Leta: (0,1) — E? be a parametrization of a smooth unit speed cdrwehich is topologically
imbedded inE?, and let us suppose, without loss of generality, that the center of maSgsof
the origen ofE2. Finally, since we want to find out plane finite type curves, let us asstinseof
k-type.
On the other hand, becauékis parametrized by arc lengty) one hasA = —j—;, where A
denotes the Laplacian operator®@f Now, if we puta(s) = (a1 (s), aa(s)), an easy computation
yields:

jd(2j)ai

Al = (—1) FRCHR i=1,2,j=1,..., k.
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Now, we may us€3) to obtain the following ordinary differential equation:

ds(2k)

d(2k=2) oy d2ai

1 et
) + k=177

+ dro; = 0,
whose characteristic polynomial equation is:
(—,UQ)k + dl(—,u?)k_l + -+ dkfl(—/ﬁ) +dp =0,

i.e., Q(—u?) = 0, being@ the unique monic polynomial giving thietype character. Since the
roots of(@ are the eigenvalues appearing ), one knows that the solutions () are given by

P
a;(s) = a;s +b; + Z{Fitcos(uts) + Gisin(ues)} +
t=1

q
+ ) { At + Bye 45}, i =1,2, ©)
t=1
wherea;, b;, Fy:, Gy, 1 andg; are constant (recall that; are the square roots of the positive
eigenvalues ang are the square roots of the opposite sign negative eigenvalues).
Then we have the following:

Proposition 2.1 Leta be a smooth curve of finite type B¥. Then:

P q
a(s)=As+ B+ Bi(s)+ Y _nls),
t=1 t=1
where;(s) = Ficos(us) + Gisin(us), vi(s) = AiesS + Bie™%5 | Fy, Gy, Ay, By, AandB
are vectors ink?.

Now we wish to prove that the only finite type curves are of the 1-type ones. To do so, we can
assume thad < py < -+ < pp, 0 < & -+ < &, and the pairgF;, G;) and (A, B;) do not
vanish. First, the functiong,(s) can be rewritten as:

Y(s) = Creosh(&is) + Dysinh(&s),

where vector€’; = A; + B; and Dy = A; — Bs.

Using now thak o', o’ >= 1, bearing in mind the linear independence of circular and hyperbolic
functions, and the mixed products between them, we pay attention, after an standard and messy
computation, to the componentsdnsh to get

q 1
43 & < A, Dy > cosh(§is) + > &{|C|* + | Dyl cosh(2¢:s)
t=1 t=1

+2) &6 {< Ci, Cy > + < Dy, Dy >} cosh(& + &p)s
t'<t
+2) & {— < Ci,Cy > + < Dy, Dy >} cosh(& — &p)s

<t

= Z Mg¢ cosh(&s) = 0, (5)

£eA
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whereA = {&: 1 <t < qtU{&+ & : 1<t <t <qtU{&G — & 1<t <t <q}.
Take = 2¢, in (5) to find
0= &{ICql* + [Dy|*} = Mg,
from which we haveC,| = |D,| = 0. Thereforeg = 0. A similar argument, jointly with that in
[1, Theorem 5.3, p. 289], shows that 1. If p = 0, thena is a straight line. Ifh = 1, then

a(s) = As + B + F cos s + G sin us,

such thatF’ andG do not vanish simultaneously. Writing down again the conditigh= 1, one
gets

IF|*>=|G*, <F,G>=0,
<A F>=<AG>=0.

HenceA = 0 and thereforex(s) is a circle.
So we have proved the following:

Theorem 2.2 Let C' be a plane curve. IE' is of finite type, then one of the following two cases
holds:

(a) C'is an open piece of a straight line;

(b) C'is an open piece of a plane circle.

From this theorem one immediately obtains the following consequences:

Corollary 2.3 LetC be a plane curve. If is of finite type, theld’ must be either:
(a) minimal inE?, and soC' is a straight line; or
(b) of 1-type not minimal, and @ is an arc of a circle.

Corollary 2.4 Let C be a closed plane curve of finite type. Th@ns of 1-type and s@’ is a
circle.

Remark. Corollary 2.2 has been proved by B.-Y.Chen [1].

3. Finite Type Surfaces of Revolution in£?.

In order to state and prove the main result, it might be interesting recalling the situation set out
in St. Leta(t) = (f(¢),0,g(t)) be aC* curve in thezz-plane. Then(t) generates by rotation
around thez-axis a connected (not necessarily compact) surfdoghich is usually giving by

M = {(f(t)cosb, f(t)sinb, g(t)) : t € I,0 € (—m, )},

that we are going to assume of finite type.

If we suppose that the generating curvg) is also of finite type, we can use Theorem 2.2 to
obtain thata(¢) is an open piece of a straight line or an open piece of a circle. We will study
separatedly these two posibilities.

CASE 1. Let us suppose thaft) is an open piece of a circle. Without loss of generality, we may
assume that > 0 and(a,0,0), a + r > 0, are, respectively, its radius and center. Tiércan

be parametrized by:

x(t,0) = ((a + rcos)cost, (a + rcosh)sint, rsinf),

5
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wheret € (—m,7) andf € (—p3,3). Here 5 is the largest real number -7, 7) such that
a~+ rcosfB > 0.
If we use the formuld4), we obtain foru € C*°(M):

Lo s 1P 15
orf 00 2002 f20t2°
wheref(6) = a + rcosf. Let x1, x5 andzs be the three component functions of the immersion
x(t,0). Then by using 1) we have:
sinf cosf  sinb
+
f r

Moreover, by a direct computation, we obtain:

A.Ig =

5sinb cosb n sinb
r2f r

n®0 cosd 1
Ags = MY oSy —[2sinf cos®0 — sin®6] +

f3 Tf2

which can be rewritten as:

sin>0 cosb 1
TP

whereP»(u, v) is a polynomial of degree 3 in, v.
Now we may usé€ 1) through(3) to prove by induction that

A% = — Py(sinb, cosh),

n L1232 (2n — 1)%s5in?" 0 cosh) 1 ,
A s = (—1) ( f22+1 + ﬁpm_l (sind, cosh),
forn > 1, whereP,, ;1 (u,v) is a polynomial of degree 2n+1 in v.
Then, since we are supposing thdtis of finite type, from(3) we get:

Afzs + di AR Yas + - 4 dy_ Axs + dyas = 0,

for some natural numbérand constants;.
From(2), (4) and(5) we conclude that there exists some polynomsi@l, v) of degree 2k-1 such
that
sin?*=10 cosf
a + rcosf

But that holds good ifand only f = 0 ora = r. If a = 0 thenM is the ordinary sphere of radius
r centered at the origin of®, which is of 1-type. Assume, without loss of generality= r = 1.
Now, we us€( 1) to obtain:

= S(sinb, cosb).

2
Az = <CO; i + cos@) cost

and

4 1
Agy = (CO;36 + PPQ(COS@)) cost,

wheref(0) = 1 + cosf and P>(u) is a polynomial of degree 3 in.

6
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Thus we may usél), (7) and(8) to prove by induction the formula:

2n+29 1
Al = <COS + Pn+1(cost9)> cost,

f2n+1 f?n
forn > 0, whereP, ;1 (v) is a polynomial of degree 2n+1 in
In the same way, we get:

cos?" 20 1 ,
A"y = (]‘2”“ + JmanH(cosH)) sint,
forn > 0.
At this point, if we use(3) and(7) through(10) we may assert that there exists a polynomial
P(u) of degree 2k-1 such that

cos?ko

1+ cos0 Pleost),

which is a contradiction.

CASE 2. Now, let us suppose thaft) is an open piece of a straight line. Thé&his one of the
following three surfaces:

(a) an open piece of a plane;

(b) an open piece of a circular cylinder;

(c) an open piece of a circular cone.

Case (2a) is of 1-type and case (2b) is of 2-type. Now we are going to study the third posibility.
Without loss of generality)/ can be parametrized by

z(t,0) = (atcosh, atsinf, bt), a* +b* = 1, a andb nonzero,

with¢ € I andf € (—m, 7).
If we use the formulg4) we obtain that the Laplacian ff can be written as

A__ lg_kﬁ_i_iﬁ
a tot Ot a?t2002 [’

and, ifzs denotes the third coordinate functionof, we get

b

A.’L'g = —g

and .
AQZBg = th

Now, we can us€12) and(14) to prove by induction:

o 1232 (2n —3)%

Ani'g = (_1) t2n—1 ’

for all natural numben > 2. If we suppose that/ is of finite type, there exists a natural number
k > 1 and constantsd;, someone nonzero, for whi¢ts) holds good. Then we obtain:

(_1)k12---(2k—3)2b w112 (2k —5)%b
tQk—l t2k—3

+di(-1)

b
—|—~~-—dk_1¥—{-dkbt:0

and thereforé = 0, which is a contradiction.
Then we have shown the following:
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Theorem 3.1 Let M be a surface of revolution i whose generating curves are finite type
curves. IfM is of finite type, thed/ must be a plane, a circular cylinder or a sphere.

From this result we easily deduce the following consequences:

Corollary 3.2 Let M be a finite type surface of revolution i which is also generated by a
plane finite type curve. Thel must be either

(a) minimal inE3, and so it is a plane; or

(b) of 1-type not minimal, and then itis a sphere; or

(c) of 2-type inE?3, and in this case it will be a circular cylinder.

Corollary 3.3 Let M be a finite type closed surface of revolutionfii which is generated by a
finite type curve. Then/ is of 1-type and sd/ is an ordinary sphere.

Remarks.

(a) Corollary 3.2 can be viewed as a partial answer to Chen'’s conjecture.

(b) The fact that the cones are of infinite type can be also shown using [4,Theorem 4.1], neverthe-
less we would rather give an alternative proof with the aim of making a self-contained paper.
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