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1. Introduction

In a series of recent papers ([3], [4], [13]) the technique of finite type immersions (see [5]
for details) has been sistematically used to characterize certain interesting families of Riemannian
submanifolds. The authors have used these arguments to try to classify surfaces satisfying certain
characteristic differential equations in the Lorentzian space forms (see [15], [2] and [11]). It is well
known that the shape operator of a pseudo-Riemannian surface does not need to be diagonalizable;
because of this fact there are substantial differences between the definite and indefinite cases.
Actually, it is possible to find a wide family of examples of surfaces in indefinite space forms
having no Riemannian counterparts; theB-scrolls ([9] and [12]) and the complex circles ([16])
are some of these examples.

The finite type immersion tool allows to discover certain hidden facts in non flat Lorentzian
ambient spacesM 3

1 (c), with c = ±1. For instance, a totally umbilical surface does not need to be
of 1-type; however both conditions are equivalent if and only if the surface is non flat. Actually,
the following two quite interesting facts can be obtained from the pseudo-Riemannian version of
Takahashi’s theorem ([6] and [17]): (i) a surface inM 3

1 is of 1-type if and only if it is either
minimal or non flat totally umbilical inM 3

1 ; and (ii) there exist flat totally umbilical surfaces in
M 3

1 which arebiharmonic, i.e. its mean curvature vector field is harmonic, and therefore they are
of infinite type.

On the other hand,B-scrolls as well as complex circles come out as surfaces inM 3
1 ; it seems

then reasonable to try to characterize them according to its finite type character. It should be
noticed thatB-scrolls already appeared in studying surfaces satisfying the condition∆H = λH
in Lorentzian space forms.

In a more general situation, we look for2-type isometric immersions intoM 3
1 . The equation

∆H = λH allows to reach only up to surfaces of 2-type with a zero eigenvalue (the so callednull
2-type surfaces); therefore a natural extension of that equation should be considered. On the other
hand, going back to the Riemannian case, it is known that the only 2-type surfaces inS3 are the
non minimal products of two plane circles ([4], [7] and [13]). Then a first question naturally arises
as follows:

Which is the family of 2-type surfaces inS3
1 or H3

1?

We know that there exist no surfaces of null 2-type inS3 andH3 ([10]). Comparing the Rieman-
nian and the Lorentzian cases it could be interesting to state this other question:

Are there null 2-type surfaces inS3
1 andH3

1? If the answer is affirmative,Would it be
possible to compare the size of this family with that of 2-type?
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It is worthwhile pointing out that the key to obtain the characterization of 2-type surfaces is to
show that they are isoparametric. This property can be deduced from the following more general
result (see Lemma 2.1): A surface inS3

1 or H3
1 satisfying the equation∆H = λH + µ(x − x0)

has constant mean curvature. To get a complete classification of 2-type surfaces, the isoparametric
ones are studied in section 4 (see Proposition 4.1). As a consequence of above results we solve all
stated questions (see Theorems 4.2 and 4.3 and Corollary 4.4).

The first question, for space-like surfaces, has been solved in [8] and, in some sense, the last
two questions have been also considered in [14] for space-like surfaces inL3 andS3

1.

2. Preliminaries

Let us denote byM 3
1 the standard model of a 3-dimensional Lorentz space with constant

curvaturec = ±1, i.e., the De Sitter spaceS3
1 ⊂ R4

1 and the anti De Sitter spaceH3
1 ⊂ R4

2,
respectively. LetR4

t be the corresponding pseudo-Euclidean space whereM 3
1 is lying. Let x :

M2
s −→ M 3

1 ⊂ R4
t be an isometric immersion of a surfaceM2

s into M 3
1 and letN be a unit vector

field normal toM2
s in M 3

1 . Then we have

H = αN − cx,

whereH is the mean curvature vector field ofM2
s in R4

t andα is the mean curvature ofM2
s in

M 3
1 .

By supposing thatM2
s is a 2-type surface, it is well known that

∆H = λH + µ(x− x0),

wherex0 is a constant vector andλ andµ are two real constants such that the polynomialt2 −
λt + 2µ has exactly two distinct real roots. Now, from (1) and the formula for∆H given in [6]
we find that (2) holds if and only if the following set of equations is valid

(∆H)T = −µxT
0 = 2S(∇α) + 2εα∇α,

λα− εµ < x0, N >= ∆α + εαtr(S2) + 2cα,

λ− cµ + µ < x0, x >= 2(c + εα2),

where()T is written down for tangential components,S stands for the shape operator ofM2
s in

M 3
1 ,∇α is the gradient ofα andε =< N, N >.

Then, for any vector fieldX tangent toM2
s , we have from (3) that< ∆H, X >= −µX(<

x0, x >). By using (5) we getµX(< x0, x >) = 2εX(α2), which along with (3) leads to
(∆H)T = −4εα∇α and

S(∇α) = −3εα∇α.

Now we are ready to prove the following useful result.

Lemma 2.1 Let x : M2
s −→ M 3

1 ⊂ R4
t be an isometric immersion satisfying the equation

∆H = λH + µ(x− x0). ThenM2
s has constant mean curvature inM 3

1 .
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Proof. Our goal is to prove that the setU = {p ∈ M2
s : ∇α2(p) 6= 0} is empty. Otherwise

U is an open subset ofM2
s where, by (6),∇α is an eigenvector ofS with associate non-zero

eigenvalue−3εα. Therefore, the shape operator is diagonalizable onU and we can choose a local
orthonormal frame{E1, E2, E3, E4}, such thatE3 = N , E4 = x and{E1, E2} are eigenvectors
of S, E1 being parallel to∇α, SE1 = −3εαE1 andSE2 = 5εαE2. Let {ωi} and{ωj

i } be the
dual frame and the connection forms of the chosen frame, respectively. Then we see that

ω1
3 = 3εαω1,

ω2
3 = −5εαω2,

dα = ε1E1(α)ω1,

whereεi =< Ei, Ei >.
Taking exterior differentiation in (7) and using the structure equations, we havedω1 = 0 and

thus there locally exists a functionu such thatω1 = du. From (9) we getdα ∧ du = 0 and
thereforeα depends onu, α = α(u), andE1(α) = ε1α

′.
Differentiating in (8) and using again the structure equations we deduce that

8αω1
2 = 5ε1α

′ω2.

A straightforward computation from (10) yields the following differential equation

αα′′ − 13
8

(α′)2 − 8
5
cε1α

2 + 24εε1α
4 = 0,

whose solution in the new variableβ = (α′)2 is given by

β = C1α
13/4 − 64εε1α

4 − 64
65

cε1α
2,

C1 being a real constant.
On the other hand, from the expresion of∆α in {E1, E2}, the fact thatE1 is parallel to∇α

and (10) we have

α∆α = −ε1αα′′ +
5
8
ε1(α′)2.

Now from (3) and (6) we deduce that

µX(< x0, N >) =< ∆H, SX >= 4X(α3),

for any tangent vector fieldX, which along with (4) and (13) leads to

αα′′ − 5
8
(α′)2 + (λ− 2c)ε1α

2 − 38εε1α
4 + C2α,

C2 being a real constant. Then from (11) and (14) we have

β = 62εε1α
4 + (

2
5
c− λ)ε1α

2 − C2α,

and by (12) and this equation we deduce thatα is locally constant onU , which contradicts its own
definition.
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3. Some examples

In this section we will describe some examples of surfaces intoM 3
1 which will be useful later

in order to give the classification results. We will show examples not only of 2-type surfaces but
also surfaces satisfying the condition (2) and being of infinite type.

Example 3.1 An easy computation shows that the following pseudo-Riemannian products, with
an appropiate choice ofr > 0 to avoid minimality,

1)H1(−r)× S1(
√

1 + r2) andS1
1(r)× S1(

√
1− r2) into S3

1, and
2)H1

1(−r)× S1(
√

r2 − 1), S1
1(r)×H1(−√1 + r2) andH1(−r)×H1(−√1− r2) intoH3

1,
are all 2-type surfaces intoM 3

1 . We will refer them as thenon-minimal standard products. Notice
that all of them have diagonalizable shape operators.

Example 3.2 Let γ(s) be a null curve inM 3
1 ⊂ R4

t with an associated Cartan frame{A,B, C},
i.e.,{A,B,C} is a pseudo-orthonormal frame of vector fields alongγ(s)

< A,A >=< B, B >= 0, < A, B >= −1,

< A,C >=< B,C >= 0, < C, C >= 1,

such that

γ̇(s) = A(s),
Ċ(s) = −aA(s)− k(s)B(s),

wherea is a nonzero constant andk(s) 6= 0 for all s. Then the mapx : (s, u) −→ γ(s) + uB(s)
parametrizes a Lorentzian surface intoM 3

1 which is called aB-scroll (see [9]).
It is not difficult to see that a unit normal vector field is given by

N(s, u) = −auB(s) + C(s),

and the shape operator can be put in the usual frame

{
∂x

∂s
,
∂x

∂u

}
as

S =
(

a 0
k(s) a

)
.

Thus theB-scroll has non-diagonalizable shape operator with minimal polynomialPS(t) = (t−
a)2. It has constant mean and Gaussian curvaturesα = a andK = c + a2, respectively, and
satisfies∆H = 2KH. Therefore, one sees that a non-flatB-scroll is a null 2-type surface into
M 3

1 , whereas a flatB-scroll, i.e.,c = −1 anda2 = 1, is a biharmonic surface intoH3
1 and of

infinite type.

Example 3.3 Let a andb be two real numbers such thata2 − b2 = −1 andab 6= 0. Then the map
x : R2

1 −→ H3
1 ⊂ R4

2, x = (x1, x2, x3, x4), given by

x1(u1, u2) = b coshu2 cosu1 − a sinhu2 sinu1,

x2(u1, u2) = a sinhu2 cosu1 + b coshu2 sinu1,

x3(u1, u2) = a coshu2 cosu1 + b sinhu2 sinu1,

x4(u1, u2) = a coshu2 sinu1 − b sinhu2 cosu1,
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where(u1, u2) is the usual coordinate system inR2
1, parametrizes a non-minimal flat surface into

H3
1 whose shape operator is given, in the usual frame

{
∂x

∂u1
,

∂x

∂u2

}
, by

S =
(

α −β
β α

)
,

with α =
2ab

a2 + b2
andβ =

−1
a2 + b2

. Magid, [16], called this surface acomplex circleof radius

a + bi.
It is not difficult to show that a complex circle satisfies the condition (2) withx0 = 0, λ =
−4

(a2 + b2)2
andµ =

2
(a2 + b2)2

. However it is not a finite type surface because the discriminant

of t2 − λt + 2µ vanishes.

Remark 3.4 From the pseudo-Riemannian version of Takahashi’s theorem one knows thatM2
s is

a 1-type surface if and only if it is minimal inM 3
1 or an open piece of a non-flat totally umbilical

surface inM 3
1 , i.e.,M2

s is nothing butS2
s(r) orH2

s(r). It is worth pointing out that there exists a flat
totally umbilical surface in bothS3

1 andH3
1, which is explicitly given byx : R2

s −→ M 3
1 ⊂ R4

s+1,
x = f − x0, x0 being a fixed vector andf : R2

s −→ R4
s+1 the function defined byf(u1, u2) =

(q(u1, u2), u1, u2, q(u1, u2)), whereq(u) = a < u, u > + < b, u > +c, a 6= 0. This surface is
of infinite type with∆x = (−4a, 0, 0,−4a).

4. Main results

Let M2
s be a 2-type surface intoM 3

1 . As a consequence of Lemma 2.1 we know thatM2
s has

non-zero constant mean curvature and then from (4) and (5) we deduce thattr(S2) is constant,
i.e.,M2

s is a non-minimal isoparametric surface intoM 3
1 .

Now let us discuss according to the character of its shape operatorS. First, if S is diagonal-
izable we have from Remark 3.4 thatM2

s is not totally umbilical and by [1] it is an open piece of
one of the non-minimal standard products. Secondly, ifS is not diagonalizable with a double real
eigenvalue, thenM2

1 can be locally parametrized as aB-scroll over a null curve, as it is shown in
the following result.

Proposition 4.1 LetM2
1 be a Lorentzian surface inM 3

1 ⊂ R4
t and let(t−a)2, a being a non-zero

constant, be the minimal polynomial of its shape operator. Then, in a neighborhood of any point,
M2

1 is aB-scroll over a null curve.

Proof. Pick a pointp in M2
1 and choose a pseudo-orthonormal frame{A,B} of tangent vector

fields in a neighborhood ofp such that

SA = aA + kB,

SB = aB,

wherek 6= 0. Let N be a unit vector field normal toM2
1 into M 3

1 . ConsideringM2
1 as an

embedded surface intoM 3
1 , we can take an integral curveγ(s) of A starting fromp. For short, let
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us writeA(s) = A(γ(s)), B(s) = B(γ(s)), C(s) = N(γ(s)) andk(s) = k(γ(s)). Then

Ċ(s) =
D̃C

ds
(s) = −aA(s)− k(s)B(s).

For eachs, let xs(t) denote an integral curve ofB starting fromγ(s). Then taking covariant
derivate we get

D̃B

dt
(xs(t)) = ∇̃ẋs(t)B(xs(t)) = ∇̃BB(xs(t)) = ∇BB(xs(t)).

By using now Codazzi’s equation we have∇BB is in span{B}, and then the above equation yields

D̃B

dt
(xs(t)) = f(xs(t))B(xs(t)),

for a certain diferentiable functionf . It is not difficult to see that the solution of that differential
equation is given by

B(xs(t)) = gs(t)B(s),

for a certain positive functiongs(t) with gs(0) = 1. Then we get

xs(t) = γ(s) +
∫ t

0
gs(v)dv B(s),

andM2
1 is, in a neighborhood ofp, aB-scroll as in Example 3.2.

Finally, supposeS has complex eigenvalues and choose a local orthonormal frame{E1, E2}
such that

SE1 = aE1 + bE2,

SE2 = −bE1 + aE2

wherea andb are two non-zero constants. Now from Codazzi’s equations we deduceω1
2 = 0 and

thereforeM2
1 is a flat Lorentzian surface inH3

1 with parallel second fundamental form inR4
2. Thus

from [16] M2
1 is congruent to a complex circle, which is not of 2-type as we have already seen.

Summing up we have proved the following main results, which solve both questions stated in
§1.

Theorem 4.2 A surfaceM2
s into S3

1 is of 2-type if and only if it is an open piece of one of the
following surfaces:

1)H1(−r)× S1(
√

1 + r2),
2) S1

1(r)× S1(
√

1− r2), and
3) aB-scroll over a null curve.

Theorem 4.3 A surfaceM2
s into H3

1 is of 2-type if and only if it is an open piece of one of the
following surfaces:

1)H1
1(−r)× S1(

√
r2 − 1),

2) S1
1(r)×H1(−√1 + r2),

3)H1(−r)×H1(−√1− r2), and
4) a non-flatB-scroll over a null curve.
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Putting together the above theorems, we see that the families of 2-type surfaces intoS3
1 andH3

1

are essentially the same. Actually, it consists of non-minimal standard products and non-flatB-
scrolls over null curves. Once againB-scrolls make the difference with regard to the Riemannian
case and, as we point out in the following corollary, they solve the second question.

Corollary 4.4 The only null 2-type surfaces inS3
1 andH3

1 are non-flatB-scrolls over null curves.
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