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Abstract - We use the natural Hopf fibrations fromH3
1(−1) overH2

s(−1/4) (s = 0, 1) to give a geomet-
ric interpretation of the B-scrolls in terms of the Hopf cylinders shaped on non-null curves inH2

s(−1/4).

We also find those parametrizations of the Hopf cylinders which are solutions of the Betchov-Da Rios
soliton equation inH3

1(−1). In particular, the soliton solutions are the null geodesics of the Lorentzian
Hopf cylinders.

Cylindres de Hopf, B-scrolls et solitons dans l’espace anti De Sitter de dimension trois

Résuḿe - Nous utilisons les fibŕes de Hopf deH3
1(−1) surH2

s(−1/4), (s = 0, 1), à fin de donner une
interpŕetation ǵeoḿetrique des cylindres de Hopf modelés sur courbes non-nulles dansH2

s(−1/4). On
trouve d’autre part les paramétrisations des cylindres de Hopf qui sont solutions de l’équation soliton
de Betchov-Da Rios dansH3

1(−1). En particulier, les solutions soliton sont les géod́esiques nulles des
cylindres de Hopf lorentziennes.

Version française abŕeǵee -
Nous consid́erons dansR4

2 l’hypersurfaceH3
1(−1) =

{
x ∈ R4

2 : 〈x, x〉 = −1
}

, qui est une
variét́e lorentziennèa courbure sectionnelle constante−1 appeĺee l’espace anti De Sitter̀a di-
mension trois. D’apr̀es [2], une surface lorentzienne dansH3

1(−1) est dite B-scroll modelée sur
une courbe spatialèa torsion constante±1 si elle est parametrée parf(t, z) = cos(z)β̄(t) +
sin(z)B̄(t), où B̄(t) est la binormale dēβ(t). Pareillement, on obtient les B-scrolls modelées
sur courbes temporelles. Soientπs : H3

1(−1) → H2
s(−1/4) (s = 0, 1) les fibŕes de Hopf avec

fibreS1 (s = 0) etH1 (s = 1), respectivement. Alors nous pouvons définir les cylindres de Hopf
par Mβ = π−1

s (β), où β est une courbe non-nulle dansH2
s(−1/4). On remarque queMβ est

lorentzienne sis = 0, tandis que elle est lorentzienne ou riemannienne sis = 1 selon queβ soit
temporelle ou spatiale, respectivement. Ainsi, nous prouvons la caractérisation ǵeoḿetrique des
B-scrolls suivante.

Théorème 2SoitM une surface lorentzienne deH3
1(−1). AlorsM est le cylindre de Hopf d’une

courbe non-nulleβ dansH2
s(−1/4) si et seulement siM est le B-scroll attach́e à un rel̀evement

horizontalβ̄ deβ.
D’autre part l’́equation de Betchov-Da Rios (2) est uneéquation soliton par rapportà cer-

taines applications d́efinies sur un ouvert deR2 à valeurs dans une variét́e semi-Riemannienne
à dimension troisM̄ munie d’une connexion semi-Riemannienne∇̄. Cetteéquation d́ecrit le
comportement d’un fluide incompressible et non visqueux dansM̄ . En utilisant la strat́egie des
cylindres de Hopf on obtient le théor̀eme important (qui sera démontŕe dans [1]):

Théorème 4Soitβ une courbe non-nulle parametrée par l’arc and soitMβ le cylindre de Hopf
dansH3

1(−1) attach́e à β. Soith un diff́eomorphisme deR2 et consid́eronsY = X ◦ h : R2 →
Mβ ⊂ H3

1(−1), où X est le rev̂etement standard deR2 sur Mβ. Alors Y est une solution de
léquation soliton de Betchov-Da Rios dansH3

1(−1) si et seulement si
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(1) β est une courbèa courbure constanteκ, et
(2) h(u, v) = (t(u, v), z(u, v)) vérifie les conditions suivantes

t(u, v) = au− agρv + c1,

z(u, v) = agu− aρv + c2,

où (1 − g2)a2 = ε (ε étant le caract̀ere causal desu-courbes),g ∈ R − {−1,+1,−κ/2},
ρ = (κ + 2g)a2 est la courbure desu-courbes dansH3

1(−1) et c1, c2 ∈ R.

1. B-scrolls in anti De Sitter spaceH3
1(−1)

LetR4
2 be the 4-dimensional lineal spaceR4 endowed with the inner product of signature (2,2)

given by〈x, y〉 = −x1y1−x2y2+x3y3+x4y4 for x = (x1, x2, x3, x4), y = (y1, y2, y3, y4) ∈ R4.
The spaceH3

1(−1) is the hypersurface ofR4
2 defined asH3

1(−1) =
{
x ∈ R4

2 : 〈x, x〉 = −1
}

. Then
H3

1(−1) with the restriction of〈, 〉 is a Lorentzian manifold with constant sectional curvature−1,
which is called the 3-dimensional anti De Sitter space.

In order to study flat surfaces, isometrically immersed, inH3
1(−1), M. Dajczer and K. Nomizu,

[2], by extending a construction of L.K. Graves, [3], use the notion of B-scroll of a Frenet curve
(space-like, time-like or null) inH3

1(−1). A curve β̄(t) in H3
1(−1) is said to be a unit speed

curve if 〈dβ̄(t)/dt, dβ̄(t)/dt〉 = ε (ε being+1 or −1 according toβ̄ is space-like or time-like,
respectively). For a better understanding of the next construction we will bring back the notion of
cross product in the tangent spaceTpH3

1(−1) of any pointp in H3
1(−1) ⊂ R4

2. In TpH3
1(−1) there

is a natural orientation defined as follows: an ordered basis{X,Y, X} in TpH3
1(−1) is positively

oriented if det[pXY Z] > 0, where[pXY Z] is the matrix withp, X, Y , Z ∈ R4
2 as row vectors.

Now let ω be the volumen element onH3
1(−1) defined byω(X, Y, Z) = det[pXY Z]. Then

givenX, Y ∈ TpH3
1(−1), the cross productX ∧ Y is the unique vector inTpH3

1(−1) such that
〈X ∧ Y, Z〉 = ω(X, Y, Z), for anyZ ∈ TpH3

1(−1). Let us recall how a B-scroll is defined, for
instance in the case of a space-like curve (other cases are similarly defined with obvious changes).
Given a complete space-like unit speed curveβ̄(t) in H3

1(−1), it is called a space-like Frenet
curve if it admits a Frenet frame field

{
T̄ = dβ̄/dt, N̄ , B̄

}
such that

〈
N̄ , N̄

〉
= 1, B̄ = T̄ × N̄

and satisfying the Frenet equations

∇̄T̄ T̄ = κ̄N̄ ,
∇̄T̄ N̄ = −κ̄T̄ + τ̄ B̄,
∇̄T̄ B̄ = τ̄ N̄ ,

where∇̄ is the semi-Riemannian connection onH3
1(−1) and κ̄ = κ̄(t) and τ̄ = τ̄(t) are the

curvature and the torsion of̄β, respectively. In particular, if̄τ = 1 (or−1), the mappingf : R2 →
H3

1(−1) defined byf(t, z) = cos(z)β̄(t) + sin(z)B̄(t) is an isometric immersion fromR2
1 into

H3
1(−1) which is called the B-scroll of̄β (see [2] for details).

2. Geometric interpretation of B-scrolls via Hopf cylinders

As usual we identifyR4
2 with C2

1. HereC2
1 denotes the 2-dimensional complex lineal spaceC2

endowed with the Hermitian form(a, b) = −a1b̄1 + a2b̄2, wherea = (a1, a2), b = (b1, b2) ∈ C2.
ThenH3

1(−1) =
{
a ∈ C2

1 : (a, a) = −1
}

and we consider two natural actions ofS1 (the unit
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circle in R2) andH1 (the unit circle inR2
1), respectively, overH3

1(−1), namely(r, (a1, a2)) =
(ra1, ra2), wherer ∈ S1 or r ∈ H1. ThenH2(−1/4) (the hyperbolic plane with Gaussian curva-
ture−4) andH2

1(−1/4) (the pseudo-hyperbolic plane with Gaussian curvature−4) are obtained
as orbit spaces.

Summarizing up, we have two natural Hopf fibrationsπs : H3
1(−1) → H2

s(−1/4), s = 0, 1,
with fibersS1 andH1, respectively. Actuallyπs are semi-Riemannian submersions. Therefore
we will use the own terminology on this topic (see [5] for details), in particular overbars are used
to distinguish the lifts of corresponding geometrical objects onH2

s(−1/4). So if∇ denotes the
semi-Riemannian connection onH2

s(−1/4), we have

∇̄X̄ Ȳ = ∇XY + (−1)s(〈JX, Y 〉 ◦ πs)V
∇̄X̄V = ∇̄V X̄ = JX
∇̄V V = 0

whereJ denotes the standard complex structure of bothH2
s(−1/4) andV is nothing but a unit

vector field tangent to the fibers (that is, a vertical unit vector field).
Let β be a complete unit speed curve, immersed inH2

s(−1/4), with Frenet frame{T, N} and
curvature functionκ. Consider a horizontal lift̄β of β and denote by

{
T̄ , N∗, B∗}, κ∗ andτ∗ its

corresponding Frenet objects. Now we can combine (1) with the Frenet equations ofβ andβ̄ to
prove thatN∗ = N̄ . In particular, it yields to the horizontal distribution alonḡβ and it has the
same causal character asN . Also it is not difficult to see thatτ∗ ≡ 1 (or −1) andB∗ = V (or
−V ), that is, the binormalB∗ of β̄ coincides with the unit tangent to the fibers through each point
of β̄. Therefore we have proved the following

Lemma 2.1 (i) The horizontal lifts of unit speed curves inH2(−1/4) are space-like Frenet curves
in H3

1(−1) with torsion 1 (or -1).
(ii) The horizontal lifts of unit speed curves inH2

1(−1/4) are time-like Frenet curves in
H3

1(−1) with torsion 1 (or -1).

By pulling back viaπs a non-null curveβ in H2
s(−1/4) we get the total horizontal lift ofβ,

which is an immersed flat surfaceMβ in H3
1(−1), that will be called the semi-Riemannian Hopf

cylinder associated toβ. Notice that ifs = 0, thenMβ is a Lorentzian surface, whereas ifs = 1,
Mβ is Riemannian or Lorentzian according toβ is space-like or time-like, respectively.

Theorem 2.2 Let M be a Lorentzian surface immersed intoH3
1(−1). ThenM is the semi-

Riemannian Hopf cylinder associated to a unit speed curveβ in H2
s(−1/4) if and only if M is

the B-scroll of any horizontal lift̄β of β.

Proof. SupposeM = Mβ and β̄ is a horizontal lift ofβ. Then β̄ goes through the fibers to
parametrizeMβ as follows,

X(t, z) =
{

cos(z)β̄(t) + sin(z)iβ̄(t), if s = 0
cosh(z)β̄(t) + sinh(z)iβ̄(t), if s = 1.

Now observe thatiβ̄(t) is the unit tangent vector field to the fibers alongβ̄, which is nothing
but the binormalB∗ of β̄. Therefore ifMβ is Lorentzian, then it is the B-scroll of̄β. A similar
argument works to prove the converse.
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3. Hopf cylinders and solutions of the Betchov-Da Rios soliton equa-
tion

In the last section, we obtained the following nice property of Hopf cylinders: the unit normal
of β̄ inH3

1(−1) coincides with the unit normal ofMβ intoH3
1(−1) along any horizontal lift̄β of β

and then the binormal of̄β is tangent to the fibers alonḡβ for any β̄. Consequently, the binormal
B∗ of β̄ can be extended to a Killing vector field onH3

1(−1) and thenX(t, z) defines a solution
of the binormal flow. In particular, ifβ has non-zero constant mean curvature inH2

s(−1/4), one
can useκ to reparametrize the fibers to get solutionsY (t, z) = X(t, κz) of the so called “filament
flow” (see for instance [4] for some details about the filament equation).

More generally, we can consider the following equation for space curvesγ(t, z) in a three-
dimensional pseudo-Riemannian manifold endowed with the pseudo-Riemannian connection∇

∂γ

∂t
∧∇ ∂γ

∂t

∂γ

∂t
=

∂γ

∂z

The next result gives infinitely many solutions of (2) inH3
1(−1), which are obtained by means

of Hopf cylinders.

Theorem 3.1 Let Mβ be a Hopf cylinder inH3
1(−1) over a unit speed curveβ in H2

s(−1/4) of
curvature functionκ. For any nonzero real numberc and any solutiont(u) of κ(t(u))t3u − c = 0,
we define

Y (u, v) =
{

cos(cv)β(t(u)) + sin(cv)B(t(u)), s = 0,

cosh(cv)β(t(u)) + sinh(cv)B(t(u)), s = 1.

ThenY (u, v) are solutions of (2).

The proof of this theorem will appear in a forthcoming paper, [1].
In particular, the equation (2) becomes the Betchov-Da Rios equation (also called the localized

induction equation, or the filament equation when viewed as an evolution equation) whent denotes
the arc-length of thet-curves. This equation is a soliton equation and describes the behaviour of
an incompressible, inviscid fluid.

In the following we describe all solutions of the Betchov-Da Rios soliton equation inH3
1(−1)

which are living in Hopf cylinders shaped on curves inH2(−1/4). A similar result works for
solutions in Hopf cylinders intoH3

1(−1) over curves inH2
1(−1/4). They will appear in [1].

Theorem 3.2 Letβ be an arc-length parametrized curve inH2(−1/4) andMβ its Hopf cylinder
in H3

1(−1). For any diffeomosphismh of R2, we considerY = X ◦ h : R2 → Mβ ⊂ H3
1(−1),

whereX denotes the standard covering ofR2 ontoMβ (see Theorem 2.2). ThenY is a solution
of the Betchov-Da Rios soliton equation inH3

1(−1) if and only if
(1) β has constant curvature, sayκ, inH2(−1/4), and
(2) h(u, v) = (t(u, v), z(u, v)) is defined as

t(u, v) = au− agρv + c1,

z(u, v) = agu− aρv + c2,

where(1− g2)a2 = ε (ε being the causal character of theu-curves),g ∈ R − {−1,+1,−κ/2},
ρ = (κ+2g)a2 is the curvature of theu-curves inH3

1(−1) and(c1, c2) is any couple of constants.
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Remark 3.3 Theu-curves in this theorem are certainly helices inH3
1(−1). They are space-like if

the slopeg ∈ (−1, 1), otherwise, they are time-like. A dual result for the slope can be obtained
when working on Lorentzian Hopf cylinders inH3

1(−1) coming fromπ1. For Riemannian Hopf
cylinders inH3

1(−1) coming from space-like curves inH2
1(−1/4) any value of the slopeg is

allowed. In [1] we prove a converse of this result, namely: any helixδ in H3
1(−1) is a solution

of the filament equation inH3
1(−1) living in a certain Hopf cylinderMβ in H3

1(−1). Moreover
the curvatureκ of β in H2

s(−1/4) and the slopeg of δ in Mβ are uniquely determined from the
curvature and the torsion of the helix inH3

1(−1).

Theorem 4 can also be read as follows. For any value ofκ, that is, for any Hopf cylinderMγ ,
one has a one parameter family{Yg = X ◦ hg : R2 → Mγ ⊂ H3

1(−1)/g ∈ R − {−κ/2,−1, 1}}
of congruence solutions of the Betchov-Da Rios soliton equation lying inMγ . By computing the
limit of Yg, asg goes to±1, we get a pair of null geodesics inMγ which are singular solutions.
From Remark 1, that also works for Lorentzian Hopf cylinders coming from time-like curves in
H2

1(−1/4). However, wheng goes to−κ/2 we find no solution neither Lorentzian nor Riemannian
case. Summing up we have

Corollary 3.4 Up to congruences, there is a unique soliton solution of the Betchov-Da Rios equa-
tion inH3

1(−1) lying in any Lorentzian Hopf cylinder of constant mean curvatureMγ . Moreover
it is a null geodesic ofMγ .
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