
Hypersurfaces in the non-flat Lorentzian space forms with a
characteristic eigenvector field
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1. Introduction

In a series of early papers, with the aim of knowing of the shape of a pseudo-Riemannian
hypersurface satisfying a certain differential equation in the induced Laplacian, we found a re-
markable family of hypersurfaces in the Lorentz-Minkowski space whose mean curvature vector
is an eigenvector of the Laplacian. Actually, the last two authors showed in [8] that the equation
∆H = λH, for a real constantλ, characterizes the family of surfaces inL3 made up of the quite
interestingB-scrolls and the so-called standard examples, as well as minimal surfaces.

Looking at those results obtained for surfaces inL3, the following geometric question was
stated in [9] for hypersurfaces inLn+1 (n > 2): Does the equation∆H = λH mean that both the
mean and the scalar curvatures of the hypersurface are constant?We were able to give a partial
solution to that problem, since we had needed to do an additional hypothesis on the degree of the
minimal polynomial of the shape operator.

It is worth pointing out that the additional assumption was mainly made to control the position
vector field of the hypersurface intoLn+1. Now when the ambient space is a non-flat pseudo-
Riemannian space form,Sn+1

ν (r) or Hn+1
ν (r), then the hypersurface is of codimension two in

Rn+2
ν orRn+2

ν+1 , respectively, butSn+1
ν (r) andHn+1

ν (r) being both totally umbilical hypersurfaces
in the corresponding pseudo-Euclidean space, it seems reasonable to hope for a richer classifica-
tion of hypersurfaces into those spaces by means of the equation∆H = λH. Or even, one looks
for getting a complete answer to the stated problem in non-flat ambient spaces.

In this paper we give a classification of surfaces in the 3-dimensional non-flat Lorentzian space
forms satisfying the equation∆H = λH. We show that the family of such surfaces consists of
minimal, totally umbilical andB-scroll surfaces. As for hypersurfaces we suppose that their shape
operators have no complex eigenvalues. This condition does not seem as restrictive as one could
think, in view of examples and results given in section 5. Actually, we find that family is set up by
minimal, totally umbilical and so-called generalized umbilical hypersurfaces, which are nothing
but a natural generalization ofB-scrolls.

2. Preliminaries

LetRn+2
t be the(n + 2)-dimensional pseudo-Euclidean space with indext endowed with the

indefinite inner product given by

〈x, y〉 = −
t∑

i=1

xiyi +
n+2∑

j=t+1

xjyj ,
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where(x1, . . . , xn+2) is the usual coordinate system. As is usual, letSn+1
ν = {x ∈ Rn+2

ν :
〈x, x〉 = 1} andHn+1

ν = {x ∈ Rn+2
ν+1 : 〈x, x〉 = −1} be the unit pseudo-sphere and the unit

pseudo-hyperbolic space, respectively. They are pseudo-Riemannian hypersurfaces of indexν in
Rn+2

ν andRn+2
ν+1 , respectively, with constant sectional curvaturec = +1 andc = −1, respectively.

Throughout this paper,Mn+1
ν will denote the unit pseudo-sphere or the unit pseudo-hyperbolic

space, according toc = +1 or c = −1, andRn+2
t will stand for the corresponding pseudo-

Euclidean space whereMn+1
ν is lying.

Let x : Mn
s −→ Mn+1

ν ⊂ Rn+2
t be an isometric immersion of a pseudo-Riemannian hyper-

surfaceMn
s in Mn+1

ν . Let∇, ∇ and∇̃ be the Levi-Civita connection onMn
s , Mn+1

ν andRn+2
t ,

respectively, and letH andH ′ denote the mean curvature vector fields ofMn
s in Rn+2

t andMn+1
ν ,

respectively. Thus we may write

H = H ′ − cx = αN − cx,

N andα being a unit vector field normal toMn
s in Mn+1

ν and the mean curvature with respect to
N , respectively.

Let us write down the Laplacian operator∆ on Mn
s , extended in a natural way toRn+2-

valuated functions, as

∆ = −
n∑

i=1

εi

(
∇̃Ei∇̃Ei − ∇̃∇Ei

Ei

)
,

where{E1, . . . , En} is a local orthonormal frame onMn
s andεi = 〈Ei, Ei〉. Then the formula

below is well known
∆x = −nH,

as well as the following one, which is given in [1]:

∆H = 2S(∇α) + nεα∇α + {∆α + εαtr(S2) + ncα}N − nc(c + εα2)x,

whereS denotes the shape operator of the hypersurfaceMn
s in Mn+1

ν , ε = 〈N,N〉 and∇α stands
for the gradient ofα.

3. First characterization results

Let Mn
s be a hypersurface inMn+1

ν satisfying the condition

∆H = λH,

for a real constantλ. Then from equations (1) and (3) we see that the above condition is equivalent
to the following set of equations:

2S(∇α) + nεα∇α = 0,

∆α + α(εtr(S2) + nc− λ) = 0,

n(c + εα2)− λ = 0.

Therefore we obtain thatλ = n(c + εα2) = n 〈H,H〉 andα is a constant satisfyingα(tr(S2) −
nα2) = 0. Then ifα 6= 0 we deduce thattr(S2) = nα2 = (1/n)tr(S)2. Thus we have proved
the following proposition.
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Proposition 3.1 Let Mn
s be a hypersurface inMn+1

ν . Then∆H = λH if and only if one of the
following statements holds:

(1) Mn
s is minimal inMn+1

ν .
(2) Mn

s has nonzero constant mean curvatureα and tr(S2)=(1/n)tr(S)2.
Moreover, the constantλ is always given byλ = n 〈H, H〉 = n(c + εα2).

The statement (2) in the above proposition hides a remarkable fact. Indeed, from the Gauss
equation one knows that

τ = n2 〈H,H〉 − nc− εtr(S2),

whereτ stands for the scalar curvature. Thentr(S2) = (1/n)tr(S)2 if and only if τ = n(n −
1) 〈H, H〉, which shows that the constantλ is surprisingly an intrinsic quantity, because one has
τ = (n− 1)λ. Therefore the Proposition 3.1 can be rephrased as follows.

Proposition 3.2 LetMn
s be a non-minimal hypersurface inMn+1

ν . Then∆H = λH if and only if
Mn

s has both constant mean and constant scalar curvatures, and they are related by the equation
τ = n(n− 1)(c + εα2).

A first interesting consequence of Proposition 3.1 is based on the following fact. If we suppose
that Mn

s has diagonalizable shape operator, thentr(S2) = (1/n)tr(S)2 if and only if Mn
s is a

totally umbilical hypersurface inMn+1
ν . Then bearing in mind the classification theorem for such

hypersurfaces given in [10, Theorem 1.4], we know thatMn
s is an open piece of either a pseudo-

sphereSn
s (r), or a pseudo-hyperbolic spaceHn

s (r) orRn
s , according to〈H,H〉 is positive, negative

or zero, respectively. In the last case, the isometric immersionx : Rn
s −→ Mn+1

ν ⊂ Rn+2
s+1 is given

by x = f − x0, x0 being a fixed vector inRn+2
s+1 andf : Rn

s −→ Rn+2
s+1 the function defined by

f(u1, . . . , un) = (q(u), u1, . . . , un, q(u)), whereq(u) = a 〈u, u〉 + 〈b, u〉 + c, a 6= 0. We will
refer this example as aflat totally umbilical hypersurface. Now the following result is clear.

Proposition 3.3 LetMn
s be a non-minimal hypersurface inMn+1

ν with diagonalizable shape op-
erator. Then∆H = λH if and only if one of the following statements holds:

(1) λ > 0 andMn
s is an open piece of a pseudo-sphereSn

s (
√

n/λ).
(2) λ < 0 andMn

s is an open piece of a pseudo-hyperbolic spaceHn
s (

√
−n/λ).

(3) λ = 0 andMn
s is an open piece of a flat totally umbilical hypersurface.

A pseudo-Euclidean submanifold is said to bebiharmonicif it has harmonic mean curvature
vector field, i.e.,∆H = 0 (see [2], [3], [5] and [6]). It is well known, [7], that there are no
biharmonic hypersurfaces inSn+1. As for hypersurfaces inHn+1, Proposition 3.3 yields the
following result.

Corollary 3.4 A hypersurfaceMn in Hn+1 is biharmonic if and only if is a flat totally umbilical
hypersurface.

In dealing with the problem of characterizing hypersurfacesMn
s in Mn+1

ν satisfying equation
(1), we have solved the problem in the diagonalizable case. Nevertheless, for a pseudo-Riemannian
hypersurface the shape operator can be reduced to another canonical forms and thus it seems
natural thinking of hypersurfaces satisfying (1) and having non-diagonalizable shape operators.
Therefore, in what follows we will study Lorentzian hypersurfaces, and we will start that analysis
in the next section trying out surfaces inM3

1.

3



J. Geom. 52 (1995), 10–24

4. On surfaces inM 3
1

We are looking for surfacesM2
s in M3

1 satisfying the condition∆H = λH. Now, the new
and interesting situation arises provided the surface inherits a Lorentzian metric (s = 1), since the
shape operator ofM2

1 need not be diagonalizable. To elucidate this case, we begin, following [4],
by giving an example of such a surface.

Example 4.1 B-scroll over a null curve.
Let x(s) be a null curve inM3

1 ⊂ R4
t with an associated Cartan frame{A,B, C}, i.e.,{A,B, C}

is a pseudo-orthonormal frame of vector fields alongx(s)

〈A,A〉 = 〈B, B〉 = 0, 〈A,B〉 = −1,

〈A,C〉 = 〈B, C〉 = 0, 〈C,C〉 = 1,

satisfying

ẋ(s) = A(s),
Ċ(s) = −τ0A(s)− k(s)B(s),

whereτ0 is a nonzero constant andk(s) 6= 0 for all s. Then the mapΨ : (s, u) −→ x(s) + uB(s)
parametrizes a Lorentzian surface inM3

1 called aB-scroll (see [4]).
It is not difficult to see that a unit normal vector field is given by

N(s, u) = −τ0uB(s) + C(s),

and the shape operator can be put in the usual frame

{
∂Ψ
∂s

,
∂Ψ
∂u

}
as

S =
(

τ0 0
k(s) τ0

)
.

Thus theB-scroll has non-diagonalizable shape operator with minimal polynomialPS(t) = (t−
τ0)2 and constant mean curvatureα = τ0. Therefore by using (3) we deduce∆H = 2(c + τ2

0 )H.

Let M2
1 be a Lorentzian surface inM3

1 with non-diagonalizable shape operator. Then the
minimal polynomial ofS is given byPS(t) = (t− β)2, β being a differentiable function onM2

1 ,
andS can be put in a pseudo-orthonormal frame as

I.
(

β 0
1 β

)
,

or the minimal polynomial isPS(t) = (t− β)2 + γ2, β andγ 6= 0 being differentiable functions
onM2

1 , andS can be written in an orthonormal frame as

II.
(

β γ
−γ β

)
.

Suppose nowM2
1 is a non-minimal surface inM3

1 satisfying (1). By using Proposition 3.1
we deduce that the shape operatorS of the surfaceM2

1 can only be put in the form (I),β being
a nonzero constant, since the possibility (II) cannot happen because of the conditiontr(S2) =
(1/2)tr(S)2. Now we are going to show the following useful result.
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Theorem 4.2 LetM2
1 be a Lorentzian surface inM3

1 ⊂ R4
t and let(t− τ0)2, τ0 being a nonzero

constant, be the minimal polynomial of its shape operator. Then, in a neighborhood of any point,
M2

1 is aB-scroll over a null curve.

Proof. Pick a pointp in M2
1 , choose a pseudo-orthonormal frame{A,B} of tangent vector fields

in a neighborhood ofp such that

SA = τ0A + kB,

SB = τ0B,

wherek 6= 0, and letN be a unit vector field normal toM2
1 in M3

1. ConsideringM2
1 as an

embedded surface inM3
1, we can take an integral curvex(s) of A starting fromp. For short, let

us writeA(s) = A(x(s)), B(s) = B(x(s)), C(s) = N(x(s)) andk(s) = k(x(s)). Then

Ċ(s) =
D̃C

ds
(s) = −τ0A(s)− k(s)B(s).

For eachs, let γs(t) denote an integral curve ofB starting fromx(s). Then taking covariant
derivate we get

D̃B

dt
(γs(t)) = ∇̃γ̇s(t)B(γs(t)) = ∇̃BB(γs(t)) = ∇BB(γs(t)).

By using now Codazzi’s equation we have∇BB is in span{B}, and then the above equation yields

D̃B

dt
(γs(t)) = f(γs(t))B(γs(t)),

for a certain diferentiable functionf . It is not difficult to see that the solution of that differential
equation is given by

B(γs(t)) = gs(t)B(s),

for a certain positive functiongs(t) with gs(0) = 1. Then we get

γs(t) = x(s) +
∫ t

0
gs(v)dv B(s),

andM2
1 is, in a neighborhood ofp, aB-scroll as in Example 4.1.

Theorem 4.2, along with Proposition 3.3, leads to the following main results.

Theorem 4.3 Let M2
s be a surface inS3

1. Then∆H = λH if and only if one of the following
statements holds:

(1) λ > 0 and M2
s is either minimal or an open piece of one of the following surfaces:

S2(
√

2/λ), S2
1(

√
2/λ) and aB-scroll over a null curve.

(2) λ < 0 andM2
0 is an open piece of a hyperbolic planeH2(

√
−2/λ).

(3) λ = 0 andM2
0 is a flat totally umbilical surface.

Theorem 4.4 Let M2
s be a surface inH3

1. Then∆H = λH if and only if one of the following
statements holds:

(1) λ > 0 andM2
1 is an open piece of eitherS2

1(
√

2/λ) or a B-scroll with τ2
0 < 1.

(2) λ < 0 and M2
s is either minimal or an open piece of one of the following surfaces:

H2(
√
−2/λ),H2

1(
√
−2/λ) and aB-scroll with τ2

0 > 1.
(3) λ = 0 andM2

1 is either a flat totally umbilical surface or a flatB-scroll (τ2
0 = 1).

5
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To finish this section we are going to characterize the biharmonic surfaces inM3
1, which is a

consequence of the above two theorems.

Corollary 4.5 A surfaceM2
s in S3

1 is biharmonic if and only if is a flat totally umbilical surface.

Corollary 4.6 A surfaceM2
s in H3

1 is biharmonic if and only if is either a flat totally umbilical
surface or a flatB-scroll.

5. Then-dimensional case

With the aim of completing our study we must consider non-minimal hypersurfacesMn
s in

Mn+1
1 satisfying∆H = λH with n > 2. In view of Proposition 3.3 we can assume that it

is endowed with a Lorentzian metric (s = 1) and the shape operator ofMn
1 in Mn+1

1 is not
diagonalizable. In this caseS can be put in one of the following two forms:

I.




β 0
1 β

µ3

...
µn




II.




β 0 0
0 β 1

−1 0 β
µ4

...
µn




in a pseudo-orthonormal frame, and

III.




β γ
−γ β

µ3

...
µn




, γ 6= 0

in an orthonormal frame.
Assume now thatS has no complex eigenvalues. Then from Proposition 3.1 the minimal

polynomial ofS is given byPS(t) = (t − α)2 or PS(t) = (t − α)3, α being a nonzero constant.
Examples of those hypersurfaces in the(n + 1)-dimensional Lorentz-Minkowski space can be
found in [11]. Before going any further, we wish to show some examples of such a kind of
hypersurfaces in the non-flat Lorentzian space forms.

Example 5.1 Generalized umbilical hypersurface of degree 2.
Let x : I ⊂ R −→ Hn+1

1 ⊂ Rn+2
2 be a null curve with an associated pseudo-orthonormal frame

{A,B,Z1, . . . , Zn−2, C} alongx(s) such that

ẋ = A(s),
Ċ = −τ0A(s)− k(s)B(s),

whereτ2
0 = 1 andk(s) 6= 0. Then it is not difficult to see that the mapΨ : I × R × Rn−2 −→

Hn+1
1 ⊂ Rn+2

2 given by

Ψ(s, u, z) =
(

1 +
|z|2
2

)
x(s) + uB(s) +

n−2∑

j=1

zjZj(s) +
τ0|z|2

2
C(s),

6
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parametrizes, in a neighborhood of the origin, a Lorentzian hypersurfaceMn
1 of Hn+1

1 . It is easy
to see that a unit normal vector field is given by

N(s, u, z) = −τ0uB(s)− τ0

n−2∑

j=1

zjZj(s) +
(

1− |z|2
2

)
C(s)− τ0|z|2

2
x(s).

Moreover, its mean curvatureα is the constantτ0 = ±1 and the minimal polynomial of its shape
operator is given byPS(t) = (t − τ0)2. ThenMn

1 satisfies condition (1) withλ = 0, that is,Mn
1

is a biharmonic hypersurface.

Example 5.2 Generalized umbilical hypersurface of degree 2.
Let x : I ⊂ R −→ Mn+1

1 ⊂ Rn+2
t be a null curve with an associated pseudo-orthonormal frame

{A,B,Z1, . . . , Zn−2, C} alongx(s) such that

ẋ = A(s),
Ċ = −τ0A(s)− k(s)B(s),

wherek(s) 6= 0 andτ0 is a nonzero constant withc+τ2
0 6= 0. Then the mapΨ : I×R×Rn−2 −→

Mn+1
1 ⊂ Rn+2

t defined by

Ψ(s, u, z) =
τ2
0 + cf(z)
c + τ2

0

x(s) + uB(s) +
n−2∑

j=1

zjZj(s) +
τ0(1− f(z))

c + τ2
0

C(s),

wheref(z) =
√

1− (c + τ2
0 )|z|2, parametrizes, in a neighborhood of the origin, a Lorentzian

hypersurfaceMn
1 of Mn+1

1 . It is not difficult to see that a unit normal vector field is given by

N(s, u, z) = −τ0uB(s)− τ0

n−2∑

j=1

zjZj(s) +
c + τ2

0 f(z)
c + τ2

0

C(s) +
τ0c(1− f(z))

c + τ2
0

x(s).

The mean curvatureα is the nonzero constantτ0 and the minimal polynomial of its shape operator
is PS(t) = (t− τ0)2. ThenMn

1 satisfies condition (1) withλ = n(c + τ2
0 ).

Example 5.3 Generalized umbilical hypersurface of degree 3.
Let x : I ⊂ R −→ Hn+1

1 ⊂ Rn+2
2 be a null curve with an associated pseudo-orthonormal frame

{A,B, Y, Z1, . . . , Zn−3, C} such that

ẋ = A(s),
Ċ = −τ0A(s) + k(s)Y (s),

with τ2
0 = 1 andk(s) 6= 0. Then it is easy to see that the mapΨ : I×R×R×Rn−3 −→ Hn+1

1 ⊂
Rn+2

2 given by

Ψ(s, u, y, z) =
(

1 +
y2 + |z|2

2

)
x(s) + uB(s) + yY (s) +

n−3∑

j=1

zjZj(s) +
τ0(y2 + |z|2)

2
C(s),

7
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parametrizes, in a neighborhood of the origin, a Lorentzian hypersurfaceMn
1 in Hn+1

1 with a unit
normal vector field given by

N(s, u, y, z) = −
(

τ0u +
k(s)y

F (s, y, z)

)
B(s)− τ0yY (s)− τ0

n−3∑

j=1

zjZj(s)

+
(

1− y2 + |z|2
2

)
C(s)− τ0(y2 + |z|2)

2
x(s),

whereF (s, y, z) = 1 + y
〈
Ḃ(s), Y (s)

〉
+

∑n−3
j=1 zj

〈
Ḃ(s), Zj(s)

〉
. A messy computation shows

that Mn
1 has constant mean curvatureα = τ0 = ±1 and the minimal polynomial of its shape

operator isPS(t) = (t− τ0)3. ThenMn
1 satisfies the condition∆H = 0, i.e.,Mn

1 is a biharmonic
hypersurface ofHn+1

1 .

Example 5.4 Generalized umbilical hypersurface of degree 3.
Let x : I ⊂ R −→ Mn+1

1 ⊂ Rn+2
t be a null curve with an associated pseudo-orthonormal frame

{A,B, Y, Z1, . . . , Zn−3, C} such that

ẋ = A(s),
Ċ = −τ0A(s) + k(s)Y (s),

with k(s) 6= 0 andτ0 a nonzero constant such thatc + τ2
0 6= 0. Then the mapΨ : I × R × R ×

Rn−3 −→ Mn+1
1 ⊂ Rn+2

t defined by

Ψ(s, u, y, z) =
τ2
0 + cf(y, z)

c + τ2
0

x(s) + uB(s) + yY (s) +
n−3∑

j=1

zjZj(s) +
τ0(1− f(y, z))

c + τ2
0

C(s),

wheref(y, z) =
√

1− (c + τ2
0 )(y2 + |z|2), parametrizes, in a neighborhood of the origin, a

Lorentzian hypersurfaceMn
1 in Mn+1

1 . A straightforward computation shows that a unit normal
vector field is given by

N(s, u, y, z) = −
(

τ0u +
k(s)y

F (s, y, z)

)
B(s)− τ0yY (s)− τ0

n−3∑

j=1

zjZj(s)

+
c + τ2

0 f(y, z)
c + τ2

0

C(s) +
cτ0(1− f(y, z))

c + τ2
0

x(s),

whereF (s, y, z) = f(y, z) + y
〈
Ḃ(s), Y (s)

〉
+

∑n−3
j=1 zj

〈
Ḃ(s), Zj(s)

〉
. ThenMn

1 has constant

mean curvatureα = τ0 6= 0 and the minimal polynomial of its shape operator is given byPS(t) =
(t− τ0)3. ThusMn

1 satisfies the condition∆H = λH with λ = n(c + τ2
0 ).

In the following two theorems we are going to characterize these examples as the only ones
having(t − a)k, k = 2, 3 anda being a nonzero constant, as the minimal polynomials of their
shape operators. We closely follow the ideas of Magid in [11].

Theorem 5.5 Let Mn
1 be a Lorentzian hypersurface isometrically immersed inMn+1

1 ⊂ Rn+2
t

and let(t−τ0)2, τ0 6= 0, be the minimal polynomial of its shape operator. Then, in a neighborhood
of any point,Mn

1 is a generalized umbilical hypersurface of degree 2.

8
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Proof. We can take, at any pointp in Mn
1 , a pseudo-orthonormal frame{A,B, Z1, . . . , Zn−2} in

a neighborhood ofp such that

SA = τ0A + kB,

SB = τ0B,

SZi = τ0Zi, i = 1, . . . , n− 2,

wherek 6= 0, and letN denote a unit vector field normal toMn
1 in Mn+1

1 . Dealing withMn
1 as

an embedded hypersurface, letx(s) be an integral curve ofA starting fromp, and for simplicity
of notation, we shall putA(s) = A(x(s)), B(s) = B(x(s)), etc., andC(s) = N(x(s)). Then

Ċ(s) =
D̃C

ds
(s) = −τ0A(s)− k(s)B(s).

By using Codazzi’s equation, it is easy to see thatT = ker(S − τ0I) is an integrable degenerate
distribution. For each fixeds, let M(s) be the leaf ofT throughx(s). We are going to show that
M(s) is lying in a hypersphere ofRn+2

t centered atx(s)+(1/τ0)C(s) with radius1/τ0. Letγs(t)
be a curve inM(s) starting fromx(s). Then

D̃N

dt
(γs(t)) = −τ0γ̇s(t),

and thus
N(γs(t)) + τ0γs(t) = const. = C(s) + τ0x(s).

Therefore we get
〈

γs(t)− x(s)− 1
τ0

C(s), γs(t)− x(s)− 1
τ0

C(s)
〉

=
1
τ2
0

.

Now let us see thatM(s) is also contained in the hyperplane orthogonal toB(s) through the center
of the above hypersphere. From (1) we haveγs(t) − x(s) − (1/τ0)C(s) is collinear toN(γs(t))
and then 〈

B(γs(t)), γs(t)− x(s)− 1
τ0

C(s)
〉

= 0.

On the other hand, for allX in T
∇̃XB = ∇XB,

and from Codazzi’s equation

∇X(SA)− S(∇XA) = ∇A(SX)− S(∇AX)

we get
k∇XB = (S − τ0I)[X,A]−X(k)B.

Since Im(S − τ0I)=span{B} we deduce∇XB is in span{B}. Now reasoning as in Theorem 4.2
we haveB(γs(t)) = gs(t)B(s), wheregs(t) > 0, and from (2) we get

〈
B(s), γs(t)− x(s)− 1

τ0
C(s)

〉
= 0.

Finally, putting together those facts the theorem follows.

9
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Theorem 5.6 Let Mn
1 be a Lorentzian hypersurface isometrically immersed inMn+1

1 ⊂ Rn+2
t

and let(t−τ0)3, τ0 6= 0, be the minimal polynomial of its shape operator. Then, in a neighborhood
of any point,Mn

1 is a generalized umbilical hypersurface of degree 3.

Proof. We can choose, at any pointp in Mn
1 , a local pseudo-orthonormal frame{A,B, Y, Z1, . . . , Zn−3}

such that

SA = τ0A− kY,

SB = τ0B,

SY = kB + τ0Y,

SZi = τ0Zi, i = 1, . . . , n− 3,

wherek 6= 0, and letN be as in the above theorem. ConsideringMn
1 as an embedded hyper-

surface, letx(s) be an integral curve ofA starting fromp and writeA(s) = A(x(s)), B(s) =
B(x(s)), etc., andC(s) = N(x(s)). Then

Ċ(s) =
D̃C

ds
(s) = −τ0A(s) + k(s)Y (s).

Let T denote the kernel of(S − τ0I)2. ThenT = ker(S − τ0I)⊕ span{Y }. To prove thatT
is an integrable distribution it suffices to show that[X, Y ] ∈ T for all X ∈ ker(S − τ0I). From
Codazzi’s equation

∇X(SA)− S(∇XA) = ∇A(SX)− S(∇AX)

we have
〈∇XY, B〉 = 0 = 〈∇XB, Y 〉 ,

for all X in T . Now letX ∈ ker(S − τ0I) and use again Codazzi’s equation

∇X(SY )− S(∇XY ) = ∇Y (SX)− S(∇Y X)

to get〈[X, Y ], B〉 = 0, and thus[X, Y ] ∈ T .
For eachs, let M(s) be the leaf ofT throughx(s). We are going to show thatM(s) is

contained in a hypersphere ofRn+2
t centered atx(s) + (1/τ0)C(s) with radius1/τ0. Let γs(t) be

a curve inM(s) starting fromx(s). Then

D̃N

dt
(γs(t)) = −τ0γ̇s(t)− k(γs(t)) 〈γ̇s(t), Y (γs(t))〉B(γs(t)),

that is,
D̃

dt
(N(γs(t)) + τ0γs(t)) = fs(t)B(γs(t)),

for a certain differentiable functionfs(t). A similar reasoning as in Theorem 5.5 shows that
B(γs(t)) = gs(t)B(s), gs(t) > 0, and therefore we have

D̃

dt
(N(γs(t)) + τ0γs(t)) = hs(t)B(s),

and
N(γs(t)) + τ0γs(t) = µs(t)B(s) + C(s) + τ0x(s),

10
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for certain differentiable functionshs(t) andµs(t). Thus we find

〈
γs(t)− x(s)− 1

τ0
C(s), γs(t)− x(s)− 1

τ0
C(s)

〉
=

1
τ2
0

− 2
τ2
0

µs(t)
gs(t)

〈B, N〉 (γs(t)) =
1
τ2
0

.

The above computation also shows thatM(s) is contained in the hyperplane orthogonal toB(s)
throughx(s) + (1/τ0)C(s). ThereforeMn

1 is, in a neighborhood ofp, a generalized umbilical
hypersurface of degree 3.

Now, we are going to state the main results of this section which will be separately treated to
clarify them.

In the De Sitter world we have.

Theorem 5.7 LetMn
s be a hypersurface inSn+1

1 whose shape operator has no complex eigenval-
ues. Then∆H = λH if and only if one of the following statements holds:

(1) λ > 0 andMn
s is either minimal inSn+1

1 or an open piece of one of the following hypersur-
faces:Sn(

√
n/λ), Sn

1 (
√

n/λ), the generalized umbilical hypersurface of degree 2 in Example 5.2
and the one of degree 3 in Example 5.4.

(2) λ < 0 andMn
0 is an open piece ofHn(

√
−n/λ).

(3) λ = 0 andMn
0 is a flat totally umbilical hypersurface.

This theorem leads us to the following characterization of biharmonic hypersurfaces in the De
Sitter space.

Corollary 5.8 A hypersurface inSn+1
1 whose shape operator has no complex eigenvalues is bi-

harmonic if and only if is a flat totally umbilical hypersurface.

As for hypersurfaces inHn+1
1 we have the following classification theorem.

Theorem 5.9 Let Mn
s be a hypersurface inHn+1

1 whose shape operator has no complex eigen-
values. Then∆H = λH if and only if one of the following statements holds:

(1) λ > 0 andMn
1 is an open piece of one of the following hypersurfaces:Sn

1 (
√

n/λ), the
generalized umbilical hypersurface, withτ2

0 > 1, of degree 2 in Example 5.2 and the one of degree
3 in Example 5.4.

(2) λ < 0 andMn
s is either minimal inHn+1

1 or an open piece of one of the following hyper-
surfaces:Hn(

√
−n/λ), Hn

1 (
√
−n/λ), the generalized umbilical hypersurface, withτ2

0 < 1, of
degree 2 in Example 5.2 and the one of degree 3 in Example 5.4.

(3) λ = 0 andMn
1 is either a flat totally umbilical hypersurface or the generalized umbilical

hypersurface, withτ2
0 = 1, of degree 2 in Example 5.1 or the one of degree 3 in Example 5.3.

It is worth pointing out that the family of biharmonic hypersurfaces is richer in the anti De
Sitter space than in the De Sitter space. In fact, we get the following corollary.

Corollary 5.10 A hypersurface inHn+1
1 whose shape operator has no complex eigenvalues is

biharmonic if and only if is either a flat totally umbilical hypersurface or the generalized umbilical
hypersurface, withτ2

0 = 1, of degree 2 in Example 5.1 or the one of degree 3 in Example 5.3.
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[6] A. Ferŕandez, O. J. Garay and P. Lucas. On a certain class of conformally flat Euclidean
hypersurfaces. In Ferus, Pinkall, Simon and Wegner, editors,Global Differential Geometry
and Global Analysis, Berlin 1990, pages 48–54, 1991. Lecture Notes in Mathematics, n.
1481.
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