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Abstract

In this work we study and classify pseudo-Riemannian hypersurfaces in pseudo-Riemannian
space forms which satisfy the conditidiw = Az + B, where A is an endomorphismi3

is a constant vector and stands for the isometric immersion. We prove that the family

of such hypersurfaces consists of open pieces of minimal hypersurfaces, totally umbilical
hypersurfaces, products of two non-flat totally umbilical submanifolds and a special class of
quadratic hypersurfaces.

1. Introduction

Let = be an isometric immersion of a hypersurfagg’ in ]R{j}“ and assume there exist an
endomorphism of R?*! and a constant vectds in R?! such thatAz = Az + B. We ask for
the following questionWhat is the geometric meaning involved in that algebraic condition?”
This question was first studied in the Euclidean case by Chen and Pe#pvizillen, Pas and
Verstraelen %], and Hasanis and Vlachog][ who obtained some interesting classification theo-
rems. Recently, ParlL[)], following closely the ideas ing] and [1], has considered that condition
with B = 0 for hypersurfaces in Euclidean spherical and hyperbolic spaces.

To study that question in its full generality, it seemed natural to us to begin with Lorentzian
surfaces, 2]. Later, in [1], in order to generalize the above papers we gave a classification theorem
for pseudo-Euclidean hypersurfaces. Actually, we proved that the only hypersurfaces satisfying
the matricial condition on the Laplacian are open pieces of minimal hypersurfaces, totally umbil-
ical hypersurfaces and pseudo-Riemannian products of a totally umbilical and a totally geodesic
submanifold.

This paper arises as a natural continuation 2)fgnd [1], taking now a non-flat pseudo-
Riemannian space form as the ambient space. Here, we analyze the isometric immerdions
a hypersurfacé/" of M"*! satisfyingAz = Az + B, where M is the pseudo-Euclidean
spheres+! ¢ R2*2 or the pseudo-Euclidean hyperbolic spat! ¢ R!'f7.

In this new situation, the codimension of the manifdlff’ in the pseudo-Euclidean space
where it is lying is two, so that one hopes to find a richer family of examples satisfying the asked
condition. On the other hand, although the proofs giverljrdp not work here, we follow the
techniques developed there.

Before to refer to the main result, we wish pointing out that a lot of hypersurfaces having non-
diagonalizable shape operator are given. This property makes substantially the difference between
this case and that treated it] [

The main result of this paper states that the only hypersurtatesf M7+ satisfying the
matricial condition on the Laplacian are open pieces of minimal hypersurfaces, totally umbilical
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hypersurfaces, pseudo-Riemannian products of two non-flat totally umbilical submanifolds and
quadratic hypersurfaces defined by € R?™2 : (z,2) = +1, (Lz,z) = c}, whereL is a
self-adjoint endomorphism dt?” with minimal polynomialy;, of degree two, and is a real
constant such thaty, (kc) # 0.

2. Preliminaries

Let ]R?*z be the(n + 2)-dimensional pseudo-Euclidean space whose metric tensor is given by

t n+2
ds® = dexi@)dxi + Z de? @ da’,
i=1 j=t+1
where(z1,...,7,12) is the standard coordinate system. For elck 0, let M1 (k) be the

complete and simply connected space with constant sectional curvatuge)gigh A model for
Mn"*1(k) is the pseudo-Euclidean sph&g™! (k) if £ > 0 and the pseudo-Euclidean hyperbolic
spaceH (k) if k < 0, whereS! (k) = {z € R*™2 : (z,2) = k?} andH? "} (k) = {x €
R’,}ﬁ . (z,r) = —k?}, (,) standing for the indefinite inner product in the pseudo-Euclidean
space. Throughout this paper we will assume, without loss of generality;thatl .

Let M be a pseudo-Riemannian hypersurfacélifi*! and letV (V and V) denotes the
Levi-Civita connection oM/ (M7 +! andR?“, respectively). We will also denote hy the
unit normal vector field ta\/™ in M7+, Let H' and H be the mean curvature vector fields of
M in M7+ andR?”, respectively. Thus we may writd’ = oV, o being the mean curvature
of M™in M7+, and

H=H —kx=aN — kx.

Letz : M — M”*! be an isometric immersion satisfying the condition
Ax = Ax + B,

whereA is an endomorphism &2 and B a constant vector iR} 2. Taking covariant deriva-
tive in (2) and using the Laplace-Beltrami equatitm = —nH and the Weingarten formula we
getAX = nSyX —nDxH, for any vector fieldX tangent toM', whereD denotes the nor-
mal connection o/ and.S, the Weingarten endomorphism associated to a normal vector field
& Then by (1) we havdx H = X (a)N andSyX = aSX + kX, where, for short, we have
written S for the Weingarten endomorphisfia;. From now on, we will callS the shape operator

of M. Now from the above formulae we deduce that

AX =n(aSX +kX) —nX(a)N.

From (2), taking into account the Laplace-Beltrami equation and (1), we obtain the following
equation
Ax = —naN + nkx — B.

By applying the Laplacian on both sides of (2) and using againshat —nH we find AH =
AH, that along with (1) leads taAN = AH + kAz. Now, bringing here (4) and the formula
for AH obtained in 8, Lemma 3]

AH =2S(Va) + neaVa + (Aa + ea|S|* + nka)N — nk(k + ea?)z,
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whereVa stands for the gradient ef, ¢ = (N, N) and|S|? = trace(S?), we get the following
eguation

aAN = 25(Va)+neaVa + (Aa + ealS|?)N (5)
— nkea’z — kB.

3. Some examples

In this paper we wish to classify the hypersurfagég in M+! whose isometric immersion
satisfies the condition (2). In order to get such a classification we need some examples.

2.1 Minimal hypersurfaced/™ in M +! obviously satisfy (2). Indeed, by using (1) we have
H = —kx andAx = nkx. So we can takel = nkl, 2 andB = 0.

2.2Let M be atotally umbilical hypersurface M +!. Taking into account the classification
theorem for such hypersurfaces (see, for examp|eltieorem 1.4]) we get, according ¢&/, H)
is positive, negative or zerd/!" is an open piece of a pseudo-Euclidean spBSéfe), a pseudo-
Euclidean hyperbolic spadé?(r) or R?. In the last case, the immersigh: R? — joff
is given by f(u) = (q(u),us,...,u,,q(u)), whereq(u) = a(u,u)+ (b,u) + ¢, a # 0. The
pseudo-Euclidean spheres and pseudo-Euclidean hyperbolic spaces both satisfy the condition (2).
Indeed, by considering as the standard immersion 8f(r) or H?(r) in a hyperplaner?*!
of R}2, we know from [l that A¢p = Ly, L being an endomorphism @&”*'. The (n +
1) x (n + 1) matrix L and the immersionp become ann + 2) x (n + 2) matrix A (filling
with zeros) and an immersianin R?”, respectively, in a natural way and so we get (2) with
B = 0. Therefore the most interesting case is that With H) = 0. Now we can choose a
point p in jof such that(f — p, f —p) = +1 and therw = f — p is an immersion fronR?
in M1 with Az = —2n(a,0,...,0,a). Thus this hypersurface satisfies (2) with= 0 and
B = (—2na,0,...,0,—2na). Furthermore, from the equatiahz = —naN + nkz, we easily
obtain that its constant mean curvatarés given bya? = 1.

2.3Letz : M7" — R andy : M’ — R+ be two isometric immersions satisfying
the condition (2) and let = xx y be the natural isometric immersion from the pseudo-Riemannian
productM™ x M'™" in R;Tg,m/”. If Ax = Az + B andA’y = A’y + B’ then we can consider
A = diag[A, A') andB = (B, B’). Thus it is easy to show thatz = Az + B. Then from
[1, Section 2], we can construct the following examples of hypersurfackgih! satisfying the
condition (2):
(@ Sh(r) x Si=P(v/1—r2) c S+, with0 < r < 1 andr # /p/n, whose constant mean
curvature is given by? = (nr? — p)?/(n?r%(1 — r?));
(b) Hiy(—r) x HLZP(—v1—=72) ¢ HX, with0 < 7 < 1,7 # /p/nanda® = (nr? —
p)?/(n*r*(1 = r?));
(©)Sh(r) x H."P(—v/—=1+12) C Sgill, withr > 1 anda? = (nr? — p)?/(n?r?(r? — 1));
(d)SE(r) x H“P(—+/1 4 72) c HHL, with» > 0 anda? = (nr? + p)2/(n?r%(1 + r?));
wherel < p < n—1and0 < u < s. We will refer these examples as thseudo-Riemannian
non-minimal standard products

2.4The hypersurfaces in exampl2 and2.3 have diagonalizable shape operator. However,
it seems natural thinking of hypersurfaces with non-diagonalizable shape operator satisfying (2)
into indefinite ambient spaces. Lbtbe a self-adjoint endomorphism Rﬁ”, thatis,(Lz,y) =
(z, Ly) for all z,y € R, Let f : M?*' — R be the quadratic function defined tfyz) =

3
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(Lz, ) and assume that the minimal polynomiallofs given byuy(t) = t> + at + b, a,b € R.
Then by computing the gradients, at each peirt M+!, we haveV f(z) = 2Lz andV f(z) =
2Lz — 2kf(x)z. If A andA denote the Laplacian operators Bfi™> and M+, respectively, a
straightforward computation yields f (z) = —2 trace(L) andAf(x) = —2 trace(L) — 2k(n +
1f(@).

Consider the level set/ = f~!(c) for a real constant. Then at a point in M we have
(Vf(@),Vf(x)) =4(L*, z) — dkf(z)* = —4kpy (ke),

and sof is an isoparametric function (seg]). Thus the level hypersurfacég—'(c)}.c;, where

I C {c € R : pupr(ke) # 0} is connected, form an isoparametric family in the classical sense.
1

The shape operator 6ff]' is given bySX = —=—Vx(Vf) = ————7(keX — LX) and
o IV/] |z (k)Y
a messy computation gives
t2(S) = nkc — tr(Ll) 2— a
|z (k)Y

Then the mean curvatureis given by

o Etr(S) _ 5a+tr(L) —lnl’;:c7
n k| (ke)|V/
whered stands for the sign qgi;,(kc). Therefore we get
, _a+trL —knc _
H' = T (Lz — kcx),

from which we deduce, by usiyz = —n(H' — kz), thatAz = Az, whereA is given by

_knc—a—trL ctrL 4 (n + 1)ac + knb
kpr(ke) pr(ke)

n+2-

4. First characterization results

The aim of this section is to show that a hypersurfacg of M+ satisfying the condition
(2) has to be of constant mean curvature. To do thatMéte the open set of regular pointscof,
which we may assume a non-empty set. From (3) we Kave, =) = 0, for any vector fieldX
tangent ta)/. Taking covariant derivative there we get

(Ao(X,Y),z) = — (AX,Y),

for all tangent vector andY’, whereo represents the second fundamental formgf in R?”,
which is given by
o(X,)Y)=e(SX,)Y)N —k(X,Y)x.

Now equation (1), jointly with (3) and (2), leads to
e(SX,Y)(AN,z) — k(X,Y)(Az,z) = —na(SX,Y) — nk(X,Y).

Bringing here the formulae fodxz and AN given in (4) and (5), respectively, a straightforward
computation yields
(SX —eaX,Y) (B,z) =0,

at the points o?V. This equation is the key to the following result.
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Lemma4.lLetr : M — M *! be a hypersurface such thdtz = Az + B. If M has
non-constant mean curvature, th&n= 0.

Proof. Let us consider the sét = {p € W : (B, z) (p) # 0} and assume it is a non-empty set.
Then at the points df/, from (3) and (3), we have
AX =n(ea® + k)X —nX(a)N.

Sincen > 2, we can always find a vector field such thatX (o) = (X, Va) = 0. This shows,
by using (4), that(ca? + k) is an eigenvalue oft and therefore locally constant &) which is
a contradiction. Henc® = () and (B, z) = 0 on V. Taking covariant derivative here he deduce
that B has no tangent component and therefore weyete (B, N) N and(B, N) = 0, because
W is not empty.

Next we are going to make some computations before to state the main result of this section.
From equation (3) it is easy to see that

(AX,Y) = (X, AY),
for all tangent vector fieldX andY . Taking covariant derivative here and using the Gauss formula
jointly with (5), we find
<AU(X72)7Y> - <AU(Y7Z)7X> = (6)
<U(Xa Z)7AY> - <U(K Z)7AX> :
By (2) and (3), the equation (6) becomes
e(SX,ZY(AN,Y) — k(X, Z)(Az,Y) — @)
e(SY, Z)(AN, X) + k(Y, Z)(Az, X) =
—nY (a)(SX,Z) + nX(a)(SY, Z).
Finally, by Lemma 4.1, (4) and (5), from (7) we obtain
TX(a)SY =TY (a)SX, (8)
whereT means the self-adjoint operator definedlbh¥ = naX + «SX. This equation becomes
the crucial point to show the next result.

Proposition 4.2 Letz : M? — M”*! be an isometric immersion such thAtr = Ax + B.
ThenM] has constant mean curvature.

Proof. From Lemma 4.1 we can assurBe= 0 and then equation (8) holds . First, suppose
that7'(Va) # 0 at the points of/V. Then there is a vector field tangent toM" such that
TX(a) # 0, so that by using (8) we find that rasik1 at the points o). Therefore we can
choose a local orthonormal framMé , . . ., E,,} such thatSE; = neaFy, SE; =0,i=2,...,n
ande; = (E;, E;). Also from (8) we have thak;(«) = 0,7 = 2,...,n and using again (3), (4)
and (5) we get

AE;, = n(k+ena®)Ey — nEi(a)N,

AEl = nk:El, 1= 2,...,??,,

A

AN = 3neeiEi(a)Er + {—a +en*a®}N — nkeaw,
o

Axr = —nalN + nkzx.
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Therefore, spaf¥;, N, z} is an invariant subspace unddrand the characteristic polynomial
pa(t) of Ais given bypa(t) = (t — nk)" 'pa«(t), where A* stands forA|s,.n(, vy Then
pa-(t) is constant and we can find three real constanfs\s and A3 (which are nothing but the
invariants associated t4*) such that

A
A = Fa + 2n{k + ena?},
A
Ao = n(2k+ 5na2)(—a + en?a®) + 3n%ce1 By (o) + n2k(k + ena®) — knea?,
a
A
A3 = nlk(k+ €na2)(—a +en?a?) — n*kea®(k + ena?) + 3n’ee1kFy (o).
o'
Then we obtain
3 2 g A 2 2 47,4
nkXy = A3 +n°(k +ena”) +n (j—i—sn a®) +n“ka

and
A«

— =\ — 2n(k + ena?).
«
Last two equations allow us to write'a* = kp 4+ (kn) and sax is locally constant oy, which
is a contradiction.
Finally, assume now there is a pommin W such thatl’(Va)(p) = 0. Note that from (3) and

(5) we have inlV,Vi=1,...,n

(AE;,N) = —neFE;(a) 9)
(Fi, AN) = %(T(Va),Eﬁ—nsEi(a).
It follows that atp,
(AE;, N) = (E;, AN). (10)

From (3), (4), (5), (1) and (10) we deduce thhis a self-adjoint endomorphism R[f” and thus
equation (10) remains valid at every pointiii. In turn, from (10)7(Va) = 0 on W and so
Va is an eigenvector af with associated eigenvaluenca. If (Va, Va) = Va(a) = 0, from
(3) we could writeA(Va) = n(k — nea?)Va, thenn(k — nea?) should be an eigenvalue df
anda must be locally constant on/, which cannot be hold. Therefore we can choose a local

orthonormal fram€ E1, ..., E,, } with E; parallel toVa such that
AE; = n(k—nea®)E; —nEi(a)N,
AE; = n(aSEz + kEi), 1=2,...,m,
A
AN = —nes1Ei(a)E + {70[ +¢|SI’}N — nkeaw,
o
Axr = —naN + nkx.

SinceSE; € span{Es,...,E,}, 1 = 2,...,n, we may writeS* for the endomorphisn$' re-
stricted to spafiFs, ..., E,}. Working on the characteristic polynomials, from the above equa-
tions we can deduce that
t —nk

no

pa(t) = (na)" q(t)ps-( ),
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whereq(t) is a polynomial of degree three. Léty,...,r,} be the possibly complex roots of
ps(t), withr; = —nea and{rs, ..., r,} the roots ofpgs-(t). Then the functionsk + nar;, j =
2,...,n, are roots op 4(t) and therefore they are locally constantidh Thus from the formula
> j—a(nk+narj) =n(n—1k+nad i _or; =n(n—1k+na(trS—ri) =n(n— 1)k+2ena,
we obtain that is locally constant onV, which is a contradiction.

Summarizing, we have got tha¥ has to be empty, i.e//!’ has constant mean curvature.

5. Main results

We have just proved that the hypersurfaddg of M *! satisfying the condition (2) have
constant mean curvature. In this section, we wish to give a classification theorem of such a class
of hypersurfaces. To do that, we recall the following definition. A hypersurfd€eis said to
beisoparametricif the characteristic polynomials(¢) of its shape operato$ is the same at alll
points of M*. When S is diagonalizable (for example, in the definite case) that means that the
principal curvatures o/, as well as its multiplicities, are constant. Our first main result states
as follows.

Theorem 5.1 Letz : M — M"*+! be an isometric immersion satisfyidgr = Ax + B. Then
M? is a minimal or an isoparametric hypersurface.

Proof. Let M be a hypersurface df/"*! satisfying (2). By Proposition 4.2 we can assume that
the mean curvature of M in M*! is a non-zero constant and so the equation (3) works here.
If M is not totally umbilical in}/?**, then we havéB, z) = 0 and, as in Lemma 4.13 = 0.
Now, from (3), (4) and (5) we get

AX = n(aSX +EkX),
AN = ¢|S]’N — nkeax, 1)
Ar = —nalN + nkx.

Working again on the characteristic polynomialgt) andps(t), as in Section 4, we deduce that
ps(t) is constant o/ and the proof finishes.

Next with the aim of getting a complete classification of those hypersurta€esf M7 +!
satisfying (2), some easy computations are needed. From Theorem/3.1s an isoparamet-
ric hypersurface provided that the (constant) mean curvaitsenot zero, and thulS|? is also
constant. Taking covariant derivative in the expressiomddf in (1) we haveV x(AN) =
—e|S|2SX — nkeaX andVy (AN) = A(VxN) = —n(aS?X + kSX), from which we obtain

nk —¢e|S|?
+ - -
no

S2 S — kel =0, 2)

where! stands for the identity operator on the tangent bundl@/@f We have just seen that if
M? is not totally umbilical therB = 0 and thus equations (1) and (2) allow us to write

A? — (e S|* + kn)A + nek(|S|* — na®) T2 = 0,

and furthermore, from (1)A is a self-adjoint endomorphism dﬁ?“. If S is diagonalizable,
from (2), M has exactly two constant principal curvatures. By using now similar arguments as

7
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in Theorem 2.5 of 11] and Lemma 2 of §], we deduce thaf/] is an open piece of a pseudo-
Riemannian product of two non-flat totally umbilical submanifolds.S Ifs not diagonalizable,
from (3), the minimal polynomial 4 (t) of A is given bypu4(t) = t* +at+b, witha = —(¢|S|? +
kn) andb = nek(|S|? — na?). Since(Ax, z) = n is constant o/ andyu 4 (kn) = —n2a’ek #

0, thenM is an open piece of a quadratic hypersurface as in exa2sl&umming up, we have
proved the following theorem.

Theorem 5.2 Letx : M* — M"*! be an isometric immersion. Thelr = Az + B if and
only if M is an open piece of one of the following hypersurface®/ji:

1) a minimal hypersurface,

2) a totally umbilical hypersurface,

3) a pseudo-Riemannian non-minimal standard product,

4) a quadratic hypersurface as in examgld, with non-diagonalizable shape operatar (—
4h < 0).

As a consequence, we obtain the classification theorem for hypersurfages'iand H" !,
which generalizes Theorem 1.3 it.

Corollary 5.3 Letz : M™ — M™*! be a non-minimal hypersurface. Théww = Az + B if
and only ifM™ is an open piece of one of the following hypersurfaces:

1) a totally umbilical hypersurface,

2) a productMP(ry) x S"P(ry).
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