Hopf cylinders, *B*-scrolls and solitons of the Betchov-Da Rios equation in the 3-dimensional anti-De Sitter space

Manuel Barros, Angel Ferrández, Pascual Lucas and Miguel Angel Meroño C.R. Acad. Sci. Paris 321 (1995), 505–509

(Partially supported by DGICYT grant PB91-0705 and Fundación Séneca PB94/10)

Abstract - We use the natural Hopf fibrations from $\mathbb{H}_1^3(-1)$ over $\mathbb{H}_s^2(-1/4)$ (s = 0, 1) to give a geometric interpretation of the B-scrolls in terms of the Hopf cylinders shaped on non-null curves in $\mathbb{H}_s^2(-1/4)$. We also find those parametrizations of the Hopf cylinders which are solutions of the Betchov-Da Rios soliton equation in $\mathbb{H}_1^3(-1)$. In particular, the soliton solutions are the null geodesics of the Lorentzian Hopf cylinders.

Cylindres de Hopf, B-scrolls et solitons dans l'espace anti De Sitter de dimension trois

Résumé - Nous utilisons les fibrés de Hopf de $\mathbb{H}_1^3(-1)$ sur $\mathbb{H}_s^2(-1/4)$, (s = 0, 1), à fin de donner une interprétation géométrique des cylindres de Hopf modelés sur courbes non-nulles dans $\mathbb{H}_s^2(-1/4)$. On trouve d'autre part les paramétrisations des cylindres de Hopf qui sont solutions de l'équation soliton de Betchov-Da Rios dans $\mathbb{H}_1^3(-1)$. En particulier, les solutions soliton sont les géodésiques nulles des cylindres de Hopf lorentziennes.

Version française abrégée -

Nous considérons dans \mathbb{R}_2^4 l'hypersurface $\mathbb{H}_1^3(-1) = \{x \in \mathbb{R}_2^4 : \langle x, x \rangle = -1\}$, qui est une variété lorentzienne à courbure sectionnelle constante -1 appelée l'espace anti De Sitter à dimension trois. D'après [2], une surface lorentzienne dans $\mathbb{H}_1^3(-1)$ est dite B-scroll modelée sur une courbe spatiale à torsion constante ± 1 si elle est parametrée par $f(t, z) = \cos(z)\overline{\beta}(t) + \sin(z)\overline{B}(t)$, où $\overline{B}(t)$ est la binormale de $\overline{\beta}(t)$. Pareillement, on obtient les B-scrolls modelées sur courbes temporelles. Soient $\pi_s : \mathbb{H}_1^3(-1) \to \mathbb{H}_s^2(-1/4)$ (s = 0, 1) les fibrés de Hopf avec fibre \mathbb{S}^1 (s = 0) et \mathbb{H}^1 (s = 1), respectivement. Alors nous pouvons définir les cylindres de Hopf par $M_\beta = \pi_s^{-1}(\beta)$, où β est une courbe non-nulle dans $\mathbb{H}_s^2(-1/4)$. On remarque que M_β est lorentzienne si s = 0, tandis que elle est lorentzienne ou riemannienne si s = 1 selon que β soit temporelle ou spatiale, respectivement. Ainsi, nous prouvons la caractérisation géométrique des B-scrolls suivante.

Théorème 2 Soit M une surface lorentzienne de $\mathbb{H}^3_1(-1)$. Alors M est le cylindre de Hopf d'une courbe non-nulle β dans $\mathbb{H}^2_s(-1/4)$ si et seulement si M est le B-scroll attaché à un relèvement horizontal $\overline{\beta}$ de β .

D'autre part l'équation de Betchov-Da Rios (2) est une équation soliton par rapport à certaines applications définies sur un ouvert de \mathbb{R}^2 à valeurs dans une variété semi-Riemannienne à dimension trois \overline{M} munie d'une connexion semi-Riemannienne $\overline{\nabla}$. Cette équation décrit le comportement d'un fluide incompressible et non visqueux dans \overline{M} . En utilisant la stratégie des cylindres de Hopf on obtient le théorème important (qui sera démontré dans [1]):

Théorème 4 Soit β une courbe non-nulle parametrée par l'arc and soit M_{β} le cylindre de Hopf dans $\mathbb{H}_1^3(-1)$ attaché à β . Soit h un difféomorphisme de \mathbb{R}^2 et considérons $Y = X \circ h : \mathbb{R}^2 \to M_{\beta} \subset \mathbb{H}_1^3(-1)$, où X est le revêtement standard de \mathbb{R}^2 sur M_{β} . Alors Y est une solution de léquation soliton de Betchov-Da Rios dans $\mathbb{H}_1^3(-1)$ si et seulement si (1) β est une courbe à courbure constante κ , et

(2) h(u, v) = (t(u, v), z(u, v)) vérifie les conditions suivantes

$$t(u, v) = au - ag\rho v + c_1,$$

$$z(u, v) = agu - a\rho v + c_2,$$

où $(1-g^2)a^2 = \varepsilon$ (ε étant le caractère causal des u-courbes), $g \in \mathbb{R} - \{-1, +1, -\kappa/2\}$, $\rho = (\kappa + 2g)a^2$ est la courbure des u-courbes dans $\mathbb{H}^3_1(-1)$ et $c_1, c_2 \in \mathbb{R}$.

1. B-scrolls in anti De Sitter space $\mathbb{H}_1^3(-1)$

Let \mathbb{R}_2^4 be the 4-dimensional lineal space \mathbb{R}^4 endowed with the inner product of signature (2,2) given by $\langle x, y \rangle = -x_1y_1 - x_2y_2 + x_3y_3 + x_4y_4$ for $x = (x_1, x_2, x_3, x_4)$, $y = (y_1, y_2, y_3, y_4) \in \mathbb{R}^4$. The space $\mathbb{H}_1^3(-1)$ is the hypersurface of \mathbb{R}_2^4 defined as $\mathbb{H}_1^3(-1) = \{x \in \mathbb{R}_2^4 : \langle x, x \rangle = -1\}$. Then $\mathbb{H}_1^3(-1)$ with the restriction of \langle, \rangle is a Lorentzian manifold with constant sectional curvature -1, which is called the 3-dimensional anti De Sitter space.

In order to study flat surfaces, isometrically immersed, in $\mathbb{H}_1^3(-1)$, M. Dajczer and K. Nomizu, [2], by extending a construction of L.K. Graves, [3], use the notion of B-scroll of a Frenet curve (space-like, time-like or null) in $\mathbb{H}_1^3(-1)$. A curve $\bar{\beta}(t)$ in $\mathbb{H}_1^3(-1)$ is said to be a unit speed curve if $\langle d\bar{\beta}(t)/dt, d\bar{\beta}(t)/dt \rangle = \varepsilon$ (ε being +1 or -1 according to $\bar{\beta}$ is space-like or time-like, respectively). For a better understanding of the next construction we will bring back the notion of cross product in the tangent space $T_p\mathbb{H}_1^3(-1)$ of any point p in $\mathbb{H}_1^3(-1) \subset \mathbb{R}_2^4$. In $T_p\mathbb{H}_1^3(-1)$ there is a natural orientation defined as follows: an ordered basis $\{X, Y, X\}$ in $T_p\mathbb{H}_1^3(-1)$ is positively oriented if det[pXYZ] > 0, where [pXYZ] is the matrix with $p, X, Y, Z \in \mathbb{R}_2^4$ as row vectors. Now let ω be the volumen element on $\mathbb{H}_1^3(-1)$ defined by $\omega(X,Y,Z) = det[pXYZ]$. Then given $X, Y \in T_p\mathbb{H}_1^3(-1)$, the cross product $X \wedge Y$ is the unique vector in $T_p\mathbb{H}_1^3(-1)$ such that $\langle X \wedge Y, Z \rangle = \omega(X, Y, Z)$, for any $Z \in T_p\mathbb{H}_1^3(-1)$. Let us recall how a B-scroll is defined, for instance in the case of a space-like curve (other cases are similarly defined with obvious changes). Given a complete space-like unit speed curve $\bar{\beta}(t)$ in $\mathbb{H}_1^3(-1)$, it is called a space-like Frenet curve if it admits a Frenet frame field $\{\bar{T} = d\bar{\beta}/dt, \bar{N}, \bar{B}\}$ such that $\langle \bar{N}, \bar{N} \rangle = 1$, $\bar{B} = \bar{T} \times \bar{N}$ and satisfying the Frenet equations

$$\begin{split} \bar{\nabla}_{\bar{T}}\bar{T} &= \bar{\kappa}\bar{N}, \\ \bar{\nabla}_{\bar{T}}\bar{N} &= -\bar{\kappa}\bar{T} + \bar{\tau}\bar{B} \\ \bar{\nabla}_{\bar{T}}\bar{B} &= \bar{\tau}\bar{N}, \end{split}$$

where $\overline{\nabla}$ is the semi-Riemannian connection on $\mathbb{H}_1^3(-1)$ and $\overline{\kappa} = \overline{\kappa}(t)$ and $\overline{\tau} = \overline{\tau}(t)$ are the curvature and the torsion of $\overline{\beta}$, respectively. In particular, if $\overline{\tau} = 1$ (or -1), the mapping $f : \mathbb{R}^2 \to \mathbb{H}_1^3(-1)$ defined by $f(t,z) = \cos(z)\overline{\beta}(t) + \sin(z)\overline{B}(t)$ is an isometric immersion from \mathbb{R}_1^2 into $\mathbb{H}_1^3(-1)$ which is called the B-scroll of $\overline{\beta}$ (see [2] for details).

2. Geometric interpretation of B-scrolls via Hopf cylinders

As usual we identify \mathbb{R}_2^4 with \mathbb{C}_1^2 . Here \mathbb{C}_1^2 denotes the 2-dimensional complex lineal space \mathbb{C}^2 endowed with the Hermitian form $(a, b) = -a_1\bar{b}_1 + a_2\bar{b}_2$, where $a = (a_1, a_2)$, $b = (b_1, b_2) \in \mathbb{C}^2$. Then $\mathbb{H}_1^3(-1) = \{a \in \mathbb{C}_1^2 : (a, a) = -1\}$ and we consider two natural actions of \mathbb{S}^1 (the unit circle in \mathbb{R}^2) and \mathbb{H}^1 (the unit circle in \mathbb{R}^2_1), respectively, over $\mathbb{H}^3_1(-1)$, namely $(r, (a_1, a_2)) = (ra_1, ra_2)$, where $r \in \mathbb{S}^1$ or $r \in \mathbb{H}^1$. Then $\mathbb{H}^2(-1/4)$ (the hyperbolic plane with Gaussian curvature -4) and $\mathbb{H}^2_1(-1/4)$ (the pseudo-hyperbolic plane with Gaussian curvature -4) are obtained as orbit spaces.

Summarizing up, we have two natural Hopf fibrations $\pi_s : \mathbb{H}^3_1(-1) \to \mathbb{H}^2_s(-1/4)$, s = 0, 1, with fibers \mathbb{S}^1 and \mathbb{H}^1 , respectively. Actually π_s are semi-Riemannian submersions. Therefore we will use the own terminology on this topic (see [5] for details), in particular overbars are used to distinguish the lifts of corresponding geometrical objects on $\mathbb{H}^2_s(-1/4)$. So if ∇ denotes the semi-Riemannian connection on $\mathbb{H}^2_s(-1/4)$, we have

$$\bar{\nabla}_{\bar{X}}\bar{Y} = \overline{\nabla_X Y} + (-1)^s (\langle JX, Y \rangle \circ \pi_s) V$$

$$\bar{\nabla}_{\bar{X}}V = \bar{\nabla}_V \bar{X} = \overline{JX}$$

$$\bar{\nabla}_V V = 0$$

where J denotes the standard complex structure of both $\mathbb{H}^2_s(-1/4)$ and V is nothing but a unit vector field tangent to the fibers (that is, a vertical unit vector field).

Let β be a complete unit speed curve, immersed in $\mathbb{H}^2_s(-1/4)$, with Frenet frame $\{T, N\}$ and curvature function κ . Consider a horizontal lift $\overline{\beta}$ of β and denote by $\{\overline{T}, N^*, B^*\}$, κ^* and τ^* its corresponding Frenet objects. Now we can combine (1) with the Frenet equations of β and $\overline{\beta}$ to prove that $N^* = \overline{N}$. In particular, it yields to the horizontal distribution along $\overline{\beta}$ and it has the same causal character as N. Also it is not difficult to see that $\tau^* \equiv 1$ (or -1) and $B^* = V$ (or -V), that is, the binormal B^* of $\overline{\beta}$ coincides with the unit tangent to the fibers through each point of $\overline{\beta}$. Therefore we have proved the following

Lemma 2.1 (i) The horizontal lifts of unit speed curves in $\mathbb{H}^2(-1/4)$ are space-like Frenet curves in $\mathbb{H}^3_1(-1)$ with torsion 1 (or -1).

(ii) The horizontal lifts of unit speed curves in $\mathbb{H}^2_1(-1/4)$ are time-like Frenet curves in $\mathbb{H}^3_1(-1)$ with torsion 1 (or -1).

By pulling back via π_s a non-null curve β in $\mathbb{H}^2_s(-1/4)$ we get the total horizontal lift of β , which is an immersed flat surface M_β in $\mathbb{H}^3_1(-1)$, that will be called the semi-Riemannian Hopf cylinder associated to β . Notice that if s = 0, then M_β is a Lorentzian surface, whereas if s = 1, M_β is Riemannian or Lorentzian according to β is space-like or time-like, respectively.

Theorem 2.2 Let M be a Lorentzian surface immersed into $\mathbb{H}^3_1(-1)$. Then M is the semi-Riemannian Hopf cylinder associated to a unit speed curve β in $\mathbb{H}^2_s(-1/4)$ if and only if M is the B-scroll of any horizontal lift $\overline{\beta}$ of β .

Proof. Suppose $M = M_{\beta}$ and $\bar{\beta}$ is a horizontal lift of β . Then $\bar{\beta}$ goes through the fibers to parametrize M_{β} as follows,

$$X(t,z) = \begin{cases} \cos(z)\bar{\beta}(t) + \sin(z)i\bar{\beta}(t), \text{ if } s = 0\\ \cosh(z)\bar{\beta}(t) + \sinh(z)i\bar{\beta}(t), \text{ if } s = 1. \end{cases}$$

Now observe that $i\bar{\beta}(t)$ is the unit tangent vector field to the fibers along $\bar{\beta}$, which is nothing but the binormal B^* of $\bar{\beta}$. Therefore if M_{β} is Lorentzian, then it is the B-scroll of $\bar{\beta}$. A similar argument works to prove the converse. C.R. Acad. Sci. Paris 321 (1995), 505-509

3. Hopf cylinders and solutions of the Betchov-Da Rios soliton equation

In the last section, we obtained the following nice property of Hopf cylinders: the unit normal of $\bar{\beta}$ in $\mathbb{H}^3_1(-1)$ coincides with the unit normal of M_β into $\mathbb{H}^3_1(-1)$ along any horizontal lift $\bar{\beta}$ of β and then the binormal of $\bar{\beta}$ is tangent to the fibers along $\bar{\beta}$ for any $\bar{\beta}$. Consequently, the binormal B^* of $\bar{\beta}$ can be extended to a Killing vector field on $\mathbb{H}^3_1(-1)$ and then X(t, z) defines a solution of the binormal flow. In particular, if β has non-zero constant mean curvature in $\mathbb{H}^2_s(-1/4)$, one can use κ to reparametrize the fibers to get solutions $Y(t, z) = X(t, \kappa z)$ of the so called "filament flow" (see for instance [4] for some details about the filament equation).

More generally, we can consider the following equation for space curves $\gamma(t, z)$ in a threedimensional pseudo-Riemannian manifold endowed with the pseudo-Riemannian connection $\overline{\nabla}$

$$\frac{\partial \gamma}{\partial t} \wedge \overline{\nabla}_{\frac{\partial \gamma}{\partial t}} \frac{\partial \gamma}{\partial t} = \frac{\partial \gamma}{\partial z}$$

The next result gives infinitely many solutions of (2) in $\mathbb{H}^3_1(-1)$, which are obtained by means of Hopf cylinders.

Theorem 3.1 Let M_{β} be a Hopf cylinder in $\mathbb{H}^3_1(-1)$ over a unit speed curve β in $\mathbb{H}^2_s(-1/4)$ of curvature function κ . For any nonzero real number c and any solution t(u) of $\kappa(t(u))t^3_u - c = 0$, we define

$$Y(u,v) = \begin{cases} \cos(cv)\overline{\beta}(t(u)) + \sin(cv)\overline{B}(t(u)), & s = 0, \\ \cosh(cv)\overline{\beta}(t(u)) + \sinh(cv)\overline{B}(t(u)), & s = 1. \end{cases}$$

Then Y(u, v) are solutions of (2).

The proof of this theorem will appear in a forthcoming paper, [1].

In particular, the equation (2) becomes the Betchov-Da Rios equation (also called the localized induction equation, or the filament equation when viewed as an evolution equation) when t denotes the arc-length of the t-curves. This equation is a soliton equation and describes the behaviour of an incompressible, inviscid fluid.

In the following we describe all solutions of the Betchov-Da Rios soliton equation in $\mathbb{H}^3_1(-1)$ which are living in Hopf cylinders shaped on curves in $\mathbb{H}^2(-1/4)$. A similar result works for solutions in Hopf cylinders into $\mathbb{H}^3_1(-1)$ over curves in $\mathbb{H}^2_1(-1/4)$. They will appear in [1].

Theorem 3.2 Let β be an arc-length parametrized curve in $\mathbb{H}^2(-1/4)$ and M_β its Hopf cylinder in $\mathbb{H}^3_1(-1)$. For any diffeomosphism h of \mathbb{R}^2 , we consider $Y = X \circ h : \mathbb{R}^2 \to M_\beta \subset \mathbb{H}^3_1(-1)$, where X denotes the standard covering of \mathbb{R}^2 onto M_β (see Theorem 2.2). Then Y is a solution of the Betchov-Da Rios soliton equation in $\mathbb{H}^3_1(-1)$ if and only if

(1) β has constant curvature, say κ , in $\mathbb{H}^2(-1/4)$, and (2) h(u, v) = (t(u, v), z(u, v)) is defined as

$$t(u, v) = au - ag\rho v + c_1,$$

$$z(u, v) = agu - a\rho v + c_2,$$

where $(1-g^2)a^2 = \varepsilon$ (ε being the causal character of the u-curves), $g \in \mathbb{R} - \{-1, +1, -\kappa/2\}$, $\rho = (\kappa + 2g)a^2$ is the curvature of the u-curves in $\mathbb{H}^3_1(-1)$ and (c_1, c_2) is any couple of constants.

Remark 3.3 The *u*-curves in this theorem are certainly helices in $\mathbb{H}_1^3(-1)$. They are space-like if the slope $g \in (-1, 1)$, otherwise, they are time-like. A dual result for the slope can be obtained when working on Lorentzian Hopf cylinders in $\mathbb{H}_1^3(-1)$ coming from π_1 . For Riemannian Hopf cylinders in $\mathbb{H}_1^3(-1)$ coming from space-like curves in $\mathbb{H}_1^2(-1/4)$ any value of the slope g is allowed. In [1] we prove a converse of this result, namely: any helix δ in $\mathbb{H}_1^3(-1)$ is a solution of the filament equation in $\mathbb{H}_1^3(-1)$ living in a certain Hopf cylinder M_β in $\mathbb{H}_1^3(-1)$. Moreover the curvature κ of β in $\mathbb{H}_s^2(-1/4)$ and the slope g of δ in M_β are uniquely determined from the curvature and the torsion of the helix in $\mathbb{H}_1^3(-1)$.

Theorem 4 can also be read as follows. For any value of κ , that is, for any Hopf cylinder M_{γ} , one has a one parameter family $\{Y_g = X \circ h_g : \mathbb{R}^2 \to M_{\gamma} \subset \mathbb{H}^3_1(-1)/g \in \mathbb{R} - \{-\kappa/2, -1, 1\}\}$ of congruence solutions of the Betchov-Da Rios soliton equation lying in M_{γ} . By computing the limit of Y_g , as g goes to ± 1 , we get a pair of null geodesics in M_{γ} which are singular solutions. From Remark 1, that also works for Lorentzian Hopf cylinders coming from time-like curves in $\mathbb{H}^2_1(-1/4)$. However, when g goes to $-\kappa/2$ we find no solution neither Lorentzian nor Riemannian case. Summing up we have

Corollary 3.4 Up to congruences, there is a unique soliton solution of the Betchov-Da Rios equation in $\mathbb{H}^3_1(-1)$ lying in any Lorentzian Hopf cylinder of constant mean curvature M_{γ} . Moreover it is a null geodesic of M_{γ} .

Bibliography

- M. Barros, A. Ferrández, P. Lucas and M. A. Meroño. Solutions of the Betchov-Da Rios soliton equation in the anti-De Sitter 3-space. En 'New Approaches in Nonlinear Analysis', ed. Th. M. Rassias, Hadronic Press Inc., Palm Harbor, Florida, pp. 51–71, 1999. ISBN: 1-57485-042-3/pbk.
- [2] M. Dajczer and K. Nomizu. On flat surfaces in \mathbb{S}_1^3 and \mathbb{H}_1^3 . In *Manifolds and Lie Groups*, pages 71–108. Univ. Notre Dame, Indiana, Birkhäuser, 1981.
- [3] L. Graves. Codimension one isometric immersions between Lorentz spaces. *Trans. A.M.S.*, 252 (1979), 367–392.
- [4] J. Langer and R. Perline. The Hasimoto transformation and integrable flows on curves. *Appl. Math. Lett.*, 3 (1990), 61–64.
- [5] B. O'Neill. Semi-Riemannian Geometry. Academic Press, New York London, 1983.