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1. Introduction

In a series of early papers, with the aim of knowing of the shape of a pseudo-Riemannian
hypersurface satisfying a certain differential equation in the induced Laplacian, we found a re-
markable family of hypersurfaces in the Lorentz-Minkowski space whose mean curvature vector
is an eigenvector of the Laplacian. Actually, the last two authors showed] ihdt the equation
AH = )\H, for a real constank, characterizes the family of surfaceslid made up of the quite
interestingB-scrolls and the so-called standard examples, as well as minimal surfaces.

Looking at those results obtained for surfaced.ih the following geometric question was
stated in 9] for hypersurfaces if."*! (n > 2): Does the equatiodh H = A\H mean that both the
mean and the scalar curvatures of the hypersurface are consiéet@Were able to give a partial
solution to that problem, since we had needed to do an additional hypothesis on the degree of the
minimal polynomial of the shape operator.

Itis worth pointing out that the additional assumption was mainly made to control the position
vector field of the hypersurface infg**!. Now when the ambient space is a non-flat pseudo-
Riemannian space forn§”*!(r) or H**!(r), then the hypersurface is of codimension two in
R1+2 or RITY, respectively, bub?+!(r) andH?+1(r) being both totally umbilical hypersurfaces
in the corresponding pseudo-Euclidean space, it seems reasonable to hope for a richer classifica-
tion of hypersurfaces into those spaces by means of the equafiba- A\H. Or even, one looks
for getting a complete answer to the stated problem in non-flat ambient spaces.

In this paper we give a classification of surfaces in the 3-dimensional non-flat Lorentzian space
forms satisfying the equatioAH = AH. We show that the family of such surfaces consists of
minimal, totally umbilical andB-scroll surfaces. As for hypersurfaces we suppose that their shape
operators have no complex eigenvalues. This condition does not seem as restrictive as one could
think, in view of examples and results given in section 5. Actually, we find that family is set up by
minimal, totally umbilical and so-called generalized umbilical hypersurfaces, which are nothing
but a natural generalization &f-scrolls.

2. Preliminaries

Let R be the(n + 2)-dimensional pseudo-Euclidean space with inderdowed with the
indefinite inner product given by

t n+2
i=1 j=t+1
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where (1, ..., z,12) is the usual coordinate system. As is usual,Set! = {z € R?*? .
(r,2) = 1} andH* ! = {x € R,’jﬁ : (z,x) = —1} be the unit pseudo-sphere and the unit
pseudo-hyperbolic space, respectively. They are pseudo-Riemannian hypersurfaces mfrindex
R7+2 andRZif, respectively, with constant sectional curvatdre +1 andec = —1, respectively.
Throughout this paper/”+! will denote the unit pseudo-sphere or the unit pseudo-hyperbolic
space, accordingte = +1 orc = —1, andR,’}Jr2 will stand for the corresponding pseudo-
Euclidean space wherd” ! is lying.

Letz : M — M C R?“ be an isometric immersion of a pseudo-Riemannian hyper-
surfaceM” in M™t!. Let V, V andV be the Levi-Civita connection oh/?, M"*! andR?*2,
respectively, and lell and H’ denote the mean curvature vector fieldsf in R 2 and M7+,
respectively. Thus we may write

H=H —cx=aN —cz,

N anda being a unit vector field normal t/7 in M7*! and the mean curvature with respect to
N, respectively.

Let us write down the Laplacian operatdr on M , extended in a natural way &"+2-
valuated functions, as

n
A=— Zei (vElvEl - VVEZEZ) ;
i=1
where{E,, ..., E,} is alocal orthonormal frame of/]" ande; = (E;, E;). Then the formula
below is well known
Ax = —nH,

as well as the following one, which is given it]{
AH =2S5(Va) + neaVa + {Aa + eatr(S?) + nea}N — ne(c + ea?)z,

whereS denotes the shape operator of the hypersurfdg¢en M" !, ¢ = (N, N) andVa stands
for the gradient ofx.

3. First characterization results
Let M be a hypersurface it/ satisfying the condition
AH = \H,

for a real constamt. Then from equations (1) and (3) we see that the above condition is equivalent
to the following set of equations:

25(Va) + neaVa =0,
Aa + a(etr(S?) +ne — \) =0,
n(c+ea?) — A= 0.
Therefore we obtain that = n(c + ca?) = n (H, H) anda is a constant satisfying (tr(5?) —

na?) = 0. Then ifa # 0 we deduce thatr(S?) = na? = (1/n)tr(S)%. Thus we have proved
the following proposition.
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Proposition 3.1 Let M be a hypersurface in/?*!. ThenAH = M\H if and only if one of the
following statements holds:

(1) M7 is minimal in M7+,

(2) M has nonzero constant mean curvatarand tr(S?)=(1/n)tr(S)2.
Moreover, the constant is always given by = n (H, H) = n(c + ca?).

The statement (2) in the above proposition hides a remarkable fact. Indeed, from the Gauss
eguation one knows that

T =n%(H,H) — nc— etr(5?),

whereT stands for the scalar curvature. ThefS?) = (1/n)tr(S)? if and only if 7 = n(n —
1) (H, H), which shows that the constahtis surprisingly an intrinsic quantity, because one has
7 = (n — 1)\. Therefore the Proposition 3.1 can be rephrased as follows.

Proposition 3.2 Let M be a non-minimal hypersurface M”*!. ThenAH = \H if and only if
M? has both constant mean and constant scalar curvatures, and they are related by the equation
7 =n(n—1)(c+ea?).

A first interesting consequence of Proposition 3.1 is based on the following fact. If we suppose
that M has diagonalizable shape operator, thei$?) = (1/n)tr(S)? if and only if M is a
totally umbilical hypersurface in/” 1. Then bearing in mind the classification theorem for such
hypersurfaces given irlD, Theorem 1.4], we know thalt/] is an open piece of either a pseudo-
sphereS? (r), or a pseudo-hyperbolic spaéé (r) or R?, according tq H, H) is positive, negative
or zero, respectively. In the last case, the isometric immersioR? — M7"*! c ]jof is given
by z = f — z0, z being a fixed vector ilR”{? and f : R? — R7 the function defined by
flur, ... up) = (q(u),ur, ..., un, q(u)), whereq(u) = a (u,u) + (b,u) + ¢, a # 0. We will
refer this example asféat totally umbilical hypersurfaceNow the following result is clear.

Proposition 3.3 Let M be a non-minimal hypersurface M1 with diagonalizable shape op-
erator. ThenAH = M\H if and only if one of the following statements holds:

(1) A > 0 and M is an open piece of a pseudo-sph&fé./n/\).

(2) A < 0 and M is an open piece of a pseudo-hyperbolic SpHE&/—n /).

(3) A =0 and M is an open piece of a flat totally umbilical hypersurface.

A pseudo-Euclidean submanifold is said tolbdkearmonicif it has harmonic mean curvature
vector field, i.e.,AH = 0 (see P], [3], [5] and [6]). It is well known, [7], that there are no
biharmonic hypersurfaces &'*!. As for hypersurfaces ifil"*!, Proposition 3.3 yields the
following result.

Corollary 3.4 A hypersurfacel/™ in H* ! is biharmonic if and only if is a flat totally umbilical
hypersurface.

In dealing with the problem of characterizing hypersurfat&sin A7 +! satisfying equation
(1), we have solved the problem in the diagonalizable case. Nevertheless, for a pseudo-Riemannian
hypersurface the shape operator can be reduced to another canonical forms and thus it seems
natural thinking of hypersurfaces satisfying (1) and having non-diagonalizable shape operators.
Therefore, in what follows we will study Lorentzian hypersurfaces, and we will start that analysis
in the next section trying out surfacesin?.
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4. On surfaces inM?$

We are looking for surfaces/? in M3 satisfying the conditom™\H = AH. Now, the new
and interesting situation arises provided the surface inherits a Lorentzian metrit)( since the
shape operator df/? need not be diagonalizable. To elucidate this case, we begin, followjng [
by giving an example of such a surface.

Example 4.1 B-scroll over a null curve
Let z(s) be a null curve inV$ C R} with an associated Cartan frand, B, C}, i.e.,{A, B,C}
is a pseudo-orthonormal frame of vector fields alaiig)

(A, A) = (B,B)=0, (A,B)=—1,
(A,C) = (B,C) =0, (C,C)=1,

satisfying

is) = As),
Cls) = —mA(s) — k() B(s),

wherery is a nonzero constant aids) # 0 for all s. Then the mag : (s, u) — z(s) +uB(s)
parametrizes a Lorentzian surfacelify called aB-scroll (see 4]).
It is not difficult to see that a unit normal vector field is given by

N(s,u) = —touB(s) + C(s),

EN

[ 70 0
5= ( k(s) 7o )
Thus theB-scroll has non-diagonalizable shape operator with minimal polynoRgigl) = (¢ —
70)? and constant mean curvature= 1. Therefore by using (3) we deduced = 2(c + 73)H.

and the shape operator can be put in the usual fr %\Ié, 6\1/} as
S

Let M? be a Lorentzian surface if/3 with non-diagonalizable shape operator. Then the
minimal polynomial ofS is given byPs(t) = (t — 3)?, 3 being a differentiable function oz,
andS can be put in a pseudo-orthonormal frame as

3 0
I <1ﬁ>,

or the minimal polynomial isPs(t) = (t — 8)? + 2, 3 andy # 0 being differentiable functions
on M2, andS can be written in an orthonormal frame as

B
w (27,

Suppose nowl/? is a non-minimal surface if/$ satisfying (1). By using Proposition 3.1
we deduce that the shape operatoof the surfaceM? can only be put in the form (1)3 being
a nonzero constant, since the possibility (Il) cannot happen because of the condifiéh =
(1/2)tr(S)%. Now we are going to show the following useful result.

4
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Theorem 4.2 Let M? be a Lorentzian surface in/3 ¢ R} and let(t — )2, 7o being a nonzero
constant, be the minimal polynomial of its shape operator. Then, in a neighborhood of any point,
M% is a B-scroll over a null curve.

Proof. Pick a pointp in M3, choose a pseudo-orthonormal frafng, B} of tangent vector fields
in a neighborhood of such that

SA = 7’0A+k‘B,

SB = T()B,
wherek # 0, and letN be a unit vector field normal ta/# in M$. ConsideringM? as an
embedded surface i3, we can take an integral curvés) of A starting fromp. For short, let
us write A(s) = A(x(s)), B(s) = B(x(s)), C(s) = N(x(s)) andk(s) = k(z(s)). Then
: DC

C(S) = g

For eachs, let v5(¢) denote an integral curve db starting fromz(s). Then taking covariant
derivate we get

(s) = —10A(s) — k(s)B(s).

PE00(0) = V1,00 B((1)) = V5BOu(1) = VisB(s(1).

By using now Codazzi’s equation we haVg; B is in spar B}, and then the above equation yields
DB
= () = Fs () BOw (1)),
for a certain diferentiable functiofi. It is not difficult to see that the solution of that differential
eqguation is given by
B(ys(t)) = gs(t)B(s),
for a certain positive functiop;(t) with g5(0) = 1. Then we get

t
Yalt) = 2(s) + /0 gs(v)dv B(s),

andM? is, in a neighborhood qf, a B-scroll as in Example 4.1.
Theorem 4.2, along with Proposition 3.3, leads to the following main results.

Theorem 4.3 Let M2 be a surface irSj. ThenAH = \H if and only if one of the following
statements holds:

(1) A > 0 and M2 is either minimal or an open piece of one of the following surfaces:
S%(1/2/)), S3(1/2/)) and aB-scroll over a null curve.

(2) A < 0 and M¢ is an open piece of a hyperbolic plafié (y/—2/)).

(3) A = 0 and M¢ is a flat totally umbilical surface.

Theorem 4.4 Let M2 be a surface iffl;. ThenAH = M\H if and only if one of the following
statements holds:

(1) A > 0 and M? is an open piece of eithé? (,/2/)) or a B-scroll with 72 < 1.

(2) A < 0 and M2 is either minimal or an open piece of one of the following surfaces:
H2(y/—2/\), H2(y/—2/)\) and aB-scroll with 7§ > 1.

(3) A = 0 and M7 is either a flat totally umbilical surface or a fla-scroll (¢ = 1).

5
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To finish this section we are going to characterize the biharmonic surfadéd$,iwhich is a
consequence of the above two theorems.

Corollary 4.5 A surfaceM? in S$ is biharmonic if and only if is a flat totally umbilical surface.

Corollary 4.6 A surfaceM? in H3 is biharmonic if and only if is either a flat totally umbilical
surface or a flatB-scroll.

5. Then-dimensional case

With the aim of completing our study we must consider non-minimal hypersurfagem
J\Tf“ satisfyingAH = AH with n > 2. In view of Proposition 3.3 we can assume that it
is endowed with a Lorentzian metri¢ (= 1) and the shape operator 8f7" in M’f“ is not
diagonalizable. In this casgcan be put in one of the following two forms:

3 0 6 0 0

1 8 0 g 1

-1 0 g

I. M3 . II. 14
Pon o

in a pseudo-orthonormal frame, and
B
-y B

I11. 113 . v #£0

Hn

in an orthonormal frame.

Assume now thatS has no complex eigenvalues. Then from Proposition 3.1 the minimal
polynomial of S is given byPs(t) = (t — a)? or Ps(t) = (t — a)3, a being a nonzero constant.
Examples of those hypersurfaces in {he+ 1)-dimensional Lorentz-Minkowski space can be
found in [11]. Before going any further, we wish to show some examples of such a kind of
hypersurfaces in the non-flat Lorentzian space forms.

Example 5.1 Generalized umbilical hypersurface of degree 2
Letz : I ¢ R — H}! ¢ Ry be a null curve with an associated pseudo-orthonormal frame
{A,B,Z,,...,Z,_2,C} alongz(s) such that

i o= Als),

C = —1A(s) —k(s)B(s),

wherer$ = 1 andk(s) # 0. Then it is not difficult to see that the map: I x R x R" 2 —
HP ! ¢ RS2 given by

|=[* TOIZ!
U(s,u,z) = <1+ 5 s)+uB(s +sz ——C(9),
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parametrizes, in a neighborhood of the origin, a Lorentzian hypersubfgcef H?“. It is easy
to see that a unit normal vector field is given by

K& mol2|?

N(s,u,z) = —TouB(s —miy] <—2>0@— 5 o(s).

Moreover, its mean curvatureis the constant, = +1 and the minimal polynomial of its shape
operator is given byPs(t) = (t — m)?. ThenM}* satisfies condition (1) with = 0, that is, M7
is a biharmonic hypersurface.

Example 5.2 Generalized umbilical hypersurface of degree 2
Letz : I ¢ R — M7 < R?*? be a null curve with an associated pseudo-orthonormal frame
{A,B, Zy,...,Z,—2,C} alongz(s) such that

)
C = —1A(s) — k(s)B(s),

wherek(s) # 0 andr is a nonzero constant with+ 73 # 0. Thenthe mag@ : I xR xR" 2 —
M c R+ defined by

2+ cf(z n2 T0(1 — f(z
U(s,u,z) = LJ;()I‘(S) +uB(s) + Z 2 Z;(s) + MC(S),

2
C—|—7'0 c+ 1)

where f(z) = /1 — (c+ 73)|2|2, parametrizes, in a neighborhood of the origin, a Lorentzian
hypersurfacé\/{* of M’f“. It is not difficult to see that a unit normal vector field is given by

N(s,u,z) = —1uB(s) — 10 Z 27 LWC(S) + Mw(s).

c+ 78 c+ 18

The mean curvature is the nonzero constang and the minimal polynomial of its shape operator
is Ps(t) = (t — 70)*. ThenM7 satisfies condition (1) with = n(c + 7¢).

Example 5.3 Generalized umbilical hypersurface of degree 3
Letz : I ¢ R — H}tt ¢ Ry be a null curve with an associated pseudo-orthonormal frame
{A, BY Zi,...,2,3, C} such that

& = As),
C = —10A(s)+ k(s)Y(s),

with 72 = 1 andk(s) # 0. Then itis easy to see that the mip I x R x R x R" 3 — HM! ¢
R "2 given by

2 2
At o0 + 1212)
W 2) = (14 5 a0+ uo) + 7o +X@ )+ ),
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parametrizes, in a neighborhood of the origin, a Lorentzian hypersutfgcem H?H with a unit
normal vector field given by

n—3
N(s,u,y,z) = — (Tou + ngﬂ)) B(s) — moyY (s) — TOJZ;ZJ'ZJ'(S)
2 4 |2 S S
i <1 _ y+2|> C(s) — o(y;rll)x(s),

whereF(s,y,2) = 14y <B(s), Y(s)> +30 <B(s), Zj(s)>. A messy computation shows
that M{" has constant mean curvatute= 7o = =+1 and the minimal polynomial of its shape
operator isPs(t) = (t —1)3. ThenM? satisfies the conditioh H = 0, i.e., M7 is a biharmonic
hypersurface ofl .

Example 5.4 Generalized umbilical hypersurface of degree 3
Letz : I C R — M7 c R?" be a null curve with an associated pseudo-orthonormal frame
{A,B,Y, 7y, ..., Z,—_3,C} such that

x = Als),

C = —10A(s)+k(s)Y(s),

with k(s) # 0 andry a nonzero constant such that 72 # 0. Thenthe mapl : 7 x R x R x
R"3 — M7 C R} defined by

n—3
+uB(s) +yY(s) + Z 2 Zi(s) +
j=1

e+ cf(y.2)
) B c+7'g z:(s)

7-0(1 - f(y¢ Z))

U(s,u,y,z
( y c+7'02

C(s),

where f(y,2) = /1 — (c+72)(y% + |2]?), parametrizes, in a neighborhood of the origin, a
Lorentzian hypersurfacg/]" in M?H. A straightforward computation shows that a unit normal
vector field is given by

_ k(s)y
N(S,U,y,Z) = <T[)U+ m

n—3
) B(s) —mog¥ (s) — 10 3 % 24(s)
j=1

2 —
+ C+T0f(ga Z>C(S)—|— CTO(]- f(2yaz))$(8)7
c+ T c+ T
whereF(s,y,2) = f(y,2) +y <B(s), Y(s)> +30 0 2 <B(s), Zj(s)>. ThenM7 has constant
mean curvature: = 7y # 0 and the minimal polynomial of its shape operator is giveryt) =
(t — 79)3. Thus M} satisfies the conditiod H = \H with A = n(c + 72).

In the following two theorems we are going to characterize these examples as the only ones
having (t — a)*, k = 2,3 anda being a nonzero constant, as the minimal polynomials of their
shape operators. We closely follow the ideas of Magidli.[

Theorem 5.5 Let M7 be a Lorentzian hypersurface isometrically immerseol?ﬁfﬁrl - ]R?”
and let(t—79)?, 7o # 0, be the minimal polynomial of its shape operator. Then, in a neighborhood
of any point, M7 is a generalized umbilical hypersurface of degree 2.

8
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Proof. We can take, at any poiptin M, a pseudo-orthonormal framel, B, Z1, ..., Z,_2} in
a neighborhood gj such that

SA = 1A+ kB,
SB = 7yB,
SZz = T()Zi i:1,...,n—2,

wherek # 0, and letN denote a unit vector field normal ta}* in M7, Dealing withM7 as

an embedded hypersurface, 1€t) be an integral curve ofl starting fromp, and for simplicity

of notation, we shall puti(s) = A(z(s)), B(s) = B(z(s)), etc., and”(s) = N(z(s)). Then

: DC
C(S) = E

By using Codazzi’s equation, it is easy to see that ker(S — /) is an integrable degenerate

distribution. For each fixed, let M (s) be the leaf ofl" throughz(s). We are going to show that

M ((s) is lying in a hypersphere &} centered at(s) + (1/7)C(s) with radiusl /7o. Let~y,(t)

be a curve inV/(s) starting fromz(s). Then

(s) = —10A(s) — k(s)B(s).

PR (u(1)) = ~ro30)
and thus
N(vs(t)) + 10vs(t) = const. = C(s) + Toz(s).
Therefore we get
<%<t> —a(s) - joc<s>,vs<t> — a(s) - 1c<s>> -

T0 70

Now let us see that/(s) is also contained in the hyperplane orthogonaB{e) through the center
of the above hypersphere. From (1) we hay@) — z(s) — (1/79)C(s) is collinear toN (ys(t))
and then

<B<vs<t>>,fys<t> ~as) - 10<s>> 0.

70

On the other hand, for alX in T’ )
VxB =VxB,

and from Codazzi's equation
Vx(SA) —S(VxA)=Va(SX)—-S(VaX)

we get
kVxB = (S — 7o)X, A] — X (k)B.

Since Im(S — rpI)=spad B} we deducéV x B is in spaq B}. Now reasoning as in Theorem 4.2
we haveB(v5(t)) = gs(t)B(s), whereg,(t) > 0, and from (2) we get

B(s),%(t) — a(s) = —C(s) ) = 0.
( )

70

Finally, putting together those facts the theorem follows.

9
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Theorem 5.6 Let M{" be a Lorentzian hypersurface isometrically immerseal?ﬂffrl C R?“
and let(t—79)3, 79 # 0, be the minimal polynomial of its shape operator. Then, in a neighborhood
of any point,M7{" is a generalized umbilical hypersurface of degree 3.

Proof. We can choose, at any popmin M7, alocal pseudo-orthonormal frarfd, B,Y, Z,, ..., Z,,_3}
such that

SA = 190A—-kY,

SB = 1yB,

SY = kB+ 7Y,

SZ; = 10Z;, i=1,...,n—3,

wherek # 0, and letN be as in the above theorem. Considerig as an embedded hyper-
surface, letr(s) be an integral curve ofl starting fromp and write A(s) = A(xz(s)), B(s) =
B(xz(s)), etc., and’(s) = N(z(s)). Then

: DC

C(s) = g(s) = —710A(s) + k(s)Y (s).
Let T denote the kernel ofS — 791)2. ThenT = ker(S — 79I) @ span{Y}. To prove thatl’
is an integrable distribution it suffices to show that Y] € T for all X € ker(S — 79I). From

Codazzi's equation
Vx(SA) — S(VxA) =V4(5X)—S(VaX)

we have
(VxY,B)=0=(VxB,)Y),

forall X in T. Now let X € ker(S — m9/) and use again Codazzi’'s equation
Vx(SY)—-S(VxY)=Vy(SX)—-S(VyX)

to get([X,Y],B) =0, and thugX,Y] € T.

For eachs, let M (s) be the leaf ofT" throughz(s). We are going to show that/(s) is
contained in a hypersphere ®f 2 centered at(s) + (1/70)C(s) with radiusl /7. Let~,(t) be
a curve inM (s) starting fromz(s). Then

DN _ ,
W(’YS (t)) = —T07s (t) - k(’YS (t)> <’Ys (t>7 Y(’Vs (t>)> B(’Vs (t)),

that is,

DN ((8)) + ms(0) = (0 B()

for a certain differentiable functiorfs(¢). A similar reasoning as in Theorem 5.5 shows that
B(vs(t)) = gs(t)B(s), gs(t) > 0, and therefore we have

%(N(%(t)) + 7107s(t)) = hs()B(s),

and
N(’Vs(t)) + TO'YS(t) = Ms(t)B(S) + C(S) + Tox(S),

10
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for certain differentiable functionk(¢) andus(t). Thus we find

I NN R Y0 _1
(3008 = 2(6) = e (0) = 2(5) = 2C)) = =5 = ZEUL BV () = 5.

[\

The above computation also shows théfs) is contained in the hyperplane orthogonal2¢s)
throughz(s) + (1/7)C(s). ThereforeM} is, in a neighborhood of, a generalized umbilical
hypersurface of degree 3.

Now, we are going to state the main results of this section which will be separately treated to
clarify them.

In the De Sitter world we have.

Theorem 5.7 Let M be a hypersurface iﬁrl“rl whose shape operator has no complex eigenval-
ues. ThelM H = \H if and only if one of the following statements holds:

(1) A > 0 and M is either minimal irSTrl or an open piece of one of the following hypersur-
faces:S"(y/n/\), S{(y/n/A), the generalized umbilical hypersurface of degree 2 in Example 5.2
and the one of degree 3 in Example 5.4.

(2) A < 0 and Mg is an open piece il (\/—n/A).

(3) A = 0 and My is a flat totally umbilical hypersurface.

This theorem leads us to the following characterization of biharmonic hypersurfaces in the De
Sitter space.

Corollary 5.8 A hypersurface irS’l”rl whose shape operator has no complex eigenvalues is bi-
harmonic if and only if is a flat totally umbilical hypersurface.

As for hypersurfaces i]I’ﬂPfJrl we have the following classification theorem.

Theorem 5.9 Let M be a hypersurface ifil7 ! whose shape operator has no complex eigen-
values. Theld H = AH if and only if one of the following statements holds:

(1) A > 0 and M7 is an open piece of one of the following hypersurfacgsi\/n/A), the
generalized umbilical hypersurface, with > 1, of degree 2 in Example 5.2 and the one of degree
3 in Example 5.4.

(2) A < 0 and M is either minimal inIHPlerl or an open piece of one of the following hyper-
surfaces:H"(y/—n/)\), H}(1/—n/)), the generalized umbilical hypersurface, with < 1, of
degree 2 in Example 5.2 and the one of degree 3 in Example 5.4.

(3) A = 0 and M7 is either a flat totally umbilical hypersurface or the generalized umbilical
hypersurface, withg = 1, of degree 2 in Example 5.1 or the one of degree 3 in Example 5.3.

It is worth pointing out that the family of biharmonic hypersurfaces is richer in the anti De
Sitter space than in the De Sitter space. In fact, we get the following corollary.

Corollary 5.10 A hypersurface iriHI’f“ whose shape operator has no complex eigenvalues is

biharmonic if and only if is either a flat totally umbilical hypersurface or the generalized umbilical
hypersurface, with = 1, of degree 2 in Example 5.1 or the one of degree 3 in Example 5.3.

11



J. Geom. 52 (1995), 10-24

Bibliography

[1]

[2]

(3]

[4]

[5]

[6]

[7]

8]

[9]

B. Y. Chen. Finite-type pseudo-Riemannian submanifoldsnkang J. of Math17 (1986),
137-151.

B. Y. Chen. Some open problems and conjectures on submanifolds of finiteSgpehow
J. Math, 17(1991), 169-188.

B. Y. Chen and S. Ishikawa. Biharmonic surfaces in pseudo-euclidean spaces. Special issue
dedicated to Prof. T. Otsuki on the occasion of his 75th birthday.

M. Dajczer and K. Nomizu. On flat surfaces$i andH3. In Manifolds and Lie Groups
pages 71-108. Univ. Notre Dame, Indiana, Bildker, 1981.

I. Dimitric. Quadric Representation and Submanifolds of Finite Tyie thesis, Michigan
State University, 1989.

A. Ferrandez, O. J. Garay and P. Lucas. On a certain class of conformally flat Euclidean
hypersurfaces. In Ferus, Pinkall, Simon and Wegner, edi@uohal Differential Geometry

and Global Analysis, Berlin 199(ages 48-54, 1991. Lecture Notes in Mathematics, n.
1481.

A. Ferrandez and P. Lucas. Null finite type hypersurfaces in space fdtouai Math. J, 14
(1991), 406-4109.

A. Ferrandez and P. Lucas. On surfaces in the 3-dimensional Lorentz-Minkowski space.
Pacific J. Math, 152(1992), 93—-100.

A. Ferrandez and P. Lucas. Classifying hypersurfaces in the Lorentz-Minkowski space with
a characteristic eigenvector. Tokyo J. Math. 15 (1992), 451-459.

[10] M. A. Magid. Isometric immersions of Lorentz space with parallel second fundamental

forms. Tsukuba J. Math8 (1984), 31-54.

[11] M. A. Magid. Lorentzian isoparametric hypersurfac&acific J. Math, 118 (1985), 165—

197.

12



