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Abstract

In this work we study and classify pseudo-Riemannian hypersurfaces in pseudo-Riemannian
space forms which satisfy the condition∆x = Ax + B, whereA is an endomorphism,B
is a constant vector andx stands for the isometric immersion. We prove that the family
of such hypersurfaces consists of open pieces of minimal hypersurfaces, totally umbilical
hypersurfaces, products of two non-flat totally umbilical submanifolds and a special class of
quadratic hypersurfaces.

1. Introduction

Let x be an isometric immersion of a hypersurfaceMn
s in Rn+1

t and assume there exist an
endomorphismA of Rn+1

t and a constant vectorB in Rn+1
t such that∆x = Ax + B. We ask for

the following question:“What is the geometric meaning involved in that algebraic condition?”
This question was first studied in the Euclidean case by Chen and Petrovic [4], Dillen, Pas and
Verstraelen [5], and Hasanis and Vlachos [7], who obtained some interesting classification theo-
rems. Recently, Park [10], following closely the ideas in [2] and [1], has considered that condition
with B = 0 for hypersurfaces in Euclidean spherical and hyperbolic spaces.

To study that question in its full generality, it seemed natural to us to begin with Lorentzian
surfaces, [2]. Later, in [1], in order to generalize the above papers we gave a classification theorem
for pseudo-Euclidean hypersurfaces. Actually, we proved that the only hypersurfaces satisfying
the matricial condition on the Laplacian are open pieces of minimal hypersurfaces, totally umbil-
ical hypersurfaces and pseudo-Riemannian products of a totally umbilical and a totally geodesic
submanifold.

This paper arises as a natural continuation of [2] and [1], taking now a non-flat pseudo-
Riemannian space form as the ambient space. Here, we analyze the isometric immersionsx of
a hypersurfaceMn

s of M̄n+1
ν satisfying∆x = Ax + B, whereM̄n+1

ν is the pseudo-Euclidean
sphereSn+1

ν ⊂ Rn+2
ν or the pseudo-Euclidean hyperbolic spaceHn+1

ν ⊂ Rn+2
ν+1 .

In this new situation, the codimension of the manifoldMn
s in the pseudo-Euclidean space

where it is lying is two, so that one hopes to find a richer family of examples satisfying the asked
condition. On the other hand, although the proofs given in [1] do not work here, we follow the
techniques developed there.

Before to refer to the main result, we wish pointing out that a lot of hypersurfaces having non-
diagonalizable shape operator are given. This property makes substantially the difference between
this case and that treated in [1].

The main result of this paper states that the only hypersurfacesMn
s of M̄n+1

ν satisfying the
matricial condition on the Laplacian are open pieces of minimal hypersurfaces, totally umbilical

1



Trans. Amer. Math. Soc. 347 (1995), 1793–1801

hypersurfaces, pseudo-Riemannian products of two non-flat totally umbilical submanifolds and
quadratic hypersurfaces defined by{x ∈ Rn+2

t : 〈x, x〉 = ±1, 〈Lx, x〉 = c}, whereL is a
self-adjoint endomorphism ofRn+2

t with minimal polynomialµL of degree two, andc is a real
constant such thatµL(kc) 6= 0.

2. Preliminaries

LetRn+2
t be the(n+2)-dimensional pseudo-Euclidean space whose metric tensor is given by

ds2 = −
t∑

i=1

dxi ⊗ dxi +
n+2∑

j=t+1

dxj ⊗ dxj ,

where(x1, . . . , xn+2) is the standard coordinate system. For eachk 6= 0, let M̄n+1
ν (k) be the

complete and simply connected space with constant sectional curvature sign(k)/k2. A model for
M̄n+1

ν (k) is the pseudo-Euclidean sphereSn+1
ν (k) if k > 0 and the pseudo-Euclidean hyperbolic

spaceHn+1
ν (k) if k < 0, whereSn+1

ν (k) = {x ∈ Rn+2
ν : 〈x, x〉 = k2} andHn+1

ν (k) = {x ∈
Rn+2

ν+1 : 〈x, x〉 = −k2}, 〈, 〉 standing for the indefinite inner product in the pseudo-Euclidean
space. Throughout this paper we will assume, without loss of generality, thatk2 = 1.

Let Mn
s be a pseudo-Riemannian hypersurface inM̄n+1

ν and let∇ (∇̄ and ∇̃) denotes the
Levi-Civita connection onMn

s (M̄n+1
ν andRn+2

t , respectively). We will also denote byN the
unit normal vector field toMn

s in M̄n+1
ν . Let H ′ andH be the mean curvature vector fields of

Mn
s in M̄n+1

ν andRn+2
t , respectively. Thus we may writeH ′ = αN , α being the mean curvature

of Mn
s in M̄n+1

ν , and
H = H ′ − kx = αN − kx.

Let x : Mn
s −→ M̄n+1

ν be an isometric immersion satisfying the condition

∆x = Ax + B,

whereA is an endomorphism ofRn+2
t andB a constant vector inRn+2

t . Taking covariant deriva-
tive in (2) and using the Laplace-Beltrami equation∆x = −nH and the Weingarten formula we
getAX = nSHX − nDXH, for any vector fieldX tangent toMn

s , whereD denotes the nor-
mal connection onMn

s andSξ the Weingarten endomorphism associated to a normal vector field
ξ. Then by (1) we haveDXH = X(α)N andSHX = αSX + kX, where, for short, we have
writtenS for the Weingarten endomorphismSN . From now on, we will callS the shape operator
of Mn

s . Now from the above formulae we deduce that

AX = n(αSX + kX)− nX(α)N.

From (2), taking into account the Laplace-Beltrami equation and (1), we obtain the following
equation

Ax = −nαN + nkx−B.

By applying the Laplacian on both sides of (2) and using again that∆x = −nH we findAH =
∆H, that along with (1) leads toαAN = ∆H + kAx. Now, bringing here (4) and the formula
for ∆H obtained in [3, Lemma 3]

∆H = 2S(∇α) + nεα∇α + (∆α + εα|S|2 + nkα)N − nk(k + εα2)x,
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where∇α stands for the gradient ofα, ε = 〈N,N〉 and|S|2 = trace(S2), we get the following
equation

αAN = 2S(∇α) + nεα∇α + (∆α + εα|S|2)N (5)

− nkεα2x− kB.

3. Some examples

In this paper we wish to classify the hypersurfacesMn
s in M̄n+1

ν whose isometric immersion
satisfies the condition (2). In order to get such a classification we need some examples.

2.1Minimal hypersurfacesMn
s in M̄n+1

ν obviously satisfy (2). Indeed, by using (1) we have
H = −kx and∆x = nkx. So we can takeA = nkIn+2 andB = 0.

2.2LetMn
s be a totally umbilical hypersurface in̄Mn+1

ν . Taking into account the classification
theorem for such hypersurfaces (see, for example, [9, Theorem 1.4]) we get, according to〈H, H〉
is positive, negative or zero,Mn

s is an open piece of a pseudo-Euclidean sphereSn
s (r), a pseudo-

Euclidean hyperbolic spaceHn
s (r) or Rn

s . In the last case, the immersionf : Rn
s −→ Rn+2

s+1

is given byf(u) = (q(u), u1, . . . , un, q(u)), whereq(u) = a 〈u, u〉+ 〈b, u〉+ c, a 6= 0. The
pseudo-Euclidean spheres and pseudo-Euclidean hyperbolic spaces both satisfy the condition (2).
Indeed, by consideringϕ as the standard immersion ofSn

s (r) or Hn
s (r) in a hyperplaneRn+1

s′
of Rn+2

t , we know from [1] that ∆ϕ = Lϕ, L being an endomorphism ofRn+1
s′ . The (n +

1) × (n + 1) matrix L and the immersionϕ become an(n + 2) × (n + 2) matrix A (filling
with zeros) and an immersionx in Rn+2

t , respectively, in a natural way and so we get (2) with
B = 0. Therefore the most interesting case is that with〈H,H〉 = 0. Now we can choose a
point p in Rn+2

s+1 such that〈f − p, f − p〉 = ±1 and thenx = f − p is an immersion fromRn
s

in M̄n+1
ν with ∆x = −2n(a, 0, . . . , 0, a). Thus this hypersurface satisfies (2) withA = 0 and

B = (−2na, 0, . . . , 0,−2na). Furthermore, from the equation∆x = −nαN + nkx, we easily
obtain that its constant mean curvatureα is given byα2 = 1.

2.3Let x : Mm
s −→ Rm+1

t andy : M ′m′
s′ −→ Rm′+1

t′ be two isometric immersions satisfying
the condition (2) and letz = x×y be the natural isometric immersion from the pseudo-Riemannian
productMm

s ×M ′m′
s′ in Rm+m′+2

t+t′ . If ∆x = Ax + B and∆′y = A′y + B′ then we can consider

Ã = diag[A,A′] and B̃ = (B,B′). Thus it is easy to show that̃∆z = Ãz + B̃. Then from
[1, Section 2], we can construct the following examples of hypersurfaces inM̄n+1

ν satisfying the
condition (2):
(a) Sp

u(r) × Sn−p
s−u(

√
1− r2) ⊂ Sn+1

s , with 0 < r < 1 andr 6=
√

p/n, whose constant mean
curvature is given byα2 = (nr2 − p)2/(n2r2(1− r2));
(b) Hp

u(−r) × Hn−p
s−u(−√1− r2) ⊂ Hn+1

s+1 , with 0 < r < 1, r 6=
√

p/n andα2 = (nr2 −
p)2/(n2r2(1− r2));
(c) Sp

u(r)×Hn−p
s−u(−√−1 + r2) ⊂ Sn+1

s+1 , with r > 1 andα2 = (nr2 − p)2/(n2r2(r2 − 1));
(d) Sp

u(r)×Hn−p
s−u(−√1 + r2) ⊂ Hn+1

s , with r > 0 andα2 = (nr2 + p)2/(n2r2(1 + r2));
where1 6 p 6 n − 1 and0 6 u 6 s. We will refer these examples as thepseudo-Riemannian
non-minimal standard products.

2.4The hypersurfaces in examples2.2and2.3have diagonalizable shape operator. However,
it seems natural thinking of hypersurfaces with non-diagonalizable shape operator satisfying (2)
into indefinite ambient spaces. LetL be a self-adjoint endomorphism ofRn+2

t , that is,〈Lx, y〉 =
〈x, Ly〉 for all x, y ∈ Rn+2

t . Let f : M̄n+1
ν −→ R be the quadratic function defined byf(x) =
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〈Lx, x〉 and assume that the minimal polynomial ofL is given byµL(t) = t2 + at + b, a, b ∈ R.
Then by computing the gradients, at each pointx ∈ M̄n+1

ν , we have∇̃f(x) = 2Lx and∇̄f(x) =
2Lx − 2kf(x)x. If ∆̃ and∆̄ denote the Laplacian operators onRn+2

t andM̄n+1
ν , respectively, a

straightforward computation yields̃∆f(x) = −2 trace(L) and∆̄f(x) = −2 trace(L)− 2k(n +
1)f(x).

Consider the level setM = f−1(c) for a real constantc. Then at a pointx in M we have
〈∇̄f(x), ∇̄f(x)

〉
= 4

〈
L2x, x

〉− 4kf(x)2 = −4kµL(kc),

and sof is an isoparametric function (see [6]). Thus the level hypersurfaces{f−1(c)}c∈I , where
I ⊂ {c ∈ R : µL(kc) 6= 0} is connected, form an isoparametric family in the classical sense.

The shape operator ofMn
s is given bySX = − 1

|∇̄f | ∇̄X(∇̄f) =
1

|µL(kc)|1/2
(kcX − LX) and

a messy computation gives

tr(S) =
nkc− tr(L)− a

|µL(kc)|1/2
.

Then the mean curvatureα is given by

α =
ε

n
tr(S) = δ

a + tr(L)− nkc

nk|µL(kc)|1/2
,

whereδ stands for the sign ofµL(kc). Therefore we get

H ′ =
a + trL− knc

knµL(kc)
(Lx− kcx),

from which we deduce, by using∆x = −n(H ′ − kx), that∆x = Ax, whereA is given by

A =
knc− a− trL

kµL(kc)
L +

ctrL + (n + 1)ac + knb

µL(kc)
In+2.

4. First characterization results

The aim of this section is to show that a hypersurfaceMn
s of M̄n+1

ν satisfying the condition
(2) has to be of constant mean curvature. To do that, letW be the open set of regular points ofα2,
which we may assume a non-empty set. From (3) we have〈AX, x〉 = 0, for any vector fieldX
tangent toMn

s . Taking covariant derivative there we get

〈Aσ(X, Y ), x〉 = −〈AX, Y 〉 ,
for all tangent vectorsX andY , whereσ represents the second fundamental form ofMn

s in Rn+2
t ,

which is given by
σ(X, Y ) = ε 〈SX, Y 〉N − k 〈X, Y 〉x.

Now equation (1), jointly with (3) and (2), leads to

ε〈SX, Y 〉〈AN, x〉 − k〈X, Y 〉〈Ax, x〉 = −nα〈SX, Y 〉 − nk〈X,Y 〉.
Bringing here the formulae forAx andAN given in (4) and (5), respectively, a straightforward
computation yields

〈SX − εαX, Y 〉 〈B, x〉 = 0,

at the points ofW. This equation is the key to the following result.
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Lemma 4.1 Let x : Mn
s −→ M̄n+1

ν be a hypersurface such that∆x = Ax + B. If Mn
s has

non-constant mean curvature, thenB = 0.

Proof. Let us consider the setU = {p ∈ W : 〈B, x〉 (p) 6= 0} and assume it is a non-empty set.
Then at the points ofU , from (3) and (3), we have

AX = n(εα2 + k)X − nX(α)N.

Sincen > 2, we can always find a vector fieldX such thatX(α) = 〈X,∇α〉 = 0. This shows,
by using (4), thatn(εα2 + k) is an eigenvalue ofA and therefore locally constant onU , which is
a contradiction. HenceU = ∅ and〈B, x〉 = 0 onW. Taking covariant derivative here he deduce
thatB has no tangent component and therefore we getB = ε 〈B, N〉N and〈B, N〉 = 0, because
W is not empty.

Next we are going to make some computations before to state the main result of this section.
From equation (3) it is easy to see that

〈AX, Y 〉 = 〈X, AY 〉 ,
for all tangent vector fieldsX andY . Taking covariant derivative here and using the Gauss formula
jointly with (5), we find

〈Aσ(X, Z), Y 〉 − 〈Aσ(Y, Z), X〉 = (6)

〈σ(X, Z), AY 〉 − 〈σ(Y, Z), AX〉 .
By (2) and (3), the equation (6) becomes

ε〈SX, Z〉〈AN,Y 〉 − k〈X, Z〉〈Ax, Y 〉 − (7)

ε〈SY,Z〉〈AN, X〉+ k〈Y,Z〉〈Ax,X〉 =
−nY (α)〈SX, Z〉+ nX(α)〈SY,Z〉.

Finally, by Lemma 4.1, (4) and (5), from (7) we obtain

TX(α)SY = TY (α)SX, (8)

whereT means the self-adjoint operator defined byTX = nαX + εSX. This equation becomes
the crucial point to show the next result.

Proposition 4.2 Let x : Mn
s −→ M̄n+1

ν be an isometric immersion such that∆x = Ax + B.
ThenMn

s has constant mean curvature.

Proof. From Lemma 4.1 we can assumeB = 0 and then equation (8) holds onW. First, suppose
that T (∇α) 6= 0 at the points ofW. Then there is a vector fieldX tangent toMn

s such that
TX(α) 6= 0, so that by using (8) we find that rankS=1 at the points ofW. Therefore we can
choose a local orthonormal frame{E1, . . . , En} such thatSE1 = nεαE1, SEi = 0, i = 2, . . . , n
andεi = 〈Ei, Ei〉. Also from (8) we have thatEi(α) = 0, i = 2, . . . , n and using again (3), (4)
and (5) we get

AE1 = n(k + εnα2)E1 − nE1(α)N,

AEi = nkEi, i = 2, . . . , n,

AN = 3nεε1E1(α)E1 + {∆α

α
+ εn2α2}N − nkεαx,

Ax = −nαN + nkx.
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Therefore, span{E1, N, x} is an invariant subspace underA and the characteristic polynomial
pA(t) of A is given bypA(t) = (t − nk)n−1pA∗(t), whereA∗ stands forA|span{E1,N,x}. Then
pA∗(t) is constant and we can find three real constantsλ1, λ2 andλ3 (which are nothing but the
invariants associated toA∗) such that

λ1 =
∆α

α
+ 2n{k + εnα2},

λ2 = n(2k + εnα2)(
∆α

α
+ εn2α2) + 3n2εε1E1(α)2 + n2k(k + εnα2)− kn2εα2,

λ3 = n2k(k + εnα2)(
∆α

α
+ εn2α2)− n3kεα2(k + εnα2) + 3n3εε1kE1(α)2.

Then we obtain

nkλ2 = λ3 + n3(k + εnα2) + n2(
∆α

α
+ εn2α2) + n4kα4

and
∆α

α
= λ1 − 2n(k + εnα2).

Last two equations allow us to writen4α4 = kpA∗(kn) and soα is locally constant onW, which
is a contradiction.

Finally, assume now there is a pointp in W such thatT (∇α)(p) = 0. Note that from (3) and
(5) we have inW, ∀i = 1, . . . , n

〈AEi, N〉 = −nεEi(α) (9)

〈Ei, AN〉 =
2ε

α
〈T (∇α), Ei〉 − nεEi(α).

It follows that atp,
〈AEi, N〉 = 〈Ei, AN〉. (10)

From (3), (4), (5), (1) and (10) we deduce thatA is a self-adjoint endomorphism ofRn+2
t and thus

equation (10) remains valid at every point inW. In turn, from (10)T (∇α) = 0 onW and so
∇α is an eigenvector ofS with associated eigenvalue−nεα. If 〈∇α,∇α〉 = ∇α(α) = 0, from
(3) we could writeA(∇α) = n(k − nεα2)∇α, thenn(k − nεα2) should be an eigenvalue ofA
andα must be locally constant onW, which cannot be hold. Therefore we can choose a local
orthonormal frame{E1, . . . , En} with E1 parallel to∇α such that

AE1 = n(k − nεα2)E1 − nE1(α)N,

AEi = n(αSEi + kEi), i = 2, . . . , n,

AN = −nεε1E1(α)E1 + {∆α

α
+ ε|S|2}N − nkεαx,

Ax = −nαN + nkx.

SinceSEi ∈ span{E2, . . . , En}, i = 2, . . . , n, we may writeS∗ for the endomorphismS re-
stricted to span{E2, . . . , En}. Working on the characteristic polynomials, from the above equa-
tions we can deduce that

pA(t) = (nα)n−1q(t)pS∗(
t− nk

nα
),

6
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whereq(t) is a polynomial of degree three. Let{r1, . . . , rn} be the possibly complex roots of
pS(t), with r1 = −nεα and{r2, . . . , rn} the roots ofpS∗(t). Then the functionsnk + nαrj , j =
2, . . . , n, are roots ofpA(t) and therefore they are locally constant onW. Thus from the formula∑n

j=2(nk+nαrj) = n(n−1)k+nα
∑n

j=2 rj = n(n−1)k+nα(trS−r1) = n(n−1)k+2εn2α,
we obtain thatα is locally constant onW, which is a contradiction.

Summarizing, we have got thatW has to be empty, i.e.,Mn
s has constant mean curvature.

5. Main results

We have just proved that the hypersurfacesMn
s of M̄n+1

ν satisfying the condition (2) have
constant mean curvature. In this section, we wish to give a classification theorem of such a class
of hypersurfaces. To do that, we recall the following definition. A hypersurfaceMn

s is said to
be isoparametricif the characteristic polynomialpS(t) of its shape operatorS is the same at all
points ofMn

s . WhenS is diagonalizable (for example, in the definite case) that means that the
principal curvatures ofMn

s , as well as its multiplicities, are constant. Our first main result states
as follows.

Theorem 5.1 Letx : Mn
s −→ M̄n+1

ν be an isometric immersion satisfying∆x = Ax + B. Then
Mn

s is a minimal or an isoparametric hypersurface.

Proof. Let Mn
s be a hypersurface of̄Mn+1

ν satisfying (2). By Proposition 4.2 we can assume that
the mean curvatureα of Mn

s in M̄n+1
ν is a non-zero constant and so the equation (3) works here.

If Mn
s is not totally umbilical inM̄n+1

ν , then we have〈B, x〉 = 0 and, as in Lemma 4.1,B = 0.
Now, from (3), (4) and (5) we get

AX = n(αSX + kX),
AN = ε|S|2N − nkεαx, (1)

Ax = −nαN + nkx.

Working again on the characteristic polynomialspA(t) andpS(t), as in Section 4, we deduce that
pS(t) is constant onMn

s and the proof finishes.
Next with the aim of getting a complete classification of those hypersurfacesMn

s of M̄n+1
ν

satisfying (2), some easy computations are needed. From Theorem 5.1,Mn
s is an isoparamet-

ric hypersurface provided that the (constant) mean curvatureα is not zero, and thus|S|2 is also
constant. Taking covariant derivative in the expression ofAN in (1) we have∇̃X(AN) =
−ε|S|2SX − nkεαX and∇̃X(AN) = A(∇̃XN) = −n(αS2X + kSX), from which we obtain

S2 +
nk − ε|S|2

nα
S − kεI = 0, (2)

whereI stands for the identity operator on the tangent bundle ofMn
s . We have just seen that if

Mn
s is not totally umbilical thenB = 0 and thus equations (1) and (2) allow us to write

A2 − (ε|S|2 + kn)A + nεk(|S|2 − nα2)In+2 = 0,

and furthermore, from (1),A is a self-adjoint endomorphism ofRn+2
t . If S is diagonalizable,

from (2), Mn
s has exactly two constant principal curvatures. By using now similar arguments as

7
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in Theorem 2.5 of [11] and Lemma 2 of [8], we deduce thatMn
s is an open piece of a pseudo-

Riemannian product of two non-flat totally umbilical submanifolds. IfS is not diagonalizable,
from (3), the minimal polynomialµA(t) of A is given byµA(t) = t2 +at+b, with a = −(ε|S|2 +
kn) andb = nεk(|S|2−nα2). Since〈Ax, x〉 = n is constant onMn

s andµA(kn) = −n2α2εk 6=
0, thenMn

s is an open piece of a quadratic hypersurface as in example2.4. Summing up, we have
proved the following theorem.

Theorem 5.2 Let x : Mn
s −→ M̄n+1

ν be an isometric immersion. Then∆x = Ax + B if and
only if Mn

s is an open piece of one of the following hypersurfaces inM̄n+1
ν :

1) a minimal hypersurface,
2) a totally umbilical hypersurface,
3) a pseudo-Riemannian non-minimal standard product,
4) a quadratic hypersurface as in example2.4, with non-diagonalizable shape operator (a2 −

4b 6 0).

As a consequence, we obtain the classification theorem for hypersurfaces inSn+1 andHn+1,
which generalizes Theorem 1.3 in [10].

Corollary 5.3 Let x : Mn −→ M̄n+1 be a non-minimal hypersurface. Then∆x = Ax + B if
and only ifMn is an open piece of one of the following hypersurfaces:

1) a totally umbilical hypersurface,
2) a productM̄p(r1)× Sn−p(r2).
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[1] L. J. Alı́as, A. Ferŕandez and P. Lucas. Submanifolds in pseudo-Euclidean spaces satisfying the

condition∆x = Ax + B. Geom. Dedicata, 42 (1992), 345–354.
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