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Abstract

In this paper, it is shown that the plane, the sphere and the circular cylinder are the only finite
type surfaces of revolution whose generating curves are also of finite type.

0. Introduction.

The research into Riemannian submanifolds has grown up since 1983, when B.-Y.Chen introduces
the notion of Euclidean immersion of finite type [1], [2], and from that time on it has become a
useful tool in the study of submanifolds, as one can see in the recent literature in this field. That
concept is the natural extension of minimal submanifolds on which many mathematicians have
devoted in the last years.
Although the rigorous definition will be given in the next section, the finite type submanifolds
are those whose immersion into Euclidean spaceEm is constructed with a finite number ofEm-
valuated eigenfunctions of their Laplacian. The simplest immersions of this kind are built with
one or two eigenfunctions getting the 1-type and 2-type submanifolds, respectively. For exam-
ple, when the eigenfunction is associated to the zero eigenvalue we find a minimal submanifold.
Nevertheless, as far as we know all papers concern with spherical submanifolds and recently that
condition is going to be removed, as one can see in papers by Chen [3], Garay [5] and the authors
(jointly with Garay) [4].
In this way, B.-Y.Chen, [3], laid out the problem to find finite type surfaces inE3 other than ordi-
nary spheres and minimal ones. With the aim of getting an answer to that question, he studied an
important family of surfaces, the tubes inE3, finding that the circular cylinders are the only tubes
of finite type. One year later, Garay, [5], pays attention in the case of complete surfaces of revolu-
tion whose coordinate functions are eigenfunctions of their Laplacian. Observe that this condition
implies that the surface is at most of 3-type. Then Garay finds that the plane, the catenoid, the
sphere and the circular cylinder are the only surfaces of this kind. Now, notice that the type of all
of them is less than or equal to two.
At this moment, it may be worth to stand out some differences between the above papers. Whereas
Chen considers the finite type tubes with no restriction on the type, Garay studies the surfaces of
revolution of type less than three. It seems reasonable to generalize the problem in order to poke
about finite type surfaces of revolution with no restriction on the type. The problem so stated does
not look easy to solve and in a first attempt we are going to assume that the generating curve is
also of finite type, even if it needs not to be the same type as the surface. Indeed, in this paper we
ask the following geometric question:

PROBLEM:“To what extent the finite type character of a plane curve affects the finite
type condition of the surface of revolution built on it?”

1



Riv. Mat. Pura Appl. 12 (1992), 75–87

Evidently, neither a surface of revolution of finite type needs to be generated by a curve of finite
type, nor a curve of finite type has to generate a surface of revolution of finite type. To show that
we will consider the following examples giving all posibilities:

(a) a minimal surface, the catenoid, generated by a curve of infinite type, the catenary (see section
2);
(b) a surface of 1-type, the ordinary sphere, generated by a curve of 1-type, the circle;
(c) a surface of infinite type, the cone, generated by a straight line which is minimal (see section
3); and
(d) a surface of infinite type, the ellipsoid, generated by a curve of infinite type, the ellipse.
In order to solve that problem, we first study finite type curves inE2 and we show that a plane
circle (or an open piece of a plane circle) and a straight line are the only plane finite type curves.
From that result one obtains that the circle is the only closed curve of finite type inE2. In a second
step, we will prove that a plane, a sphere and a circular cylinder are the only finite type surfaces
of revolution whose generating curves are also of finite type. That result is the answer to the
problem stated before and leads immediately to the sphere as the only finite type closed surface of
revolution which is also generated by a finite type curve. Then one obtains a partial answer to the
Chen’s conjecture, which states that the sphere is the only closed finite type surface inE3.
Finally, in view of our Theorem 3.1 (see section 3) we may hazard the following:

CONJECTURE:“The minimal surfaces, the ordinary spheres and the circular cylin-
ders are the only surfaces of finite type inE3.”

Notice that saying yes to our conjecture will imply, in fact, the Chen’s conjecture.

1. Preliminaries.

Let x : Mn −→ Em be an isometric immersion of a connected (needs not to be compact)
n-dimensional Riemannian manifoldMn into the Euclidean spaceEm. We represent by∆ the
Laplacian operator ofMn (with respect to the induced metric) acting on the space of smooth
functionsC∞(M). The manifoldMn is said to be ofk-type if the position vectorx of Mn can be
decomposed in the following form:

x = x0 + xi1 + · · ·+ xik ,

where
∆xij = λijxij ,

λi1 < · · · < λik , x0 represents the center of mass ofMn in Em and∆ is the extension of the
Laplace operator toEm-valuated smooth functions onMn in a natural way. A manifoldMn is
said to be of finite type if it is ofk-type for some natural numberk; otherwise,Mn is said to be of
infinite type.
So by regarding the decomposition( 1), finite type means that one constructs the immersionx
by making use only of a finite number of eigenvalues ofMn. From this point of view, the easiest
decomposition(1) corresponds to the manifolds of 1-type, which were characterized by Takahashi,
[6], as the minimal submanifold inEm or minimal in some hypersphere ofEm centered atx0 and
whose radius is determined by the associated eigenvalue giving the 1-type character.
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In general, ifMn is a Riemannian manifold of finite type, for example ofk-type, from(1) there
exists a monic polynomial, sayQ(t), such thatQ(∆)(x − x0) = 0. If we suppose thatQ(t) =
tk + d1t

k−1 + · · ·+ dk−1t + dk then coefficientsdi are given by

d1 = −
k∑

t=1

λit ; d2 =
∑

t<t′
λitλit′ ; · · · ; dk = (−1)kλi1λi2 · · ·λik ,

where{λi1 , λi2 . . . , λik} are the associated eigenvalues giving thek-type character. Therefore, the
immersionx satisfies the following equation:

∆kx + d1∆k−1x + · · ·+ dk−1∆x + dk(x− x0) = 0.

It is also known that in terms of local coordinates{y1, . . . , yn} of Mn the Laplacian can be written
as:

∆ =
−1√

g

∑

i,j

∂

∂yi
(
√

ggij ∂

∂yj
),

whereg = det(gij), (gij) = (gij)−1 and (gij) are the components of the metric ofMn with
respect to{y1, . . . , yn}.
Let us represent byα(t) = (f(t), 0, g(t)), t ∈ I, anyC∞ curve in thexz-plane whose domain of
definitionI is an open real interval of finite length. The surface of revolutionM in E3 is defined
by

x(t, θ) = (f(t)cosθ, f(t)sinθ, g(t)), t ∈ I, θ ∈ (−π, π).

Now we are going to see some examples:

(a) Sphere.We considerf(t) = cost andg(t) = sint, t ∈ (−π, π). Thenα(t) is a circle which
is of 1-type, andM is the ordinary sphereS2 which is also of 1-type.
(b) Cone.We takef(t) = at + b andg(t) = ct + d with a andc nonzero. Thenα(t) is a straight
line which is minimal, and so of 1-type, whereasM is a cone which is of infinite type (see section
3 and also [4]).
(c) Cylinder. We takef(t) = b andg(t) = ct + d. Now α(t) is again a straight line andM is a
circular cylinder, which are both of finite type.
(d) Catenoid.We considerf(t) = acosh(t) andg(t) = at. Thenα(t) is a catenary, which is of
infinite type (see section 2) andM is a catenoid, which is of 1-type.
(e) Anchor Ring.Finally, we considerf(t) = a + rcost andg(t) = rsint, a > r > 0. In this
example,α(t) is a circle andM is an Anchor Ring, which is of infinite type (see [3]).

2. Finite Type Curves inE2.

Let α : (0, l) −→ E2 be a parametrization of a smooth unit speed curveC which is topologically
imbedded inE2, and let us suppose, without loss of generality, that the center of mass ofC is
the origen ofE2. Finally, since we want to find out plane finite type curves, let us assumeC is of
k-type.

On the other hand, becauseC is parametrized by arc lengths, one has∆ = − d2

ds2 , where∆
denotes the Laplacian operator ofC. Now, if we putα(s) = (α1(s), α2(s)), an easy computation
yields:

∆jαi = (−1)j d(2j)αi

ds(2j)
, i = 1, 2, j = 1, . . . , k.
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Now, we may use(3) to obtain the following ordinary differential equation:

(−1)k d(2k)αi

ds(2k)
+ (−1)k−1d1

d(2k−2)αi

ds(2k−2)
+ · · · − dk−1

d2αi

ds2
+ dkαi = 0,

whose characteristic polynomial equation is:

(−µ2)k + d1(−µ2)k−1 + · · ·+ dk−1(−µ2) + dk = 0,

i.e., Q(−µ2) = 0, beingQ the unique monic polynomial giving thek-type character. Since the
roots ofQ are the eigenvalues appearing in(2), one knows that the solutions of(2) are given by

αi(s) = ais + bi +
p∑

t=1

{Fitcos(µts) + Gitsin(µts)}+

+
q∑

t=1

{Aite
ξts + Bite

−ξts}, i = 1, 2, (3)

whereai, bi, Fit, Git, µt andξt are constant (recall thatµt are the square roots of the positive
eigenvalues andξt are the square roots of the opposite sign negative eigenvalues).
Then we have the following:

Proposition 2.1 Letα be a smooth curve of finite type inE2. Then:

α(s) = As + B +
p∑

t=1

βt(s) +
q∑

t=1

γt(s),

whereβt(s) = Ftcos(µts) + Gtsin(µts), γt(s) = Ate
ξts + Bte

−ξts, Ft, Gt, At, Bt, A andB
are vectors inE2.

Now we wish to prove that the only finite type curves are of the 1-type ones. To do so, we can
assume that0 < µ1 < · · · < µp, 0 < ξ1 · · · < ξq and the pairs(Ft, Gt) and(At, Bt) do not
vanish. First, the functionsγt(s) can be rewritten as:

γt(s) = Ctcosh(ξts) + Dtsinh(ξts),

where vectorsCt = At + Bt and Dt = At −Bt.
Using now that< α′, α′ >= 1, bearing in mind the linear independence of circular and hyperbolic
functions, and the mixed products between them, we pay attention, after an standard and messy
computation, to the components incosh to get

4
q∑

t=1

ξt < A, Dt > cosh(ξts) +
1∑

t=1

ξ2
t {|Ct|2 + |Dt|2} cosh(2ξts)

+2
∑

t′<t

ξtξt′{< Ct, Ct′ > + < Dt, Dt′ >} cosh(ξt + ξt′)s

+2
∑

t′<t

ξtξt′{− < Ct, Ct′ > + < Dt, Dt′ >} cosh(ξt − ξt′)s

≡
∑

ξ∈Λ

Mξ cosh(ξs) = 0, (5)
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whereΛ = {ξt : 1 6 t 6 q}∪{ξt + ξt′ : 1 6 t′ 6 t 6 q}∪{ξt − ξt′ : 1 6 t′ < t 6 q}.
Takeξ = 2ξq in (5) to find

0 = ξ2
q{|Cq|2 + |Dq|2} = M2ξq ,

from which we have|Cq| = |Dq| = 0. Thereforeq = 0. A similar argument, jointly with that in
[1, Theorem 5.3, p. 289], shows thatp 6 1. If p = 0, thenα is a straight line. Ifp = 1, then

α(s) = As + B + F cosµs + G sinµs,

such thatF andG do not vanish simultaneously. Writing down again the condition|α′| = 1, one
gets

|F |2 = |G|2, < F, G >= 0,

< A, F >=< A, G >= 0.

HenceA = 0 and thereforeα(s) is a circle.
So we have proved the following:

Theorem 2.2 Let C be a plane curve. IfC is of finite type, then one of the following two cases
holds:
(a) C is an open piece of a straight line;
(b) C is an open piece of a plane circle.

From this theorem one immediately obtains the following consequences:

Corollary 2.3 LetC be a plane curve. IfC is of finite type, thenC must be either:
(a) minimal inE2, and soC is a straight line; or
(b) of 1-type not minimal, and soC is an arc of a circle.

Corollary 2.4 Let C be a closed plane curve of finite type. ThenC is of 1-type and soC is a
circle.

Remark. Corollary 2.2 has been proved by B.-Y.Chen [1].

3. Finite Type Surfaces of Revolution inE3.

In order to state and prove the main result, it might be interesting recalling the situation set out
in S1. Let α(t) = (f(t), 0, g(t)) be aC∞ curve in thexz-plane. Thenα(t) generates by rotation
around thez-axis a connected (not necessarily compact) surfaceM which is usually giving by

M = {(f(t)cosθ, f(t)sinθ, g(t)) : t ∈ I, θ ∈ (−π, π)},
that we are going to assume of finite type.
If we suppose that the generating curveα(t) is also of finite type, we can use Theorem 2.2 to
obtain thatα(t) is an open piece of a straight line or an open piece of a circle. We will study
separatedly these two posibilities.
CASE 1. Let us suppose thatα(t) is an open piece of a circle. Without loss of generality, we may
assume thatr > 0 and(a, 0, 0), a + r > 0, are, respectively, its radius and center. ThenM can
be parametrized by:

x(t, θ) = ((a + rcosθ)cost, (a + rcosθ)sint, rsinθ),
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wheret ∈ (−π, π) and θ ∈ (−β, β). Hereβ is the largest real number in(−π, π) such that
a + rcosβ > 0.

If we use the formula(4), we obtain foru ∈ C∞(M):

∆u =
sinθ

rf

∂u

∂θ
− 1

r2

∂2u

∂θ2
− 1

f2

∂2u

∂t2
,

wheref(θ) = a + rcosθ. Let x1, x2 andx3 be the three component functions of the immersion
x(t, θ). Then by using(1) we have:

∆x3 =
sinθ cosθ

f
+

sinθ

r
.

Moreover, by a direct computation, we obtain:

∆2x3 = −sin3θ cosθ

f3
− 1

rf2
[2sinθ cos2θ − sin3θ] +

5sinθ cosθ

r2f
+

sinθ

r
,

which can be rewritten as:

∆2x3 = −sin3θ cosθ

f3
+

1
f2

P2(sinθ, cosθ),

whereP2(u, v) is a polynomial of degree 3 inu, v.

Now we may use(1) through(3) to prove by induction that

∆n+1x3 = (−1)n 1232 · · · (2n− 1)2sin2n+1θ cosθ

f2n+1
+

1
f2n

Pn+1(sinθ, cosθ),

for n > 1, wherePn+1(u, v) is a polynomial of degree 2n+1 inu, v.

Then, since we are supposing thatM is of finite type, from(3) we get:

∆kx3 + d1∆k−1x3 + · · ·+ dk−1∆x3 + dkx3 = 0,

for some natural numberk and constantsdi.

From(2), (4) and(5) we conclude that there exists some polynomialS(u, v) of degree 2k-1 such
that

sin2k−1θ cosθ

a + rcosθ
= S(sinθ, cosθ).

But that holds good if and only ifa = 0 or a = r. If a = 0 thenM is the ordinary sphere of radius
r centered at the origin ofE3, which is of 1-type. Assume, without loss of generality,a = r = 1.
Now, we use(1) to obtain:

∆x1 =
(

cos2θ

f
+ cosθ

)
cost

and

∆2x1 =
(

cos4θ

f3
+

1
f2

P2(cosθ)
)

cost,

wheref(θ) = 1 + cosθ andP2(u) is a polynomial of degree 3 inu.
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Thus we may use(1), (7) and(8) to prove by induction the formula:

∆n+1x1 =
(

cos2n+2θ

f2n+1
+

1
f2n

Pn+1(cosθ)
)

cost,

for n > 0, wherePn+1(v) is a polynomial of degree 2n+1 inv.
In the same way, we get:

∆n+1x2 =
(

cos2n+2θ

f2n+1
+

1
f2n

Pn+1(cosθ)
)

sint,

for n > 0.
At this point, if we use( 3) and( 7) through( 10) we may assert that there exists a polynomial
P (u) of degree 2k-1 such that

cos2kθ

1 + cosθ
= P (cosθ),

which is a contradiction.
CASE 2. Now, let us suppose thatα(t) is an open piece of a straight line. ThenM is one of the
following three surfaces:
(a) an open piece of a plane;
(b) an open piece of a circular cylinder;
(c) an open piece of a circular cone.
Case (2a) is of 1-type and case (2b) is of 2-type. Now we are going to study the third posibility.
Without loss of generality,M can be parametrized by

x(t, θ) = (atcosθ, atsinθ, bt), a2 + b2 = 1, a andb nonzero,

with t ∈ I andθ ∈ (−π, π).
If we use the formula(4) we obtain that the Laplacian ofM can be written as

∆ = −
{

1
t

∂

∂t
+

∂2

∂t2
+

1
a2t2

∂2

∂θ2

}
,

and, ifx3 denotes the third coordinate function ofM , we get

∆x3 = −b

t

and

∆2x3 =
b

t3
.

Now, we can use(12) and(14) to prove by induction:

∆nx3 = (−1)n 1232 · · · (2n− 3)2b
t2n−1

,

for all natural numbern > 2. If we suppose thatM is of finite type, there exists a natural number
k > 1 and constantsdi, someone nonzero, for which(5) holds good. Then we obtain:

(−1)k 12 · · · (2k − 3)2b
t2k−1

+ d1(−1)k−1 12 · · · (2k − 5)2b
t2k−3

+ · · · − dk−1
b

t
+ dkbt = 0

and thereforeb = 0, which is a contradiction.
Then we have shown the following:
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Theorem 3.1 Let M be a surface of revolution inE3 whose generating curves are finite type
curves. IfM is of finite type, thenM must be a plane, a circular cylinder or a sphere.

From this result we easily deduce the following consequences:

Corollary 3.2 Let M be a finite type surface of revolution inE3 which is also generated by a
plane finite type curve. ThenM must be either
(a) minimal inE3, and so it is a plane; or
(b) of 1-type not minimal, and then it is a sphere; or
(c) of 2-type inE3, and in this case it will be a circular cylinder.

Corollary 3.3 Let M be a finite type closed surface of revolution inE3 which is generated by a
finite type curve. ThenM is of 1-type and soM is an ordinary sphere.

Remarks.
(a) Corollary 3.2 can be viewed as a partial answer to Chen’s conjecture.
(b) The fact that the cones are of infinite type can be also shown using [4,Theorem 4.1], neverthe-
less we would rather give an alternative proof with the aim of making a self-contained paper.
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