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1. Introduction

In a series of recent papers3[][[4], [13]) the technique of finite type immersions (sé&g [
for details) has been sistematically used to characterize certain interesting families of Riemannian
submanifolds. The authors have used these arguments to try to classify surfaces satisfying certain
characteristic differential equations in the Lorentzian space forms15g¢7] and [11]). Itis well
known that the shape operator of a pseudo-Riemannian surface does not need to be diagonalizable;
because of this fact there are substantial differences between the definite and indefinite cases.
Actually, it is possible to find a wide family of examples of surfaces in indefinite space forms
having no Riemannian counterparts; tBescrolls (B] and [12]) and the complex circles 1f])
are some of these examples.

The finite type immersion tool allows to discover certain hidden facts in non flat Lorentzian
ambient spaces/;(c), with ¢ = 4-1. For instance, a totally umbilical surface does not need to be
of 1-type; however both conditions are equivalent if and only if the surface is non flat. Actually,
the following two quite interesting facts can be obtained from the pseudo-Riemannian version of
Takahashi’'s theorem @] and [17]): (i) a surface inM} is of 1-type if and only if it is either
minimal or non flat totally umbilical inV/?; and (ii) there exist flat totally umbilical surfaces in
]\7[13 which arebiharmonic i.e. its mean curvature vector field is harmonic, and therefore they are
of infinite type.

On the other hand3-scrolls as well as complex circles come out as surfacég;init seems
then reasonable to try to characterize them according to its finite type character. It should be
noticed thatB-scrolls already appeared in studying surfaces satisfying the conditibn= \H
in Lorentzian space forms.

In a more general situation, we look f2itype isometric immersions intd/?. The equation
AH = \H allows to reach only up to surfaces of 2-type with a zero eigenvalue (the so oalled
2-type surfacestherefore a natural extension of that equation should be considered. On the other
hand, going back to the Riemannian case, it is known that the only 2-type surfaéteara the
non minimal products of two plane circled][[7] and [L3]). Then a first question naturally arises
as follows:

Which is the family of 2-type surfacesS# or H3?

We know that there exist no surfaces of null 2-typ&trandH? ([10]). Comparing the Rieman-
nian and the Lorentzian cases it could be interesting to state this other question:

Are there null 2-type surfaces 8} andH3? If the answer is affirmativéjould it be
possible to compare the size of this family with that of 2-type?
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It is worthwhile pointing out that the key to obtain the characterization of 2-type surfaces is to
show that they are isoparametric. This property can be deduced from the following more general
result (see Lemma 2.1): A surfaceS#d or H satisfying the equatiodh H = \H + u(z — o)
has constant mean curvature. To get a complete classification of 2-type surfaces, the isoparametric
ones are studied in section 4 (see Proposition 4.1). As a consequence of above results we solve all
stated questions (see Theorems 4.2 and 4.3 and Corollary 4.4).

The first question, for space-like surfaces, has been solved] anfl, in some sense, the last
two questions have been also considered # for space-like surfaces ih? andSs3.

2. Preliminaries

Let us denote byl/? the standard model of a 3-dimensional Lorentz space with constant
curvaturec = =1, i.e., the De Sitter spac® C R} and the anti De Sitter spadé C Rj,
respectively. LeR} be the corresponding pseudo-Euclidean space whgtés lying. Letx :

M? — M C R} be an isometric immersion of a surfat£ into M and letN be a unit vector
field normal toM?2 in M. Then we have

H =aN — cz,

where H is the mean curvature vector field 812 in R} anda is the mean curvature df/?2 in
M3,
By supposing thad/? is a 2-type surface, it is well known that

AH = \H + p(x — x9),

wherez is a constant vector andland . are two real constants such that the polynonmak
At + 2 has exactly two distinct real roots. Now, from (1) and the formulaXdf given in [6]
we find that (2) holds if and only if the following set of equations is valid

(AH)T = —pal = 25(Va) 4 2¢aVa,

\a —ep < xg, N >= Aa + catr(S?) + 2ca,
A —cp+p <z, z >=2(c+ ea?),

where ()7 is written down for tangential component$,stands for the shape operatoraf in
M3, Va is the gradient oft ande =< N, N >.

Then, for any vector field( tangent toM/2, we have from (3) that AH, X >= —uX(<
xg,r >). By using (5) we geuX (< zg,z >) = 2¢X(a?), which along with (3) leads to
(AH)T = —4eaVa and

S(Va) = —3saVa.

Now we are ready to prove the following useful result.

Lemma2.1lLletz : M2 — M C R} be an isometric immersion satisfying the equation
AH = \H + pu(z — x0). ThenM? has constant mean curvature M.
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Proof. Our goal is to prove that the sttt = {p € M2 : Va?(p) # 0} is empty. Otherwise
U is an open subset df/2 where, by (6),Va is an eigenvector of with associate non-zero
eigenvalue-3za. Therefore, the shape operator is diagonalizabley amd we can choose a local
orthonormal framg E, Es, E3, E4}, such thatts = N, E, = x and{E}, E»} are eigenvectors
of S, E; being parallel toVa, SE; = —3caF; andSE; = 5cals. Let {w'} and {wf} be the
dual frame and the connection forms of the chosen frame, respectively. Then we see that

wé = 3eaw?,

w§ = —beaw?,

da =1 E (a)w!,

wheree; =< E;, F; >.

Taking exterior differentiation in (7) and using the structure equations, wedave- 0 and
thus there locally exists a functiansuch thats! = du. From (9) we getla A du = 0 and
thereforeor depends om, @ = a(u), andE; («) = 14/.

Differentiating in (8) and using again the structure equations we deduce that

8aws = Hepa’w?.

A straightforward computation from (10) yields the following differential equation

8
aa” — g(o/)2 — gcslaQ + 24ee1at =0,

whose solution in the new variabte= (o')? is given by

6= Cra’®* — 64es1a® — %caloﬂ,

C1 being a real constant.
On the other hand, from the expresion®d in { £, Ey}, the fact that?; is parallel toVa
and (10) we have

alAa = —cjad” + 251(0/)2.
Now from (3) and (6) we deduce that
pX (< g, N >) =< AH,SX >=4X(a?),

for any tangent vector field’, which along with (4) and (13) leads to

aa” — g(o/)2 + (A = 2¢)e10? — 3810t + Caa,

C5 being a real constant. Then from (11) and (14) we have
2
B = 62ee,0 + (gc — Nera? — Cha,

and by (12) and this equation we deduce th& locally constant o/, which contradicts its own
definition.
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3. Some examples

In this section we will describe some examples of surfaceslinfovhich will be useful later
in order to give the classification results. We will show examples not only of 2-type surfaces but
also surfaces satisfying the condition (2) and being of infinite type.

Example 3.1 An easy computation shows that the following pseudo-Riemannian products, with
an appropiate choice of > 0 to avoid minimality,
1) H (—r) x SY (V1 +r2) andSi(r) x SY(V/1 —r2) into S, and
2)Hi(—r) x SY(v/r?2 — 1), Si(r) x HY (—v/1 + 72) andH!(—7) x H!(—+/1 — r2) into H3,
are all 2-type surfaces intd/;*. We will refer them as theon-minimal standard product$lotice
that all of them have diagonalizable shape operators.

Example 3.2 Lety(s) be a null curve ilV/? C R} with an associated Cartan fraié, B, C'},
i.e.,, {4, B,C} is a pseudo-orthonormal frame of vector fields alefg)

<A A>=<B,B>=0, < A B>= -1,

<A C>=<B,C >=0, <C,C >=1,

such that

3() = Als),
C(s) = —aA(s)—k(s)B(s),

wherea is a nonzero constant ards) # 0 for all s. Then the map: : (s, u) — ~(s) + uB(s)
parametrizes a Lorentzian surface iftg® which is called aB-scroll (see P)).
It is not difficult to see that a unit normal vector field is given by

N(s,u) = —auB(s) + C(s),

and the shape operator can be put in the usual fr %aé, gx} as
S u

S:<z@ 2)

Thus theB-scroll has non-diagonalizable shape operator with minimal polynoRgiél) = (¢ —
a)?. It has constant mean and Gaussian curvatares « and K = ¢ + a2, respectively, and
satisfiesAH = 2K H. Therefore, one sees that a non-flasscroll is a null 2-type surface into
M3, whereas a flaB-scroll, i.e.,c = —1 anda? = 1, is a biharmonic surface intd; and of
infinite type.

Example 3.3 Let a andb be two real numbers such that — b> = —1 andab # 0. Then the map
r:R? — H} C R}, z = (2!, 22,23, %), given by

:El(ul, uz) = bcoshugcosu; — asinhugsinuy,
x? (u1,uz) = asinhwugcosuj + bcoshugsinug,
x° (up,uz) = acoshugcosu + bsinhugsinug,
:c4(u1, uz) = acoshugsinu; — bsinhug cosuy,
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where(u1, us) is the usual coordinate systeml#3, parametrizes a non-minimal flat surface into

or Oz
H3 wh h is gi inth | f r‘%& —_—
1 wnhose shape operator IS given, In the usual fr o , auz }, by

(o -8
S‘(ﬁ a)’

—1 . . . .
————. Magid, [16], called this surface aomplex circleof radius
a? + b2

. 2ab
a + bi.

It is not difficult to show that a complex circle satisfies the condition (2) wigh= 0, A =
— 2
— ————. However it is not a finite type surface because the discriminant
(a2 +b2)2 (CL2 +62)2 yp
of t2 — A\t + 2u vanishes.

andy =

Remark 3.4 From the pseudo-Riemannian version of Takahashi's theorem one knowid thiat

a 1-type surface if and only if it is minimal it/ or an open piece of a non-flat totally umbilical
surface inM3, i.e., M2 is nothing buS2(r) or H2(r). Itis worth pointing out that there exists a flat
totally umbilical surface in botl§; andH?, which is explicitly given byz : R2 — M C RY, ,

r = f — x0, xo being a fixed vector and : R? — R;‘H the function defined by (u;,u2) =
(q(ur,u2),ur,ue, q(ui, u2)), whereq(u) = a < u,u > + < b,u > +¢, a # 0. This surface is
of infinite type withAz = (—4a, 0,0, —4a).

4. Main results

Let M2 be a 2-type surface intd/;3. As a consequence of Lemma 2.1 we know thé&t has
non-zero constant mean curvature and then from (4) and (5) we deduae(#$tis constant,
i.e., M2 is a non-minimal isoparametric surface irjftf’.

Now let us discuss according to the character of its shape opétaftarst, if S is diagonal-
izable we have from Remark 3.4 thaf? is not totally umbilical and by1] it is an open piece of
one of the non-minimal standard products. Secondl§,ig not diagonalizable with a double real
eigenvalue, thed/? can be locally parametrized aszascroll over a null curve, as it is shown in
the following result.

Proposition 4.1 Let M be a Lorentzian surface if/;> C R} and let(t —a)?, a being a non-zero
constant, be the minimal polynomial of its shape operator. Then, in a neighborhood of any point,
M% is a B-scroll over a null curve.

Proof. Pick a pointp in M? and choose a pseudo-orthonormal frafae B} of tangent vector
fields in a neighborhood gf such that

SA = aA+ kB,
SB = aB,

wherek # 0. Let N be a unit vector field normal td/? into M. ConsideringM? as an
embedded surface intd;}, we can take an integral curvés) of A starting fromp. For short, let
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us write A(s) = A(y(s)), B(s) = B(~v(s)), C(s) = N(v(s)) andk(s) = k(y(s)). Then

: D
C(s) = d—f(s) = —aA(s) — k(s)B(s).
For eachs, let z4(t) denote an integral curve dB starting from~(s). Then taking covariant
derivate we get

DB - -

— (@) = Vi Bws(t) = VB(r.(t) = VeB(a.(b)).

By using now Codazzi’s equation we haVg; B is in spad B}, and then the above equation yields
DB
—=(@s(t) = flaa(6) Blas(0)),
for a certain diferentiable functiofi. It is not difficult to see that the solution of that differential
equation is given by
B(xs(t)) = gs(t)B(s),
=1.

for a certain positive functiop;(t) with g5(0) Then we get

£a(t) = 7(s) + /0 gs(v)dv B(s),

andM? is, in a neighborhood qf, a B-scroll as in Example 3.2.
Finally, suppose has complex eigenvalues and choose a local orthonormal ffémeFs }
such that

SE1 = aF7+ bEs,
SE2 = —bE1+aE2

wherea andb are two non-zero constants. Now from Codazzi's equations we deduee) and

thereforeM/? is a flat Lorentzian surface ifi} with parallel second fundamental formig. Thus

from [16] M? is congruent to a complex circle, which is not of 2-type as we have already seen.
Summing up we have proved the following main results, which solve both questions stated in

61.

Theorem 4.2 A surfaceM? into S3 is of 2-type if and only if it is an open piece of one of the
following surfaces:

1) HN(—r) x SY(V1 +12),

2)Sk(r) x SY(v/1 —r2), and

3) a B-scroll over a null curve.

Theorem 4.3 A surfaceM? into H is of 2-type if and only if it is an open piece of one of the
following surfaces:

1) HI(—r) x S' (V72 = 1),

2)Si(r) x H(~v1+12),

3)H(—r) x H(=v1 —r2), and

4) a non-flatB-scroll over a null curve.
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Putting together the above theorems, we see that the families of 2-type surfa&santt;
are essentially the same. Actually, it consists of non-minimal standard products and nBn-flat
scrolls over null curves. Once agailtrscrolls make the difference with regard to the Riemannian
case and, as we point out in the following corollary, they solve the second question.

Corollary 4.4 The only null 2-type surfaces §f andH3 are non-flatB-scrolls over null curves.
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