Hypersurfaces in space forms satisfying the condition $\Delta x = Ax + B$

Luis J. Alías, Angel Ferrández and Pascual Lucas Trans. Amer. Math. Soc. 347 (1995), 1793–1801

(Partially supported by DGICYT grant PB91-0705)

Abstract

In this work we study and classify pseudo-Riemannian hypersurfaces in pseudo-Riemannian space forms which satisfy the condition $\Delta x = Ax + B$, where A is an endomorphism, B is a constant vector and x stands for the isometric immersion. We prove that the family of such hypersurfaces consists of open pieces of minimal hypersurfaces, totally umbilical hypersurfaces, products of two non-flat totally umbilical submanifolds and a special class of quadratic hypersurfaces.

1. Introduction

Let x be an isometric immersion of a hypersurface M_s^n in \mathbb{R}_t^{n+1} and assume there exist an endomorphism A of \mathbb{R}_t^{n+1} and a constant vector B in \mathbb{R}_t^{n+1} such that $\Delta x = Ax + B$. We ask for the following question: "What is the geometric meaning involved in that algebraic condition?" This question was first studied in the Euclidean case by Chen and Petrovic [4], Dillen, Pas and Verstraelen [5], and Hasanis and Vlachos [7], who obtained some interesting classification theorems. Recently, Park [10], following closely the ideas in [2] and [1], has considered that condition with B = 0 for hypersurfaces in Euclidean spherical and hyperbolic spaces.

To study that question in its full generality, it seemed natural to us to begin with Lorentzian surfaces, [2]. Later, in [1], in order to generalize the above papers we gave a classification theorem for pseudo-Euclidean hypersurfaces. Actually, we proved that the only hypersurfaces satisfying the matricial condition on the Laplacian are open pieces of minimal hypersurfaces, totally umbilical hypersurfaces and pseudo-Riemannian products of a totally umbilical and a totally geodesic submanifold.

This paper arises as a natural continuation of [2] and [1], taking now a non-flat pseudo-Riemannian space form as the ambient space. Here, we analyze the isometric immersions x of a hypersurface M_s^n of \bar{M}_{ν}^{n+1} satisfying $\Delta x = Ax + B$, where \bar{M}_{ν}^{n+1} is the pseudo-Euclidean sphere $\mathbb{S}_{\nu}^{n+1} \subset \mathbb{R}_{\nu}^{n+2}$ or the pseudo-Euclidean hyperbolic space $\mathbb{H}_{\nu}^{n+1} \subset \mathbb{R}_{\nu+1}^{n+2}$.

In this new situation, the codimension of the manifold M_s^n in the pseudo-Euclidean space where it is lying is two, so that one hopes to find a richer family of examples satisfying the asked condition. On the other hand, although the proofs given in [1] do not work here, we follow the techniques developed there.

Before to refer to the main result, we wish pointing out that a lot of hypersurfaces having nondiagonalizable shape operator are given. This property makes substantially the difference between this case and that treated in [1].

The main result of this paper states that the only hypersurfaces M_s^n of \overline{M}_{ν}^{n+1} satisfying the matricial condition on the Laplacian are open pieces of minimal hypersurfaces, totally umbilical

Trans. Amer. Math. Soc. 347 (1995), 1793-1801

hypersurfaces, pseudo-Riemannian products of two non-flat totally umbilical submanifolds and quadratic hypersurfaces defined by $\{x \in \mathbb{R}^{n+2}_t : \langle x, x \rangle = \pm 1, \langle Lx, x \rangle = c\}$, where L is a self-adjoint endomorphism of \mathbb{R}^{n+2}_t with minimal polynomial μ_L of degree two, and c is a real constant such that $\mu_L(kc) \neq 0$.

2. Preliminaries

Let \mathbb{R}^{n+2}_t be the (n+2)-dimensional pseudo-Euclidean space whose metric tensor is given by

$$ds^{2} = -\sum_{i=1}^{t} dx^{i} \otimes dx^{i} + \sum_{j=t+1}^{n+2} dx^{j} \otimes dx^{j},$$

where (x_1, \ldots, x_{n+2}) is the standard coordinate system. For each $k \neq 0$, let $\overline{M}_{\nu}^{n+1}(k)$ be the complete and simply connected space with constant sectional curvature $\operatorname{sign}(k)/k^2$. A model for $\overline{M}_{\nu}^{n+1}(k)$ is the pseudo-Euclidean sphere $\mathbb{S}_{\nu}^{n+1}(k)$ if k > 0 and the pseudo-Euclidean hyperbolic space $\mathbb{H}_{\nu}^{n+1}(k)$ if k < 0, where $\mathbb{S}_{\nu}^{n+1}(k) = \{x \in \mathbb{R}_{\nu}^{n+2} : \langle x, x \rangle = k^2\}$ and $\mathbb{H}_{\nu}^{n+1}(k) = \{x \in \mathbb{R}_{\nu+1}^{n+2} : \langle x, x \rangle = -k^2\}$, \langle, \rangle standing for the indefinite inner product in the pseudo-Euclidean space. Throughout this paper we will assume, without loss of generality, that $k^2 = 1$.

Let M_s^n be a pseudo-Riemannian hypersurface in \bar{M}_{ν}^{n+1} and let ∇ ($\bar{\nabla}$ and $\bar{\nabla}$) denotes the Levi-Civita connection on M_s^n (\bar{M}_{ν}^{n+1} and \mathbb{R}_t^{n+2} , respectively). We will also denote by N the unit normal vector field to M_s^n in \bar{M}_{ν}^{n+1} . Let H' and H be the mean curvature vector fields of M_s^n in \bar{M}_{ν}^{n+1} and \mathbb{R}_t^{n+2} , respectively. Thus we may write $H' = \alpha N$, α being the mean curvature of M_s^n in \bar{M}_{ν}^{n+1} , and

$$H = H' - kx = \alpha N - kx.$$

Let $x: M_s^n \longrightarrow \overline{M}_{\nu}^{n+1}$ be an isometric immersion satisfying the condition

$$\Delta x = Ax + B,$$

where A is an endomorphism of \mathbb{R}_t^{n+2} and B a constant vector in \mathbb{R}_t^{n+2} . Taking covariant derivative in (2) and using the Laplace-Beltrami equation $\Delta x = -nH$ and the Weingarten formula we get $AX = nS_HX - nD_XH$, for any vector field X tangent to M_s^n , where D denotes the normal connection on M_s^n and S_{ξ} the Weingarten endomorphism associated to a normal vector field ξ . Then by (1) we have $D_XH = X(\alpha)N$ and $S_HX = \alpha SX + kX$, where, for short, we have written S for the Weingarten endomorphism S_N . From now on, we will call S the shape operator of M_s^n . Now from the above formulae we deduce that

$$AX = n(\alpha SX + kX) - nX(\alpha)N.$$

From (2), taking into account the Laplace-Beltrami equation and (1), we obtain the following equation

$$Ax = -n\alpha N + nkx - B.$$

By applying the Laplacian on both sides of (2) and using again that $\Delta x = -nH$ we find $AH = \Delta H$, that along with (1) leads to $\alpha AN = \Delta H + kAx$. Now, bringing here (4) and the formula for ΔH obtained in [3, Lemma 3]

$$\Delta H = 2S(\nabla \alpha) + n\varepsilon\alpha\nabla\alpha + (\Delta\alpha + \varepsilon\alpha|S|^2 + nk\alpha)N - nk(k + \varepsilon\alpha^2)x,$$

where $\nabla \alpha$ stands for the gradient of α , $\varepsilon = \langle N, N \rangle$ and $|S|^2 = \text{trace}(S^2)$, we get the following equation

$$\alpha AN = 2S(\nabla \alpha) + n\varepsilon \alpha \nabla \alpha + (\Delta \alpha + \varepsilon \alpha |S|^2)N$$

$$- nk\varepsilon \alpha^2 x - kB.$$
(5)

3. Some examples

In this paper we wish to classify the hypersurfaces M_s^n in \overline{M}_{ν}^{n+1} whose isometric immersion satisfies the condition (2). In order to get such a classification we need some examples.

2.1 Minimal hypersurfaces M_s^n in \overline{M}_{ν}^{n+1} obviously satisfy (2). Indeed, by using (1) we have H = -kx and $\Delta x = nkx$. So we can take $A = nkI_{n+2}$ and B = 0.

2.2 Let M_s^n be a totally umbilical hypersurface in \overline{M}_{ν}^{n+1} . Taking into account the classification theorem for such hypersurfaces (see, for example, [9, Theorem 1.4]) we get, according to $\langle H, H \rangle$ is positive, negative or zero, M_s^n is an open piece of a pseudo-Euclidean sphere $\mathbb{S}_s^n(r)$, a pseudo-Euclidean hyperbolic space $\mathbb{H}_s^n(r)$ or \mathbb{R}_s^n . In the last case, the immersion $f : \mathbb{R}_s^n \longrightarrow \mathbb{R}_{s+1}^{n+2}$ is given by $f(u) = (q(u), u_1, \ldots, u_n, q(u))$, where $q(u) = a \langle u, u \rangle + \langle b, u \rangle + c, a \neq 0$. The pseudo-Euclidean spheres and pseudo-Euclidean hyperbolic spaces both satisfy the condition (2). Indeed, by considering φ as the standard immersion of $\mathbb{S}_s^n(r)$ or $\mathbb{H}_s^n(r)$ in a hyperplane $\mathbb{R}_{s'}^{n+1}$ of \mathbb{R}_t^{n+2} , we know from [1] that $\Delta \varphi = L\varphi$, L being an endomorphism of $\mathbb{R}_{s'}^{n+1}$. The $(n + 1) \times (n + 1)$ matrix L and the immersion φ become an $(n + 2) \times (n + 2)$ matrix A (filling with zeros) and an immersion x in \mathbb{R}_t^{n+2} , respectively, in a natural way and so we get (2) with B = 0. Therefore the most interesting case is that with $\langle H, H \rangle = 0$. Now we can choose a point p in \mathbb{R}_{s+1}^{n+2} such that $\langle f - p, f - p \rangle = \pm 1$ and then x = f - p is an immersion from \mathbb{R}_s^n in \overline{M}_{ν}^{n+1} with $\Delta x = -2n(a, 0, \ldots, 0, a)$. Thus this hypersurface satisfies (2) with A = 0 and $B = (-2na, 0, \ldots, 0, -2na)$. Furthermore, from the equation $\Delta x = -n\alpha N + nkx$, we easily obtain that its constant mean curvature α is given by $\alpha^2 = 1$.

2.3 Let $x: M_s^m \longrightarrow \mathbb{R}_t^{m+1}$ and $y: M'_{s'}^{m'} \longrightarrow \mathbb{R}_{t'}^{m'+1}$ be two isometric immersions satisfying the condition (2) and let $z = x \times y$ be the natural isometric immersion from the pseudo-Riemannian product $M_s^m \times M'_{s'}^{m'}$ in $\mathbb{R}_{t+t'}^{m+m'+2}$. If $\Delta x = Ax + B$ and $\Delta' y = A'y + B'$ then we can consider $\tilde{A} = \text{diag}[A, A']$ and $\tilde{B} = (B, B')$. Thus it is easy to show that $\tilde{\Delta} z = \tilde{A} z + \tilde{B}$. Then from [1, Section 2], we can construct the following examples of hypersurfaces in \overline{M}_{ν}^{n+1} satisfying the condition (2):

(a) $\mathbb{S}_{u}^{p}(r) \times \mathbb{S}_{s-u}^{n-p}(\sqrt{1-r^{2}}) \subset \mathbb{S}_{s}^{n+1}$, with 0 < r < 1 and $r \neq \sqrt{p/n}$, whose constant mean curvature is given by $\alpha^{2} = (nr^{2} - p)^{2}/(n^{2}r^{2}(1-r^{2}))$; (b) $\mathbb{H}_{u}^{p}(-r) \times \mathbb{H}_{s-u}^{n-p}(-\sqrt{1-r^{2}}) \subset \mathbb{H}_{s+1}^{n+1}$, with 0 < r < 1, $r \neq \sqrt{p/n}$ and $\alpha^{2} = (nr^{2} - p)^{2}/(n^{2}r^{2}(1-r^{2}))$; (c) $\mathbb{S}_{u}^{p}(r) \times \mathbb{H}_{s-u}^{n-p}(-\sqrt{-1+r^{2}}) \subset \mathbb{S}_{s+1}^{n+1}$, with r > 1 and $\alpha^{2} = (nr^{2} - p)^{2}/(n^{2}r^{2}(r^{2} - 1))$; (d) $\mathbb{S}_{u}^{p}(r) \times \mathbb{H}_{s-u}^{n-p}(-\sqrt{1+r^{2}}) \subset \mathbb{H}_{s}^{n+1}$, with r > 0 and $\alpha^{2} = (nr^{2} + p)^{2}/(n^{2}r^{2}(1+r^{2}))$; where $1 \leq p \leq n-1$ and $0 \leq u \leq s$. We will refer these examples as the *pseudo-Riemannian non-minimal standard products*.

2.4 The hypersurfaces in examples 2.2 and 2.3 have diagonalizable shape operator. However, it seems natural thinking of hypersurfaces with non-diagonalizable shape operator satisfying (2) into indefinite ambient spaces. Let L be a self-adjoint endomorphism of \mathbb{R}_t^{n+2} , that is, $\langle Lx, y \rangle = \langle x, Ly \rangle$ for all $x, y \in \mathbb{R}_t^{n+2}$. Let $f : \overline{M}_{\nu}^{n+1} \longrightarrow \mathbb{R}$ be the quadratic function defined by $f(x) = \langle x, Ly \rangle$

 $\langle Lx, x \rangle$ and assume that the minimal polynomial of L is given by $\mu_L(t) = t^2 + at + b$, $a, b \in \mathbb{R}$. Then by computing the gradients, at each point $x \in \overline{M}_{\nu}^{n+1}$, we have $\tilde{\nabla}f(x) = 2Lx$ and $\overline{\nabla}f(x) = 2Lx - 2kf(x)x$. If $\tilde{\Delta}$ and $\bar{\Delta}$ denote the Laplacian operators on \mathbb{R}_t^{n+2} and \overline{M}_{ν}^{n+1} , respectively, a straightforward computation yields $\tilde{\Delta}f(x) = -2 \operatorname{trace}(L)$ and $\overline{\Delta}f(x) = -2 \operatorname{trace}(L) - 2k(n+1)f(x)$.

Consider the level set $M = f^{-1}(c)$ for a real constant c. Then at a point x in M we have

$$\left\langle \bar{\nabla}f(x), \bar{\nabla}f(x) \right\rangle = 4 \left\langle L^2 x, x \right\rangle - 4k f(x)^2 = -4k\mu_L(kc),$$

and so f is an isoparametric function (see [6]). Thus the level hypersurfaces $\{f^{-1}(c)\}_{c\in I}$, where $I \subset \{c \in \mathbb{R} : \mu_L(kc) \neq 0\}$ is connected, form an isoparametric family in the classical sense. The shape operator of M_s^n is given by $SX = -\frac{1}{|\bar{\nabla}f|} \bar{\nabla}_X(\bar{\nabla}f) = \frac{1}{|\mu_L(kc)|^{1/2}}(kcX - LX)$ and a messy computation gives

$$\operatorname{tr}(S) = \frac{nkc - \operatorname{tr}(L) - a}{|\mu_L(kc)|^{1/2}}.$$

Then the mean curvature α is given by

$$\alpha = \frac{\varepsilon}{n} \operatorname{tr}(S) = \delta \frac{a + \operatorname{tr}(L) - nkc}{nk|\mu_L(kc)|^{1/2}},$$

where δ stands for the sign of $\mu_L(kc)$. Therefore we get

$$H' = \frac{a + \operatorname{tr} L - knc}{kn\mu_L(kc)} (Lx - kcx),$$

from which we deduce, by using $\Delta x = -n(H' - kx)$, that $\Delta x = Ax$, where A is given by

$$A = \frac{knc - a - \operatorname{tr}L}{k\mu_L(kc)}L + \frac{\operatorname{ctr}L + (n+1)ac + knb}{\mu_L(kc)}I_{n+2}.$$

4. First characterization results

The aim of this section is to show that a hypersurface M_s^n of \overline{M}_{ν}^{n+1} satisfying the condition (2) has to be of constant mean curvature. To do that, let \mathcal{W} be the open set of regular points of α^2 , which we may assume a non-empty set. From (3) we have $\langle AX, x \rangle = 0$, for any vector field X tangent to M_s^n . Taking covariant derivative there we get

$$\langle A\sigma(X,Y),x\rangle = -\langle AX,Y\rangle,$$

for all tangent vectors X and Y, where σ represents the second fundamental form of M_s^n in \mathbb{R}_t^{n+2} , which is given by

$$\sigma(X,Y) = \varepsilon \langle SX,Y \rangle N - k \langle X,Y \rangle x.$$

Now equation (1), jointly with (3) and (2), leads to

$$\varepsilon \langle SX, Y \rangle \langle AN, x \rangle - k \langle X, Y \rangle \langle Ax, x \rangle = -n\alpha \langle SX, Y \rangle - nk \langle X, Y \rangle.$$

Bringing here the formulae for Ax and AN given in (4) and (5), respectively, a straightforward computation yields

$$\langle SX - \varepsilon \alpha X, Y \rangle \langle B, x \rangle = 0,$$

at the points of \mathcal{W} . This equation is the key to the following result.

Lemma 4.1 Let $x : M_s^n \longrightarrow \overline{M}_{\nu}^{n+1}$ be a hypersurface such that $\Delta x = Ax + B$. If M_s^n has non-constant mean curvature, then B = 0.

Proof. Let us consider the set $\mathcal{U} = \{p \in \mathcal{W} : \langle B, x \rangle (p) \neq 0\}$ and assume it is a non-empty set. Then at the points of \mathcal{U} , from (3) and (3), we have

$$AX = n(\varepsilon \alpha^2 + k)X - nX(\alpha)N.$$

Since $n \ge 2$, we can always find a vector field X such that $X(\alpha) = \langle X, \nabla \alpha \rangle = 0$. This shows, by using (4), that $n(\varepsilon \alpha^2 + k)$ is an eigenvalue of A and therefore locally constant on \mathcal{U} , which is a contradiction. Hence $\mathcal{U} = \emptyset$ and $\langle B, x \rangle = 0$ on \mathcal{W} . Taking covariant derivative here he deduce that B has no tangent component and therefore we get $B = \varepsilon \langle B, N \rangle N$ and $\langle B, N \rangle = 0$, because \mathcal{W} is not empty.

Next we are going to make some computations before to state the main result of this section. From equation (3) it is easy to see that

$$\langle AX, Y \rangle = \langle X, AY \rangle,$$

for all tangent vector fields X and Y. Taking covariant derivative here and using the Gauss formula jointly with (5), we find

$$\langle A\sigma(X,Z), Y \rangle - \langle A\sigma(Y,Z), X \rangle =$$

$$\langle \sigma(X,Z), AY \rangle - \langle \sigma(Y,Z), AX \rangle .$$
(6)

By (2) and (3), the equation (6) becomes

$$\varepsilon \langle SX, Z \rangle \langle AN, Y \rangle - k \langle X, Z \rangle \langle Ax, Y \rangle -$$

$$\varepsilon \langle SY, Z \rangle \langle AN, X \rangle + k \langle Y, Z \rangle \langle Ax, X \rangle =$$

$$-nY(\alpha) \langle SX, Z \rangle + nX(\alpha) \langle SY, Z \rangle.$$
(7)

Finally, by Lemma 4.1, (4) and (5), from (7) we obtain

$$TX(\alpha)SY = TY(\alpha)SX,$$
(8)

where T means the self-adjoint operator defined by $TX = n\alpha X + \varepsilon SX$. This equation becomes the crucial point to show the next result.

Proposition 4.2 Let $x : M_s^n \longrightarrow \overline{M}_{\nu}^{n+1}$ be an isometric immersion such that $\Delta x = Ax + B$. Then M_s^n has constant mean curvature.

Proof. From Lemma 4.1 we can assume B = 0 and then equation (8) holds on \mathcal{W} . First, suppose that $T(\nabla \alpha) \neq 0$ at the points of \mathcal{W} . Then there is a vector field X tangent to M_s^n such that $TX(\alpha) \neq 0$, so that by using (8) we find that rank S=1 at the points of \mathcal{W} . Therefore we can choose a local orthonormal frame $\{E_1, \ldots, E_n\}$ such that $SE_1 = n\varepsilon\alpha E_1$, $SE_i = 0$, $i = 2, \ldots, n$ and $\varepsilon_i = \langle E_i, E_i \rangle$. Also from (8) we have that $E_i(\alpha) = 0$, $i = 2, \ldots, n$ and using again (3), (4) and (5) we get

$$AE_{1} = n(k + \varepsilon n\alpha^{2})E_{1} - nE_{1}(\alpha)N,$$

$$AE_{i} = nkE_{i}, \quad i = 2, \dots, n,$$

$$AN = 3n\varepsilon\varepsilon_{1}E_{1}(\alpha)E_{1} + \{\frac{\Delta\alpha}{\alpha} + \varepsilon n^{2}\alpha^{2}\}N - nk\varepsilon\alpha x,$$

$$Ax = -n\alpha N + nkx.$$

Therefore, span{ E_1, N, x } is an invariant subspace under A and the characteristic polynomial $p_A(t)$ of A is given by $p_A(t) = (t - nk)^{n-1}p_{A^*}(t)$, where A^* stands for $A|_{\text{span}\{E_1,N,x\}}$. Then $p_{A^*}(t)$ is constant and we can find three real constants λ_1 , λ_2 and λ_3 (which are nothing but the invariants associated to A^*) such that

$$\lambda_{1} = \frac{\Delta \alpha}{\alpha} + 2n\{k + \varepsilon n\alpha^{2}\},$$

$$\lambda_{2} = n(2k + \varepsilon n\alpha^{2})(\frac{\Delta \alpha}{\alpha} + \varepsilon n^{2}\alpha^{2}) + 3n^{2}\varepsilon\varepsilon_{1}E_{1}(\alpha)^{2} + n^{2}k(k + \varepsilon n\alpha^{2}) - kn^{2}\varepsilon\alpha^{2},$$

$$\lambda_{3} = n^{2}k(k + \varepsilon n\alpha^{2})(\frac{\Delta \alpha}{\alpha} + \varepsilon n^{2}\alpha^{2}) - n^{3}k\varepsilon\alpha^{2}(k + \varepsilon n\alpha^{2}) + 3n^{3}\varepsilon\varepsilon_{1}kE_{1}(\alpha)^{2}.$$

Then we obtain

$$nk\lambda_2 = \lambda_3 + n^3(k + \varepsilon n\alpha^2) + n^2(\frac{\Delta\alpha}{\alpha} + \varepsilon n^2\alpha^2) + n^4k\alpha^4$$

and

$$\frac{\Delta\alpha}{\alpha} = \lambda_1 - 2n(k + \varepsilon n\alpha^2).$$

Last two equations allow us to write $n^4 \alpha^4 = k p_{A^*}(kn)$ and so α is locally constant on \mathcal{W} , which is a contradiction.

Finally, assume now there is a point p in \mathcal{W} such that $T(\nabla \alpha)(p) = 0$. Note that from (3) and (5) we have in $\mathcal{W}, \forall i = 1, ..., n$

$$\langle AE_i, N \rangle = -n\varepsilon E_i(\alpha)$$

$$\langle E_i, AN \rangle = \frac{2\varepsilon}{\alpha} \langle T(\nabla \alpha), E_i \rangle - n\varepsilon E_i(\alpha).$$

$$(9)$$

It follows that at *p*,

$$\langle AE_i, N \rangle = \langle E_i, AN \rangle.$$
 (10)

From (3), (4), (5), (1) and (10) we deduce that A is a self-adjoint endomorphism of \mathbb{R}_t^{n+2} and thus equation (10) remains valid at every point in \mathcal{W} . In turn, from (10) $T(\nabla \alpha) = 0$ on \mathcal{W} and so $\nabla \alpha$ is an eigenvector of S with associated eigenvalue $-n\varepsilon\alpha$. If $\langle \nabla \alpha, \nabla \alpha \rangle = \nabla \alpha(\alpha) = 0$, from (3) we could write $A(\nabla \alpha) = n(k - n\varepsilon\alpha^2)\nabla\alpha$, then $n(k - n\varepsilon\alpha^2)$ should be an eigenvalue of A and α must be locally constant on \mathcal{W} , which cannot be hold. Therefore we can choose a local orthonormal frame $\{E_1, \ldots, E_n\}$ with E_1 parallel to $\nabla \alpha$ such that

$$AE_{1} = n(k - n\varepsilon\alpha^{2})E_{1} - nE_{1}(\alpha)N,$$

$$AE_{i} = n(\alpha SE_{i} + kE_{i}), \quad i = 2, ..., n,$$

$$AN = -n\varepsilon\varepsilon_{1}E_{1}(\alpha)E_{1} + \{\frac{\Delta\alpha}{\alpha} + \varepsilon|S|^{2}\}N - nk\varepsilon\alpha x,$$

$$Ax = -n\alpha N + nkx.$$

Since $SE_i \in \text{span}\{E_2, \ldots, E_n\}$, $i = 2, \ldots, n$, we may write S^* for the endomorphism S restricted to $\text{span}\{E_2, \ldots, E_n\}$. Working on the characteristic polynomials, from the above equations we can deduce that

$$p_A(t) = (n\alpha)^{n-1}q(t)p_{S^*}(\frac{t-nk}{n\alpha}),$$

where q(t) is a polynomial of degree three. Let $\{r_1, \ldots, r_n\}$ be the possibly complex roots of $p_S(t)$, with $r_1 = -n\varepsilon\alpha$ and $\{r_2, \ldots, r_n\}$ the roots of $p_{S^*}(t)$. Then the functions $nk + n\alpha r_j$, $j = 2, \ldots, n$, are roots of $p_A(t)$ and therefore they are locally constant on \mathcal{W} . Thus from the formula $\sum_{j=2}^{n} (nk + n\alpha r_j) = n(n-1)k + n\alpha \sum_{j=2}^{n} r_j = n(n-1)k + n\alpha(\operatorname{tr} S - r_1) = n(n-1)k + 2\varepsilon n^2\alpha$, we obtain that α is locally constant on \mathcal{W} , which is a contradiction.

Summarizing, we have got that \mathcal{W} has to be empty, i.e., M_s^n has constant mean curvature.

5. Main results

We have just proved that the hypersurfaces M_s^n of \overline{M}_{ν}^{n+1} satisfying the condition (2) have constant mean curvature. In this section, we wish to give a classification theorem of such a class of hypersurfaces. To do that, we recall the following definition. A hypersurface M_s^n is said to be *isoparametric* if the characteristic polynomial $p_S(t)$ of its shape operator S is the same at all points of M_s^n . When S is diagonalizable (for example, in the definite case) that means that the principal curvatures of M_s^n , as well as its multiplicities, are constant. Our first main result states as follows.

Theorem 5.1 Let $x: M_s^n \longrightarrow \overline{M}_{\nu}^{n+1}$ be an isometric immersion satisfying $\Delta x = Ax + B$. Then M_s^n is a minimal or an isoparametric hypersurface.

Proof. Let M_s^n be a hypersurface of \bar{M}_{ν}^{n+1} satisfying (2). By Proposition 4.2 we can assume that the mean curvature α of M_s^n in \bar{M}_{ν}^{n+1} is a non-zero constant and so the equation (3) works here. If M_s^n is not totally umbilical in \bar{M}_{ν}^{n+1} , then we have $\langle B, x \rangle = 0$ and, as in Lemma 4.1, B = 0. Now, from (3), (4) and (5) we get

$$AX = n(\alpha SX + kX),$$

$$AN = \varepsilon |S|^2 N - nk\varepsilon \alpha x,$$

$$Ax = -n\alpha N + nkx.$$
(1)

Working again on the characteristic polynomials $p_A(t)$ and $p_S(t)$, as in Section 4, we deduce that $p_S(t)$ is constant on M_s^n and the proof finishes.

Next with the aim of getting a complete classification of those hypersurfaces M_s^n of \bar{M}_{ν}^{n+1} satisfying (2), some easy computations are needed. From Theorem 5.1, M_s^n is an isoparametric hypersurface provided that the (constant) mean curvature α is not zero, and thus $|S|^2$ is also constant. Taking covariant derivative in the expression of AN in (1) we have $\tilde{\nabla}_X(AN) = -\varepsilon |S|^2 SX - nk\varepsilon\alpha X$ and $\tilde{\nabla}_X(AN) = A(\tilde{\nabla}_X N) = -n(\alpha S^2 X + kSX)$, from which we obtain

$$S^{2} + \frac{nk - \varepsilon |S|^{2}}{n\alpha} S - k\varepsilon I = 0, \qquad (2)$$

where I stands for the identity operator on the tangent bundle of M_s^n . We have just seen that if M_s^n is not totally umbilical then B = 0 and thus equations (1) and (2) allow us to write

$$A^{2} - (\varepsilon |S|^{2} + kn)A + n\varepsilon k(|S|^{2} - n\alpha^{2})I_{n+2} = 0,$$

and furthermore, from (1), A is a self-adjoint endomorphism of \mathbb{R}_t^{n+2} . If S is diagonalizable, from (2), M_s^n has exactly two constant principal curvatures. By using now similar arguments as

Trans. Amer. Math. Soc. 347 (1995), 1793-1801

in Theorem 2.5 of [11] and Lemma 2 of [8], we deduce that M_s^n is an open piece of a pseudo-Riemannian product of two non-flat totally umbilical submanifolds. If S is not diagonalizable, from (3), the minimal polynomial $\mu_A(t)$ of A is given by $\mu_A(t) = t^2 + at + b$, with $a = -(\varepsilon |S|^2 + kn)$ and $b = n\varepsilon k(|S|^2 - n\alpha^2)$. Since $\langle Ax, x \rangle = n$ is constant on M_s^n and $\mu_A(kn) = -n^2\alpha^2\varepsilon k \neq 0$, then M_s^n is an open piece of a quadratic hypersurface as in example 2.4. Summing up, we have proved the following theorem.

Theorem 5.2 Let $x : M_s^n \longrightarrow \overline{M}_{\nu}^{n+1}$ be an isometric immersion. Then $\Delta x = Ax + B$ if and only if M_s^n is an open piece of one of the following hypersurfaces in \overline{M}_{ν}^{n+1} :

1) a minimal hypersurface,

2) a totally umbilical hypersurface,

3) a pseudo-Riemannian non-minimal standard product,

4) a quadratic hypersurface as in example 2.4, with non-diagonalizable shape operator $(a^2 - 4b \leq 0)$.

As a consequence, we obtain the classification theorem for hypersurfaces in \mathbb{S}^{n+1} and \mathbb{H}^{n+1} , which generalizes Theorem 1.3 in [10].

Corollary 5.3 Let $x : M^n \longrightarrow \overline{M}^{n+1}$ be a non-minimal hypersurface. Then $\Delta x = Ax + B$ if and only if M^n is an open piece of one of the following hypersurfaces:

1) a totally umbilical hypersurface,

2) a product $\overline{M}^p(r_1) \times \mathbb{S}^{n-p}(r_2)$.

ACKNOWLEDGMENT

The authors would like to thank the referee for reading the paper carefully, providing some suggestions and comments to improve it.

Bibliography

- [1] L. J. Alías, A. Ferrández and P. Lucas. Submanifolds in pseudo-Euclidean spaces satisfying the condition $\Delta x = Ax + B$. *Geom. Dedicata*, **42** (1992), 345–354.
- [2] L. J. Alías, A. Ferrández and P. Lucas. Surfaces in the 3-dimensional Lorentz-Minkowski space satisfying $\Delta x = Ax + B$. *Pacific J. Math.*, **156** (1992), 201–208.
- [3] B. Y. Chen. Finite-type pseudo-Riemannian submanifolds. Tamkang J. of Math., 17 (1986), 137–151.
- [4] B. Y. Chen and M. Petrovic. On spectral decomposition of immersions of finite type. Bull. Austral. Math. Soc., 44 (1991), 117–129.
- [5] F. Dillen, J. Pas and L. Verstraelen. On surfaces of finite type in euclidean 3-space. *Kodai Math. J.*, 13 (1990), 10–21.
- [6] J. Hahn. Isoparametric hypersurfaces in the pseudo-riemannian space forms. *Math. Z.*, **187** (1984), 195–208.
- [7] T. Hasanis and T. Vlachos. Hypersurfaces of \mathbb{E}^{n+1} satisfying $\Delta x = Ax + B$. J. Austral. Math. Soc., Series A, 53 (1992), 377–384.
- [8] H. Lawson. Local rigidity theorems for minimal hypersurfaces. Ann. of Math., 89 (1969), 187–197.

- [9] M. A. Magid. Isometric immersions of Lorentz space with parallel second fundamental forms. *Tsukuba J. Math.*, **8** (1984), 31–54.
- [10] J. Park. Hypersurfaces satisfying the equation $\Delta x = Rx + B$. To appear in Proc. A.M.S.
- [11] P. J. Ryan. Homogeneity and some curvature conditions for hypersurfaces. *Tôhoku Math. J.*, 21 (1969), 363–388.