Hypersurfaces in space forms satisfying the condition $\Delta x=A x+B$

Luis J. Alías, Angel Ferrández and Pascual Lucas
Trans. Amer. Math. Soc. 347 (1995), 1793-1801

(Partially supported by DGICYT grant PB91-0705)

Abstract

In this work we study and classify pseudo-Riemannian hypersurfaces in pseudo-Riemannian space forms which satisfy the condition $\Delta x=A x+B$, where A is an endomorphism, B is a constant vector and x stands for the isometric immersion. We prove that the family of such hypersurfaces consists of open pieces of minimal hypersurfaces, totally umbilical hypersurfaces, products of two non-flat totally umbilical submanifolds and a special class of quadratic hypersurfaces.

1. Introduction

Let x be an isometric immersion of a hypersurface M_{s}^{n} in \mathbb{R}_{t}^{n+1} and assume there exist an endomorphism A of \mathbb{R}_{t}^{n+1} and a constant vector B in \mathbb{R}_{t}^{n+1} such that $\Delta x=A x+B$. We ask for the following question: "What is the geometric meaning involved in that algebraic condition?" This question was first studied in the Euclidean case by Chen and Petrovic [4], Dillen, Pas and Verstraelen [5], and Hasanis and Vlachos [7], who obtained some interesting classification theorems. Recently, Park [10], following closely the ideas in [2] and [1], has considered that condition with $B=0$ for hypersurfaces in Euclidean spherical and hyperbolic spaces.

To study that question in its full generality, it seemed natural to us to begin with Lorentzian surfaces, [2]. Later, in [1], in order to generalize the above papers we gave a classification theorem for pseudo-Euclidean hypersurfaces. Actually, we proved that the only hypersurfaces satisfying the matricial condition on the Laplacian are open pieces of minimal hypersurfaces, totally umbilical hypersurfaces and pseudo-Riemannian products of a totally umbilical and a totally geodesic submanifold.

This paper arises as a natural continuation of [2] and [1], taking now a non-flat pseudoRiemannian space form as the ambient space. Here, we analyze the isometric immersions x of a hypersurface M_{s}^{n} of \bar{M}_{ν}^{n+1} satisfying $\Delta x=A x+B$, where \bar{M}_{ν}^{n+1} is the pseudo-Euclidean sphere $\mathbb{S}_{\nu}^{n+1} \subset \mathbb{R}_{\nu}^{n+2}$ or the pseudo-Euclidean hyperbolic space $\mathbb{H}_{\nu}^{n+1} \subset \mathbb{R}_{\nu+1}^{n+2}$.

In this new situation, the codimension of the manifold M_{s}^{n} in the pseudo-Euclidean space where it is lying is two, so that one hopes to find a richer family of examples satisfying the asked condition. On the other hand, although the proofs given in [1] do not work here, we follow the techniques developed there.

Before to refer to the main result, we wish pointing out that a lot of hypersurfaces having nondiagonalizable shape operator are given. This property makes substantially the difference between this case and that treated in [1].

The main result of this paper states that the only hypersurfaces M_{s}^{n} of \bar{M}_{ν}^{n+1} satisfying the matricial condition on the Laplacian are open pieces of minimal hypersurfaces, totally umbilical
hypersurfaces, pseudo-Riemannian products of two non-flat totally umbilical submanifolds and quadratic hypersurfaces defined by $\left\{x \in \mathbb{R}_{t}^{n+2}:\langle x, x\rangle= \pm 1,\langle L x, x\rangle=c\right\}$, where L is a self-adjoint endomorphism of \mathbb{R}_{t}^{n+2} with minimal polynomial μ_{L} of degree two, and c is a real constant such that $\mu_{L}(k c) \neq 0$.

2. Preliminaries

Let \mathbb{R}_{t}^{n+2} be the $(n+2)$-dimensional pseudo-Euclidean space whose metric tensor is given by

$$
d s^{2}=-\sum_{i=1}^{t} d x^{i} \otimes d x^{i}+\sum_{j=t+1}^{n+2} d x^{j} \otimes d x^{j}
$$

where $\left(x_{1}, \ldots, x_{n+2}\right)$ is the standard coordinate system. For each $k \neq 0$, let $\bar{M}_{\nu}^{n+1}(k)$ be the complete and simply connected space with constant sectional curvature $\operatorname{sign}(k) / k^{2}$. A model for $\bar{M}_{\nu}^{n+1}(k)$ is the pseudo-Euclidean sphere $\mathbb{S}_{\nu}^{n+1}(k)$ if $k>0$ and the pseudo-Euclidean hyperbolic space $\mathbb{H}_{\nu}^{n+1}(k)$ if $k<0$, where $\mathbb{S}_{\nu}^{n+1}(k)=\left\{x \in \mathbb{R}_{\nu}^{n+2}:\langle x, x\rangle=k^{2}\right\}$ and $\mathbb{H}_{\nu}^{n+1}(k)=\{x \in$ $\left.\mathbb{R}_{\nu+1}^{n+2}:\langle x, x\rangle=-k^{2}\right\},\langle$,$\rangle standing for the indefinite inner product in the pseudo-Euclidean$ space. Throughout this paper we will assume, without loss of generality, that $k^{2}=1$.

Let M_{s}^{n} be a pseudo-Riemannian hypersurface in \bar{M}_{ν}^{n+1} and let $\nabla(\bar{\nabla}$ and $\tilde{\nabla})$ denotes the Levi-Civita connection on $M_{s}^{n}\left(\bar{M}_{\nu}^{n+1}\right.$ and \mathbb{R}_{t}^{n+2}, respectively). We will also denote by N the unit normal vector field to M_{s}^{n} in \bar{M}_{ν}^{n+1}. Let H^{\prime} and H be the mean curvature vector fields of M_{s}^{n} in \bar{M}_{ν}^{n+1} and \mathbb{R}_{t}^{n+2}, respectively. Thus we may write $H^{\prime}=\alpha N, \alpha$ being the mean curvature of M_{s}^{n} in \bar{M}_{ν}^{n+1}, and

$$
H=H^{\prime}-k x=\alpha N-k x .
$$

Let $x: M_{s}^{n} \longrightarrow \bar{M}_{\nu}^{n+1}$ be an isometric immersion satisfying the condition

$$
\Delta x=A x+B
$$

where A is an endomorphism of \mathbb{R}_{t}^{n+2} and B a constant vector in \mathbb{R}_{t}^{n+2}. Taking covariant derivative in (2) and using the Laplace-Beltrami equation $\Delta x=-n H$ and the Weingarten formula we get $A X=n S_{H} X-n D_{X} H$, for any vector field X tangent to M_{s}^{n}, where D denotes the normal connection on M_{s}^{n} and S_{ξ} the Weingarten endomorphism associated to a normal vector field ξ. Then by (1) we have $D_{X} H=X(\alpha) N$ and $S_{H} X=\alpha S X+k X$, where, for short, we have written S for the Weingarten endomorphism S_{N}. From now on, we will call S the shape operator of M_{s}^{n}. Now from the above formulae we deduce that

$$
A X=n(\alpha S X+k X)-n X(\alpha) N
$$

From (2), taking into account the Laplace-Beltrami equation and (1), we obtain the following equation

$$
A x=-n \alpha N+n k x-B
$$

By applying the Laplacian on both sides of (2) and using again that $\Delta x=-n H$ we find $A H=$ ΔH, that along with (1) leads to $\alpha A N=\Delta H+k A x$. Now, bringing here (4) and the formula for ΔH obtained in [3, Lemma 3]

$$
\Delta H=2 S(\nabla \alpha)+n \varepsilon \alpha \nabla \alpha+\left(\Delta \alpha+\varepsilon \alpha|S|^{2}+n k \alpha\right) N-n k\left(k+\varepsilon \alpha^{2}\right) x
$$

where $\nabla \alpha$ stands for the gradient of $\alpha, \varepsilon=\langle N, N\rangle$ and $|S|^{2}=\operatorname{trace}\left(S^{2}\right)$, we get the following equation

$$
\begin{align*}
\alpha A N= & 2 S(\nabla \alpha)+n \varepsilon \alpha \nabla \alpha+\left(\Delta \alpha+\varepsilon \alpha|S|^{2}\right) N \tag{5}\\
& -n k \varepsilon \alpha^{2} x-k B .
\end{align*}
$$

3. Some examples

In this paper we wish to classify the hypersurfaces M_{s}^{n} in \bar{M}_{ν}^{n+1} whose isometric immersion satisfies the condition (2). In order to get such a classification we need some examples.
2.1 Minimal hypersurfaces M_{s}^{n} in \bar{M}_{ν}^{n+1} obviously satisfy (2). Indeed, by using (1) we have $H=-k x$ and $\Delta x=n k x$. So we can take $A=n k I_{n+2}$ and $B=0$.
2.2 Let M_{s}^{n} be a totally umbilical hypersurface in \bar{M}_{ν}^{n+1}. Taking into account the classification theorem for such hypersurfaces (see, for example, [9, Theorem 1.4]) we get, according to $\langle H, H\rangle$ is positive, negative or zero, M_{s}^{n} is an open piece of a pseudo-Euclidean sphere $\mathbb{S}_{s}^{n}(r)$, a pseudoEuclidean hyperbolic space $\mathbb{H}_{s}^{n}(r)$ or \mathbb{R}_{s}^{n}. In the last case, the immersion $f: \mathbb{R}_{s}^{n} \longrightarrow \mathbb{R}_{s+1}^{n+2}$ is given by $f(u)=\left(q(u), u_{1}, \ldots, u_{n}, q(u)\right)$, where $q(u)=a\langle u, u\rangle+\langle b, u\rangle+c, a \neq 0$. The pseudo-Euclidean spheres and pseudo-Euclidean hyperbolic spaces both satisfy the condition (2). Indeed, by considering φ as the standard immersion of $\mathbb{S}_{s}^{n}(r)$ or $\mathbb{H}_{s}^{n}(r)$ in a hyperplane $\mathbb{R}_{s^{\prime}}^{n+1}$ of \mathbb{R}_{t}^{n+2}, we know from [1] that $\Delta \varphi=L \varphi, L$ being an endomorphism of $\mathbb{R}_{s^{\prime}}^{n+1}$. The $(n+$ 1) $\times(n+1)$ matrix L and the immersion φ become an $(n+2) \times(n+2)$ matrix A (filling with zeros) and an immersion x in \mathbb{R}_{t}^{n+2}, respectively, in a natural way and so we get (2) with $B=0$. Therefore the most interesting case is that with $\langle H, H\rangle=0$. Now we can choose a point p in \mathbb{R}_{s+1}^{n+2} such that $\langle f-p, f-p\rangle= \pm 1$ and then $x=f-p$ is an immersion from \mathbb{R}_{s}^{n} in \bar{M}_{ν}^{n+1} with $\Delta x=-2 n(a, 0, \ldots, 0, a)$. Thus this hypersurface satisfies (2) with $A=0$ and $B=(-2 n a, 0, \ldots, 0,-2 n a)$. Furthermore, from the equation $\Delta x=-n \alpha N+n k x$, we easily obtain that its constant mean curvature α is given by $\alpha^{2}=1$.
2.3 Let $x: M_{s}^{m} \longrightarrow \mathbb{R}_{t}^{m+1}$ and $y: M_{s^{\prime}}^{\prime m^{\prime}} \longrightarrow \mathbb{R}_{t^{\prime}}^{m^{\prime}+1}$ be two isometric immersions satisfying the condition (2) and let $z=x \times y$ be the natural isometric immersion from the pseudo-Riemannian product $M_{s}^{m} \times M_{s^{\prime}}^{\prime m^{\prime}}$ in $\mathbb{R}_{t+t^{\prime}}^{m+m^{\prime}+2}$. If $\Delta x=A x+B$ and $\Delta^{\prime} y=A^{\prime} y+B^{\prime}$ then we can consider $\tilde{A}=\operatorname{diag}\left[A, A^{\prime}\right]$ and $\tilde{B}=\left(B, B^{\prime}\right)$. Thus it is easy to show that $\tilde{\Delta} z=\tilde{A} z+\tilde{B}$. Then from [1, Section 2], we can construct the following examples of hypersurfaces in \bar{M}_{ν}^{n+1} satisfying the condition (2):
(a) $\mathbb{S}_{u}^{p}(r) \times \mathbb{S}_{s-u}^{n-p}\left(\sqrt{1-r^{2}}\right) \subset \mathbb{S}_{s}^{n+1}$, with $0<r<1$ and $r \neq \sqrt{p / n}$, whose constant mean curvature is given by $\alpha^{2}=\left(n r^{2}-p\right)^{2} /\left(n^{2} r^{2}\left(1-r^{2}\right)\right)$;
(b) $\mathbb{H}_{u}^{p}(-r) \times \mathbb{H}_{s-u}^{n-p}\left(-\sqrt{1-r^{2}}\right) \subset \mathbb{H}_{s+1}^{n+1}$, with $0<r<1, r \neq \sqrt{p / n}$ and $\alpha^{2}=\left(n r^{2}-\right.$ p) $)^{2} /\left(n^{2} r^{2}\left(1-r^{2}\right)\right)$;
(c) $\mathbb{S}_{u}^{p}(r) \times \mathbb{H}_{s-u}^{n-p}\left(-\sqrt{-1+r^{2}}\right) \subset \mathbb{S}_{s+1}^{n+1}$, with $r>1$ and $\alpha^{2}=\left(n r^{2}-p\right)^{2} /\left(n^{2} r^{2}\left(r^{2}-1\right)\right)$;
(d) $\mathbb{S}_{u}^{p}(r) \times \mathbb{H}_{s-u}^{n-p}\left(-\sqrt{1+r^{2}}\right) \subset \mathbb{H}_{s}^{n+1}$, with $r>0$ and $\alpha^{2}=\left(n r^{2}+p\right)^{2} /\left(n^{2} r^{2}\left(1+r^{2}\right)\right)$;
where $1 \leqslant p \leqslant n-1$ and $0 \leqslant u \leqslant s$. We will refer these examples as the pseudo-Riemannian non-minimal standard products.
2.4 The hypersurfaces in examples 2.2 and $\mathbf{2 . 3}$ have diagonalizable shape operator. However, it seems natural thinking of hypersurfaces with non-diagonalizable shape operator satisfying (2) into indefinite ambient spaces. Let L be a self-adjoint endomorphism of \mathbb{R}_{t}^{n+2}, that is, $\langle L x, y\rangle=$ $\langle x, L y\rangle$ for all $x, y \in \mathbb{R}_{t}^{n+2}$. Let $f: \bar{M}_{\nu}^{n+1} \longrightarrow \mathbb{R}$ be the quadratic function defined by $f(x)=$
$\langle L x, x\rangle$ and assume that the minimal polynomial of L is given by $\mu_{L}(t)=t^{2}+a t+b, a, b \in \mathbb{R}$. Then by computing the gradients, at each point $x \in \bar{M}_{\nu}^{n+1}$, we have $\tilde{\nabla} f(x)=2 L x$ and $\bar{\nabla} f(x)=$ $2 L x-2 k f(x) x$. If $\tilde{\Delta}$ and $\bar{\Delta}$ denote the Laplacian operators on \mathbb{R}_{t}^{n+2} and \bar{M}_{ν}^{n+1}, respectively, a straightforward computation yields $\tilde{\Delta} f(x)=-2 \operatorname{trace}(L)$ and $\bar{\Delta} f(x)=-2 \operatorname{trace}(L)-2 k(n+$ 1) $f(x)$.

Consider the level set $M=f^{-1}(c)$ for a real constant c. Then at a point x in M we have

$$
\langle\bar{\nabla} f(x), \bar{\nabla} f(x)\rangle=4\left\langle L^{2} x, x\right\rangle-4 k f(x)^{2}=-4 k \mu_{L}(k c),
$$

and so f is an isoparametric function (see [6]). Thus the level hypersurfaces $\left\{f^{-1}(c)\right\}_{c \in I}$, where $I \subset\left\{c \in \mathbb{R}: \mu_{L}(k c) \neq 0\right\}$ is connected, form an isoparametric family in the classical sense. The shape operator of M_{s}^{n} is given by $S X=-\frac{1}{|\bar{\nabla} f|} \bar{\nabla}_{X}(\bar{\nabla} f)=\frac{1}{\left|\mu_{L}(k c)\right|^{1 / 2}}(k c X-L X)$ and a messy computation gives

$$
\operatorname{tr}(S)=\frac{n k c-\operatorname{tr}(L)-a}{\left|\mu_{L}(k c)\right|^{1 / 2}}
$$

Then the mean curvature α is given by

$$
\alpha=\frac{\varepsilon}{n} \operatorname{tr}(S)=\delta \frac{a+\operatorname{tr}(L)-n k c}{n k\left|\mu_{L}(k c)\right|^{1 / 2}}
$$

where δ stands for the sign of $\mu_{L}(k c)$. Therefore we get

$$
H^{\prime}=\frac{a+\operatorname{tr} L-k n c}{k n \mu_{L}(k c)}(L x-k c x),
$$

from which we deduce, by using $\Delta x=-n\left(H^{\prime}-k x\right)$, that $\Delta x=A x$, where A is given by

$$
A=\frac{k n c-a-\operatorname{tr} L}{k \mu_{L}(k c)} L+\frac{c \operatorname{tr} L+(n+1) a c+k n b}{\mu_{L}(k c)} I_{n+2} .
$$

4. First characterization results

The aim of this section is to show that a hypersurface M_{s}^{n} of \bar{M}_{ν}^{n+1} satisfying the condition (2) has to be of constant mean curvature. To do that, let \mathcal{W} be the open set of regular points of α^{2}, which we may assume a non-empty set. From (3) we have $\langle A X, x\rangle=0$, for any vector field X tangent to M_{s}^{n}. Taking covariant derivative there we get

$$
\langle A \sigma(X, Y), x\rangle=-\langle A X, Y\rangle
$$

for all tangent vectors X and Y, where σ represents the second fundamental form of M_{s}^{n} in \mathbb{R}_{t}^{n+2}, which is given by

$$
\sigma(X, Y)=\varepsilon\langle S X, Y\rangle N-k\langle X, Y\rangle x
$$

Now equation (1), jointly with (3) and (2), leads to

$$
\varepsilon\langle S X, Y\rangle\langle A N, x\rangle-k\langle X, Y\rangle\langle A x, x\rangle=-n \alpha\langle S X, Y\rangle-n k\langle X, Y\rangle
$$

Bringing here the formulae for $A x$ and $A N$ given in (4) and (5), respectively, a straightforward computation yields

$$
\langle S X-\varepsilon \alpha X, Y\rangle\langle B, x\rangle=0
$$

at the points of \mathcal{W}. This equation is the key to the following result.

Lemma 4.1 Let $x: M_{s}^{n} \longrightarrow \bar{M}_{\nu}^{n+1}$ be a hypersurface such that $\Delta x=A x+B$. If M_{s}^{n} has non-constant mean curvature, then $B=0$.

Proof. Let us consider the set $\mathcal{U}=\{p \in \mathcal{W}:\langle B, x\rangle(p) \neq 0\}$ and assume it is a non-empty set. Then at the points of \mathcal{U}, from (3) and (3), we have

$$
A X=n\left(\varepsilon \alpha^{2}+k\right) X-n X(\alpha) N .
$$

Since $n \geqslant 2$, we can always find a vector field X such that $X(\alpha)=\langle X, \nabla \alpha\rangle=0$. This shows, by using (4), that $n\left(\varepsilon \alpha^{2}+k\right)$ is an eigenvalue of A and therefore locally constant on \mathcal{U}, which is a contradiction. Hence $\mathcal{U}=\emptyset$ and $\langle B, x\rangle=0$ on \mathcal{W}. Taking covariant derivative here he deduce that B has no tangent component and therefore we get $B=\varepsilon\langle B, N\rangle N$ and $\langle B, N\rangle=0$, because \mathcal{W} is not empty.

Next we are going to make some computations before to state the main result of this section. From equation (3) it is easy to see that

$$
\langle A X, Y\rangle=\langle X, A Y\rangle,
$$

for all tangent vector fields X and Y. Taking covariant derivative here and using the Gauss formula jointly with (5), we find

$$
\begin{align*}
& \langle A \sigma(X, Z), Y\rangle-\langle A \sigma(Y, Z), X\rangle= \tag{6}\\
& \langle\sigma(X, Z), A Y\rangle-\langle\sigma(Y, Z), A X\rangle
\end{align*}
$$

By (2) and (3), the equation (6) becomes

$$
\begin{align*}
& \varepsilon\langle S X, Z\rangle\langle A N, Y\rangle-k\langle X, Z\rangle\langle A x, Y\rangle- \tag{7}\\
& \varepsilon\langle S Y, Z\rangle\langle A N, X\rangle+k\langle Y, Z\rangle\langle A x, X\rangle= \\
& -n Y(\alpha)\langle S X, Z\rangle+n X(\alpha)\langle S Y, Z\rangle .
\end{align*}
$$

Finally, by Lemma 4.1, (4) and (5), from (7) we obtain

$$
\begin{equation*}
T X(\alpha) S Y=T Y(\alpha) S X \tag{8}
\end{equation*}
$$

where T means the self-adjoint operator defined by $T X=n \alpha X+\varepsilon S X$. This equation becomes the crucial point to show the next result.

Proposition 4.2 Let $x: M_{s}^{n} \longrightarrow \bar{M}_{\nu}^{n+1}$ be an isometric immersion such that $\Delta x=A x+B$. Then M_{s}^{n} has constant mean curvature.

Proof. From Lemma 4.1 we can assume $B=0$ and then equation (8) holds on \mathcal{W}. First, suppose that $T(\nabla \alpha) \neq 0$ at the points of \mathcal{W}. Then there is a vector field X tangent to M_{s}^{n} such that $T X(\alpha) \neq 0$, so that by using (8) we find that rank $S=1$ at the points of \mathcal{W}. Therefore we can choose a local orthonormal frame $\left\{E_{1}, \ldots, E_{n}\right\}$ such that $S E_{1}=n \varepsilon \alpha E_{1}, S E_{i}=0, i=2, \ldots, n$ and $\varepsilon_{i}=\left\langle E_{i}, E_{i}\right\rangle$. Also from (8) we have that $E_{i}(\alpha)=0, i=2, \ldots, n$ and using again (3), (4) and (5) we get

$$
\begin{aligned}
A E_{1} & =n\left(k+\varepsilon n \alpha^{2}\right) E_{1}-n E_{1}(\alpha) N, \\
A E_{i} & =n k E_{i}, \quad i=2, \ldots, n, \\
A N & =3 n \varepsilon \varepsilon_{1} E_{1}(\alpha) E_{1}+\left\{\frac{\Delta \alpha}{\alpha}+\varepsilon n^{2} \alpha^{2}\right\} N-n k \varepsilon \alpha x, \\
A x & =-n \alpha N+n k x .
\end{aligned}
$$

Therefore, $\operatorname{span}\left\{E_{1}, N, x\right\}$ is an invariant subspace under A and the characteristic polynomial $p_{A}(t)$ of A is given by $p_{A}(t)=(t-n k)^{n-1} p_{A^{*}}(t)$, where A^{*} stands for $\left.A\right|_{\operatorname{span}\left\{E_{1}, N, x\right\}}$. Then $p_{A^{*}}(t)$ is constant and we can find three real constants λ_{1}, λ_{2} and λ_{3} (which are nothing but the invariants associated to A^{*}) such that

$$
\begin{aligned}
& \lambda_{1}=\frac{\Delta \alpha}{\alpha}+2 n\left\{k+\varepsilon n \alpha^{2}\right\}, \\
& \lambda_{2}=n\left(2 k+\varepsilon n \alpha^{2}\right)\left(\frac{\Delta \alpha}{\alpha}+\varepsilon n^{2} \alpha^{2}\right)+3 n^{2} \varepsilon \varepsilon_{1} E_{1}(\alpha)^{2}+n^{2} k\left(k+\varepsilon n \alpha^{2}\right)-k n^{2} \varepsilon \alpha^{2}, \\
& \lambda_{3}=n^{2} k\left(k+\varepsilon n \alpha^{2}\right)\left(\frac{\Delta \alpha}{\alpha}+\varepsilon n^{2} \alpha^{2}\right)-n^{3} k \varepsilon \alpha^{2}\left(k+\varepsilon n \alpha^{2}\right)+3 n^{3} \varepsilon \varepsilon_{1} k E_{1}(\alpha)^{2} .
\end{aligned}
$$

Then we obtain

$$
n k \lambda_{2}=\lambda_{3}+n^{3}\left(k+\varepsilon n \alpha^{2}\right)+n^{2}\left(\frac{\Delta \alpha}{\alpha}+\varepsilon n^{2} \alpha^{2}\right)+n^{4} k \alpha^{4}
$$

and

$$
\frac{\Delta \alpha}{\alpha}=\lambda_{1}-2 n\left(k+\varepsilon n \alpha^{2}\right) .
$$

Last two equations allow us to write $n^{4} \alpha^{4}=k p_{A^{*}}(k n)$ and so α is locally constant on \mathcal{W}, which is a contradiction.

Finally, assume now there is a point p in \mathcal{W} such that $T(\nabla \alpha)(p)=0$. Note that from (3) and (5) we have in $\mathcal{W}, \forall i=1, \ldots, n$

$$
\begin{align*}
\left\langle A E_{i}, N\right\rangle & =-n \varepsilon E_{i}(\alpha) \tag{9}\\
\left\langle E_{i}, A N\right\rangle & =\frac{2 \varepsilon}{\alpha}\left\langle T(\nabla \alpha), E_{i}\right\rangle-n \varepsilon E_{i}(\alpha)
\end{align*}
$$

It follows that at p,

$$
\begin{equation*}
\left\langle A E_{i}, N\right\rangle=\left\langle E_{i}, A N\right\rangle \tag{10}
\end{equation*}
$$

From (3), (4), (5), (1) and (10) we deduce that A is a self-adjoint endomorphism of \mathbb{R}_{t}^{n+2} and thus equation (10) remains valid at every point in \mathcal{W}. In turn, from (10) $T(\nabla \alpha)=0$ on \mathcal{W} and so $\nabla \alpha$ is an eigenvector of S with associated eigenvalue $-n \varepsilon \alpha$. If $\langle\nabla \alpha, \nabla \alpha\rangle=\nabla \alpha(\alpha)=0$, from (3) we could write $A(\nabla \alpha)=n\left(k-n \varepsilon \alpha^{2}\right) \nabla \alpha$, then $n\left(k-n \varepsilon \alpha^{2}\right)$ should be an eigenvalue of A and α must be locally constant on \mathcal{W}, which cannot be hold. Therefore we can choose a local orthonormal frame $\left\{E_{1}, \ldots, E_{n}\right\}$ with E_{1} parallel to $\nabla \alpha$ such that

$$
\begin{aligned}
A E_{1} & =n\left(k-n \varepsilon \alpha^{2}\right) E_{1}-n E_{1}(\alpha) N, \\
A E_{i} & =n\left(\alpha S E_{i}+k E_{i}\right), \quad i=2, \ldots, n, \\
A N & =-n \varepsilon \varepsilon_{1} E_{1}(\alpha) E_{1}+\left\{\frac{\Delta \alpha}{\alpha}+\varepsilon|S|^{2}\right\} N-n k \varepsilon \alpha x, \\
A x & =-n \alpha N+n k x .
\end{aligned}
$$

Since $S E_{i} \in \operatorname{span}\left\{E_{2}, \ldots, E_{n}\right\}, i=2, \ldots, n$, we may write S^{*} for the endomorphism S restricted to $\operatorname{span}\left\{E_{2}, \ldots, E_{n}\right\}$. Working on the characteristic polynomials, from the above equations we can deduce that

$$
p_{A}(t)=(n \alpha)^{n-1} q(t) p_{S^{*}}\left(\frac{t-n k}{n \alpha}\right)
$$

where $q(t)$ is a polynomial of degree three. Let $\left\{r_{1}, \ldots, r_{n}\right\}$ be the possibly complex roots of $p_{S}(t)$, with $r_{1}=-n \varepsilon \alpha$ and $\left\{r_{2}, \ldots, r_{n}\right\}$ the roots of $p_{S^{*}}(t)$. Then the functions $n k+n \alpha r_{j}, j=$ $2, \ldots, n$, are roots of $p_{A}(t)$ and therefore they are locally constant on \mathcal{W}. Thus from the formula $\sum_{j=2}^{n}\left(n k+n \alpha r_{j}\right)=n(n-1) k+n \alpha \sum_{j=2}^{n} r_{j}=n(n-1) k+n \alpha\left(\operatorname{tr} S-r_{1}\right)=n(n-1) k+2 \varepsilon n^{2} \alpha$, we obtain that α is locally constant on \mathcal{W}, which is a contradiction.

Summarizing, we have got that \mathcal{W} has to be empty, i.e., M_{s}^{n} has constant mean curvature.

5. Main results

We have just proved that the hypersurfaces M_{s}^{n} of \bar{M}_{ν}^{n+1} satisfying the condition (2) have constant mean curvature. In this section, we wish to give a classification theorem of such a class of hypersurfaces. To do that, we recall the following definition. A hypersurface M_{s}^{n} is said to be isoparametric if the characteristic polynomial $p_{S}(t)$ of its shape operator S is the same at all points of M_{s}^{n}. When S is diagonalizable (for example, in the definite case) that means that the principal curvatures of M_{s}^{n}, as well as its multiplicities, are constant. Our first main result states as follows.

Theorem 5.1 Let $x: M_{s}^{n} \longrightarrow \bar{M}_{\nu}^{n+1}$ be an isometric immersion satisfying $\Delta x=A x+B$. Then M_{s}^{n} is a minimal or an isoparametric hypersurface.

Proof. Let M_{s}^{n} be a hypersurface of \bar{M}_{ν}^{n+1} satisfying (2). By Proposition 4.2 we can assume that the mean curvature α of M_{s}^{n} in \bar{M}_{ν}^{n+1} is a non-zero constant and so the equation (3) works here. If M_{s}^{n} is not totally umbilical in \bar{M}_{ν}^{n+1}, then we have $\langle B, x\rangle=0$ and, as in Lemma $4.1, B=0$. Now, from (3), (4) and (5) we get

$$
\begin{align*}
A X & =n(\alpha S X+k X) \\
A N & =\varepsilon|S|^{2} N-n k \varepsilon \alpha x \tag{1}\\
A x & =-n \alpha N+n k x
\end{align*}
$$

Working again on the characteristic polynomials $p_{A}(t)$ and $p_{S}(t)$, as in Section 4, we deduce that $p_{S}(t)$ is constant on M_{s}^{n} and the proof finishes.

Next with the aim of getting a complete classification of those hypersurfaces M_{s}^{n} of \bar{M}_{ν}^{n+1} satisfying (2), some easy computations are needed. From Theorem 5.1, M_{s}^{n} is an isoparametric hypersurface provided that the (constant) mean curvature α is not zero, and thus $|S|^{2}$ is also constant. Taking covariant derivative in the expression of $A N$ in (1) we have $\tilde{\nabla}_{X}(A N)=$ $-\varepsilon|S|^{2} S X-n k \varepsilon \alpha X$ and $\tilde{\nabla}_{X}(A N)=A\left(\tilde{\nabla}_{X} N\right)=-n\left(\alpha S^{2} X+k S X\right)$, from which we obtain

$$
\begin{equation*}
S^{2}+\frac{n k-\varepsilon|S|^{2}}{n \alpha} S-k \varepsilon I=0 \tag{2}
\end{equation*}
$$

where I stands for the identity operator on the tangent bundle of M_{s}^{n}. We have just seen that if M_{s}^{n} is not totally umbilical then $B=0$ and thus equations (1) and (2) allow us to write

$$
A^{2}-\left(\varepsilon|S|^{2}+k n\right) A+n \varepsilon k\left(|S|^{2}-n \alpha^{2}\right) I_{n+2}=0
$$

and furthermore, from (1), A is a self-adjoint endomorphism of \mathbb{R}_{t}^{n+2}. If S is diagonalizable, from (2), M_{s}^{n} has exactly two constant principal curvatures. By using now similar arguments as
in Theorem 2.5 of [11] and Lemma 2 of [8], we deduce that M_{s}^{n} is an open piece of a pseudoRiemannian product of two non-flat totally umbilical submanifolds. If S is not diagonalizable, from (3), the minimal polynomial $\mu_{A}(t)$ of A is given by $\mu_{A}(t)=t^{2}+a t+b$, with $a=-\left(\varepsilon|S|^{2}+\right.$ $k n)$ and $b=n \varepsilon k\left(|S|^{2}-n \alpha^{2}\right)$. Since $\langle A x, x\rangle=n$ is constant on M_{s}^{n} and $\mu_{A}(k n)=-n^{2} \alpha^{2} \varepsilon k \neq$ 0 , then M_{s}^{n} is an open piece of a quadratic hypersurface as in example 2.4. Summing up, we have proved the following theorem.

Theorem 5.2 Let $x: M_{s}^{n} \longrightarrow \bar{M}_{\nu}^{n+1}$ be an isometric immersion. Then $\Delta x=A x+B$ if and only if M_{s}^{n} is an open piece of one of the following hypersurfaces in \bar{M}_{ν}^{n+1} :

1) a minimal hypersurface,
2) a totally umbilical hypersurface,
3) a pseudo-Riemannian non-minimal standard product,
4) a quadratic hypersurface as in example 2.4, with non-diagonalizable shape operator ($a^{2}-$ $4 b \leqslant 0$).

As a consequence, we obtain the classification theorem for hypersurfaces in \mathbb{S}^{n+1} and \mathbb{H}^{n+1}, which generalizes Theorem 1.3 in [10].

Corollary 5.3 Let $x: M^{n} \longrightarrow \bar{M}^{n+1}$ be a non-minimal hypersurface. Then $\Delta x=A x+B$ if and only if M^{n} is an open piece of one of the following hypersurfaces:

1) a totally umbilical hypersurface,
2) a product $\bar{M}^{p}\left(r_{1}\right) \times \mathbb{S}^{n-p}\left(r_{2}\right)$.

Acknowledgment

The authors would like to thank the referee for reading the paper carefully, providing some suggestions and comments to improve it.

Bibliography

[1] L. J. Alías, A. Ferrández and P. Lucas. Submanifolds in pseudo-Euclidean spaces satisfying the condition $\Delta x=A x+B$. Geom. Dedicata, 42 (1992), 345-354.
[2] L. J. Alías, A. Ferrández and P. Lucas. Surfaces in the 3-dimensional Lorentz-Minkowski space satisfying $\Delta x=A x+B$. Pacific J. Math., 156 (1992), 201-208.
[3] B. Y. Chen. Finite-type pseudo-Riemannian submanifolds. Tamkang J. of Math., 17 (1986), 137-151.
[4] B. Y. Chen and M. Petrovic. On spectral decomposition of immersions of finite type. Bull. Austral. Math. Soc., 44 (1991), 117-129.
[5] F. Dillen, J. Pas and L. Verstraelen. On surfaces of finite type in euclidean 3-space. Kodai Math. J., 13 (1990), 10-21.
[6] J. Hahn. Isoparametric hypersurfaces in the pseudo-riemannian space forms. Math. Z., 187 (1984), 195-208
[7] T. Hasanis and T. Vlachos. Hypersurfaces of \mathbb{E}^{n+1} satisfying $\Delta x=A x+B$. J. Austral. Math. Soc., Series A, 53 (1992), 377-384.
[8] H. Lawson. Local rigidity theorems for minimal hypersurfaces. Ann. of Math., 89 (1969), 187-197.
[9] M. A. Magid. Isometric immersions of Lorentz space with parallel second fundamental forms. Tsukuba J. Math., 8 (1984), 31-54.
[10] J. Park. Hypersurfaces satisfying the equation $\Delta x=R x+B$. To appear in Proc. A.M.S.
[11] P. J. Ryan. Homogeneity and some curvature conditions for hypersurfaces. Tôhoku Math. J., 21 (1969), 363-388.

