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1. Introduction

In a series of early papers, [2] and [4], we have classified semi-Riemannian surfacesM2
s

into semi-Riemannian space formsM3
1(k) satisfying the Laplacian equation∆x = Ax + B in

the isometric immersionx. The key point to achieve the classification is to show that condition
implies the isoparametricity of the surface. For instance, that family inL3 consists of the products
L× S1(r),R×H1(−r) andR× S1

1(r), as well asH2(−r), S2
1(r) and minimal surfaces. A richer

family was obtained into De Sitter and anti De Sitter worlds where, apart from minimal surfaces,
all surfaces were explicitly listed in [4]. Since it is well known that the class of minimal surfaces
in those ambient spaces is quite interesting and large enough to deserve a deep study, we propose
to distinguish minimal surfaces or, more generally, constant mean curvature (CMC) surfaces. That
idea was first exploited by A. Ros [11], M. Barros and B.Y. Chen [8], and M. Barros and F. Urbano
[7], in order to study spectral geometry of minimal submanifolds in the sphere, where they asked
for the eigenvalue behaviour of the products of the Laplacian eigenfunctions.

Given a submanifoldx : Mn −→ Rm the products of the coordinate functions allow us
to define a smooth mapϕ from Mn into the setSM(m) of (m × m)-real symmetric matrices
defined byϕ = xxt (in general, not an isometric immersion). This will be called the quadric
representation ofMn. In [9], I. Dimitric made a nice study of that map. In [5], M. Barros and O.J.
Garay, using the quadric representation of a surface inS3, have obtained a new characterization
of the Clifford torus, among all compact minimal and non totally geodesic surfaces inS3, as the
only surface whose quadric representation is mass-symmetric in some hypersphere and minimal
in some concentric hyperquadric. Recently, [6], the same authors, in order to improve their above
result, stated the following problem: are there compact minimal surfaces inS3 with quadric repre-
sentation living minimally in some hyperquadric ofSM(4) others than the Clifford torus and the
totally geodesic 2-sphere? They show that the answer is negative.

As for semi-Riemannian surfaces, we were interesting in a more general problem:clas-
sify CMC semi-Riemannian surfaces in the non-flat 3-dimensional semi-Riemannian space forms
whose quadric representations into the setSA(4, ν) of selfadjoint matrices satisfies a certain
Laplacian differential equation. Notice that according to [9, Theorem 1] the flat case should be
avoided. We have observed that, under Barros-Garay conditions, the quadric representationϕ of
a CMC semi-Riemannian surface inM3

1(k), k 6= 0, satisfies the matricial Laplacian equation
∆ϕ = A ∗ ϕ + B (see section 3 for the definition of the star product∗). Then an interesting
problem arises as follows:could you characterize CMC semi-Riemannian surfaces intoM3

1(k)
whose quadric representation satisfies that equation?
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It should be pointed out that, on one hand, we do not need the surface to be either compact or
minimal. On the other hand, since the surface is now endowed with a semi-Riemannian metric,
our problem naturally generalizes that of Barros-Garay. Therefore, it seems reasonable to hope
for finding a richer class of CMC semi-Riemannian surfaces than in the Riemannian situation.
Actually, our main result states as follows:

Let M2
s be a semi-Riemannian constant mean curvature surface inM3

1(k) whose
quadric representation satisfies∆ϕ = A ∗ ϕ + B. ThenM2

s is an open piece of one
of the following surfaces:
1) S2(r), S2

1(r),H2(−r),H2
1(−r).

2)H1(−r)× S1(
√

1 + r2), S1
1(r)× S1(

√
1− r2),H1

1(−r)× S1(
√

r2 − 1), S1
1(r)×

H1(−√1 + r2),H1(−r)×H1(−√1− r2).

2. Preliminaries

LetR4
ν be the pseudo-Euclidean 4-dimensional space endowed with the standard inner product

of indexν given by〈a, b〉 = atGb, whereG = diag[δ1, δ2, δ3, δ4], δi = ±1, stands for the matrix
of the metric with respect to the usual rectangular coordinates. Throughout this paper, vectors in
R4

ν will be regarded as column matrices and(·)t will denote the transpose matrix. As usual, let
S3

1 = {x ∈ R4
1 : 〈x, x〉 = 1} andH3

1 = {x ∈ R4
2 : 〈x, x〉 = −1} be the unit pseudosphere and

the unit pseudohyperbolic space, respectively, viewed as hypersurfaces of index one with constant
sectional curvaturek = +1 andk = −1, respectively. From now on,M3

1(k) will denoteS3
1 orH3

1

according tok = 1 or k = −1, andR4
ν the pseudo-Euclidean space whereM3

1(k) is lying.
Let SA(4, ν) = {B ∈ gl(4,R) : BtG = GB} be the set of selfadjoint endomorphisms of

R4
ν equipped with the metricg(B, C) = k

2 trace(BC). Let f : M3
1(k) −→ SA(4, ν) be the map

defined byf(x) = xxtG. It is easy to see thatf is an isometric immersion, that is called the
second standard immersion ofM3

1(k), and its second fundamental form̄σ is given by

σ̄(X, Y ) = (XY t + Y Xt)G− 2k 〈X, Y 〉 f(x), (1)

for anyx ∈ M3
1(k) andX, Y ∈ TxM3

1(k).
Given an isometric immersionx : M2

s −→ M3
1(k) of a semi-Riemannian surfaceM2

s into
M3

1(k), the mapϕ : M2
s −→ SA(4, ν) defined byϕ = f◦x is also an isometric immersion that

will be called the quadric representation ofM2
s . Then the mean curvature vector fieldsH1 andH

associate to the immersionsx andϕ, respectively, are related by the formula

H = (H1x
t + xHt

1)G +
2∑

i=1

εiEiE
t
iG− 2kϕ,

where{E1, E2} is an orthonormal frame field tangent toM2
s andεi = 〈Ei, Ei〉, i = 1, 2.

3. First characterization results

Let us suppose that the quadric representationϕ = (ϕij) of the isometric immersionx :
M2

s −→ M3
1(k) satisfies the system of differential equations

∆ϕij = aijϕij + bij , for all i, j,
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for some real numbersaij andbij . From the definition ofϕ, it is easy to see thataij = aji and
bij = δiδjbji. Therefore the above conditions can be globally written as

∆ϕ = A ∗ ϕ + B,

whereA = (aij) is a symmetric matrix,B = (bij) is a selfadjoint endomorphism, and the star
product∗ associates to each pair of matricesC = (cij) andD = (dij) the matrixC∗D = (cijdij).

The first geometric meaning of that equation is contained in the following lemma, where we
prove that a surface satisfying (1) lies in a hyperquadric ofR4

ν .

Lemma 3.1 Let x : M2
s −→ M3

1(k) be an isometric immersion whose quadric representation
satisfies∆ϕ = A ∗ϕ + B. ThenM2

s is contained in the hyperquadric defined by〈Bx, x〉 = c, for
some real constantc.

Proof. First, observe that〈Bx, x〉 = 2kg(B, ϕ), then it suffices to show thatXg(B, ϕ) = 0 for
any vector fieldX tangent toM2

s . Writing ∇̃ for the Levi-Civita connection onSA(4, ν) and
using the well known equation∆ϕ = −2H, we obtain

Xg(B,ϕ) = g(B, ∇̃df(X)ϕ) = g(B, df(X))
= g(∆ϕ−A ∗ ϕ, df(X)) = −g(A ∗ ϕ, df(X))
= −g(ϕ,A ∗ df(X)).

Taking covariant derivative in (1) we easily getA ∗ df(X) = −2∇̃df(X)H and therefore by using
(2) we conclude

Xg(B,ϕ) = 2Xg(ϕ,H) = 0.

In what follows, letN be a unit vector field normal toM2
s in M3

1(k), with ε = 〈N,N〉, and
let S be the shape operator associated toN . The following lemma gives an accurate description
of the endomorphismB.

Lemma 3.2 Let x : M2
s −→ M3

1(k) be a surface contained in the hyperquadric defined by
〈Bx, x〉 = c, whereB ∈ SA(4, ν) andc ∈ R. Then there exists a smooth functionβ onM2

s such
that

Bx = βN + kcx, (2)

BN = ε grad(β) + (trace(B)− 3kc + βtrace(S))N + kεβx, (3)

BX = −βSX + kcX + X(β)N, (4)

wheregrad(β) stands for the gradient ofβ andX is a tangent vector field.

Proof. SinceBx is normal toM2
s in R4

ν , there is a functionβ satisfying (2). Now equation (4)
follows easily by covariant differentiation of (2). As for equation (3), we wish to compute the
tangential component(BN)T of BN . To do that, we have

〈
(BN)T , X

〉
= 〈BN,X〉 = 〈N, BX〉 = εX(β),

and therefore(BN)T = ε grad(β). Thex-component is given by

k 〈BN, x〉 = k 〈N,Bx〉 = kεβ.
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Finally, to compute theN -component let{E1, E2} be a orthonormal frame field. Then

ε 〈BN, N〉 = trace(B)−
2∑

i=1

εi 〈BEi, Ei〉 − k 〈Bx, x〉 = trace(B)− 3kc + βtrace(S),

and the lemma follows.
It is worth pointing out that the functionβ contains a nice geometric information about the

surfaceM2
s . To show that, we need some further computations. Let us denote by∇̄ and∇ the

Levi-Civita connections onR4
ν andM2

s , respectively. On one hand, covariant differentiation in (3)
yields

∇̄X(BN) = ε∇X(grad(β))− (trace(B)− 3kc + βtrace(S))SX + kεβX

+ 〈S(grad(β)) + grad(trace(S)β), X〉N.

On the other hand, by using (4) we get

∇̄X(BN) = −B(SX) = βS2X − kcSX − 〈S(grad(β)), X〉N.

These two equations lead to

2S(grad(β)) + grad(βtrace(S)) = 0,

ε∇X(grad(β)) = βS2X + (trace(B)− 4kc + βtrace(S))SX − kεβX.

In the following proposition we go further into the shape of the surface provided thatβ is a con-
stant.

Proposition 3.3 Let x : M2
s −→ M3

1(k) be a constant mean curvature surface contained in the
hyperquadric defined by〈Bx, x〉 = c, whereB ∈ SA(4, ν) andc ∈ R. Assume that the function
β given in Lemma 3.2 is constant. Then:
1) If β 6= 0, M2

s is a flat isoparametric surface.
2) If β = 0 andtrace(B) 6= 4kc, M2

s is a totally geodesic surface.

Proof. From (6) we have

βS2 + (trace(B)− 4kc + βtrace(S))S − kεβ = 0.

Now, whenβ 6= 0, the characteristic polynomial of the shape operator is constant and therefore
M2

s is an isoparametric surface. Moreover, in this casedet(S) = −kε and so, from Gauss equa-
tion, M2

s is flat. In the second case, we haveS = 0 andM2
s is totally geodesic.

4. Some examples

In this section we will explicitly exhibit certain families of surfaces inS3
1 andH3

1 satisfying
equation (1) and in his turn they will support the classification we are looking for.
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4.1. Totally umbilical surfaces inS3
1

To fix the notation we will use the metric given byG = diag[−1, 1, 1, 1]. Non flat totally
umbilical surfaces inS3

1 can be obtained by intersectingS3
1 with a coordinate hyperplane and it

follows easily that all possibilities can be shown by choosingx1 or x4 to be constant. This is
equivalent to consider the equationλx2

1 +µx2
4 = ρ2, whereρ is a non zero constant,λ, µ ∈ {0, 1}

andλ + µ = 1. The attached table lists all those surfaces, which satisfy equation (1) for matrices
A andB given below.

λ µ Surface A B

1 0 S2(r), r =
p

1 + ρ2

0BB@ 0 a a a
a b b b
a b b b
a b b b

1CCA
0BB@ 0 0 0 0

0 −2 0 0
0 0 −2 0
0 0 0 −2

1CCA

0 1 H2(−r), r =
p

ρ2 − 1

0BB@ −b −b −b −a
−b −b −b −a
−b −b −b −a
−a −a −a 0

1CCA
0BB@ −2 0 0 0

0 −2 0 0
0 0 −2 0
0 0 0 0

1CCA

0 1 S2
1(r), r =

p
1− ρ2

0BB@ b b b a
b b b a
b b b a
a a a 0

1CCA
0BB@ −2 0 0 0

0 −2 0 0
0 0 −2 0
0 0 0 0

1CCA
wherea = 2/r2 andb = 6/r2.

4.2. Totally umbilical surfaces inH3
1

Now we will use the metric given byG = diag[−1,−1, 1, 1]. Reasoning as above, non flat
totally umbilical surfaces inH3

1 satisfying the equation (1) are listed in the following table.

λ µ Surface A B

1 0 S2
1(r), r =

p
ρ2 − 1

0BB@ 0 a a a
a b b b
a b b b
a b b b

1CCA
0BB@ 0 0 0 0

0 −2 0 0
0 0 −2 0
0 0 0 −2

1CCA

1 0 H2(−r), r =
p

1− ρ2

0BB@ 0 −a −a −a
−a −b −b −b
−a −b −b −b
−a −b −b −b

1CCA
0BB@ 0 0 0 0

0 −2 0 0
0 0 −2 0
0 0 0 −2

1CCA

0 1 H2
1(−r), r =

p
1 + ρ2

0BB@ −b −b −b −a
−b −b −b −a
−b −b −b −a
−a −a −a 0

1CCA
0BB@ −2 0 0 0

0 −2 0 0
0 0 −2 0
0 0 0 0

1CCA
5
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wherea = 2/r2 andb = 6/r2.

4.3. Standard products inS3
1

The standard products inS3
1 satisfying the condition (1) are characterized by the equation

−x2
1 +x2

2 = εr2, whereε = ±1 stands for the sign of the surface andr is a non zero real constant.
The matricesA andB are given by

A =




a a b b
a a b b
b b c c
b b c c


 , with b =

a + c

4
, B =




−2 0 0 0
0 −2 0 0
0 0 −2 0
0 0 0 −2




wherea andc are given in the following table.

ε Surface a c

1 S1
1(r)× S1(

√
1− r2) 4/r2 4/(1− r2)

−1 H1(−r)× S1(
√

1 + r2) −4/r2 4/(1 + r2)

4.4. Standard products inH3
1

We have the following productsH1
1(−r)×S1(

√
r2 − 1), S1

1(r)×H1(−√1 + r2) andH1(−r)×
H1(

√
1− r2), standardly embedded inH3

1 by means of the equations:

−x2
1 − x2

2 = −r2

−x2
1 + x2

3 = r2

−x2
1 + x2

3 = −r2

respectively. They satisfy equation (1) for the matricesA, given in the following table, andB =
−2I, I being the identity(4× 4)-matrix.

Surface A a c

H1
1(−r)× S1(

√
r2 − 1)

0BB@ a a b b
a a b b
b b c c
b b c c

1CCA −4/r2 4/(r2 − 1)

S1
1(r)×H1(−√1 + r2)

0BB@ a b a b
b c b c
a b a b
b c b c

1CCA 4/r2 −4/(1 + r2)

H1(−r)×H1(−√1− r2)

0BB@ a b a b
b c b c
a b a b
b c b c

1CCA −4/r2 −4/(1− r2)
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whereb = (a + c)/4.

5. Main results

Before to get down to the general situation, it is worthwhile to pay attention to the following
interesting case.

Consider an isometric immersionx : M2
s −→ M3

1(k) whose quadric representationϕ satisfies
the condition

∆ϕ = λϕ + B,

whereλ is a real constant andB ∈ SA(4, ν). Notice thatϕ satisfies condition (1) withaij = λ
for all i, j. By equation (2), and using again∆ϕ = −2H, we get

(λ− 4k)ϕ + B = −2(H1x
t + xHt

1)G− 2
2∑

i=1

εiEiE
t
iG.

By taking covariant derivative here we obtain

(λ− 4k)(Xxt + xXt)G = −2
{
(∇̄XH1)xt + H1X

t + XHt
1 + x(∇̄XH1)t

}
G

− 2
2∑

i=1

εi

{
(∇̄XEi)Et

i + Ei(∇̄XEi)t
}

G

and by applying this endomorphism on a tangent vector fieldY , we have

(λ− 4k) 〈X, Y 〉x = −2 〈X,Y 〉H1 − 2
〈∇̄XH1, Y

〉
x− 2

2∑

i=1

εi 〈Ei, Y 〉 ∇̄XEi

− 2
2∑

i=1

εi

〈∇̄XEi, Y
〉
Ei.

Equating theN -component we deduce

ε 〈SX, Y 〉N = −〈X,Y 〉H1,

and thereforeεtrace(S)N = −2H1, which impliesH1 = 0 andS = 0. Summarizing, we have
proved the following proposition.

Proposition 5.1 Let M2
s be a surface inM3

1(k) whose quadric representation satisfies∆ϕ =
λϕ + B. ThenM2

s is totally geodesic.

To get a satisfactory solution to the problem of classifying semi-Riemannian constant mean
curvature surfaces inM3

1(k) whose quadric representation satisfies (1), there would be suitable,
in view of Proposition 3.3, to know the family of isoparametric surfaces ofM3

1(k). To do that,
we discuss according to the character of the shape operator. First, ifS is diagonalizable, thenM2

s

is totally umbilical or, by [1], M2
s is an open piece of a semi-Riemannian product. IfS is not

diagonalizable with a double real eigenvalue, thenM2
s is an open piece of aB-scroll over a null

curve (see [3]). Finally, if S has complex eigenvalues then, from [10], M2
s is a complex circle.

Now we are ready to show our first main theorem.
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Theorem 5.2 Let x : M2
s −→ M3

1(k) be a constant mean curvature isometric immersion whose
quadric representation satisfies∆ϕ = A ∗ ϕ + B. ThenM2

s is an isoparametric surface.

Proof. We aim to show thatβ is a constant. Assume that the setU = {p ∈ M2
s : grad(β2)(p) 6= 0}

is not empty. Then (5) yields to

S(grad(β)) = −trace(S)
2

grad(β),

showing thatS has no complex eigenvalues onU . Now, if trace(S) 6= 0 this equation implies that
S is diagonalizable with constant principal curvatures given by−trace(S)/2 and3trace(S)/2.
ThusU is a semi-Riemannian product. Therefore, as we have seen before, the functionβ is
constant, which contradicts the definition ofU . On the other hand, iftrace(S) = 0 thenU is totally
geodesic or a minimalB-scroll. The former cannot hold becauseβ should be constant, the latter
neither can, because a minimalB-scroll does not satisfy (1), as one can see by a straightforward
computation. Thus the functionβ is a constant.

In view of Proposition 3.3, we may assumeβ = 0 andtrace(B) = 4kc. Then by Lemma 3.2
we know thatB = kcI and therefore we obtain

0 = ∆(trace(ϕ)) = trace(∆ϕ) = trace(A ∗ ϕ + B) =
4∑

i=1

δiaiix
2
i + 4kc.

This equation and the equality∆(δix
2
i ) = δiaiix

2
i + kc imply, by an easy argument, that we can

find at most two different entries in the principal diagonal ofA. If there are exactly two different
ones, thenM2

s is totally umbilical or a semi-Riemannian product. Thus we can assume that all
entries in the principal diagonal ofA are equal. Therefore one of the following statements holds:
1) All entriesaij of A are equal. ThenM2

s is, by Proposition 5.1, a totally geodesic surface.
2) There is a row containing two different entries. We distinguish between minimal and non-
minimal case.
2.1) If M2

s is a minimal surface inM3
1(k), then by using (2) and (1) we obtain the following

coordinate equations




4∑

j=1

δjaijx
2
j + kc− 4


xi = 0, i = 1, 2, 3, 4.

Now, eitherM2
s is totally geodesic or〈Cix, x〉 = 0 for all i, whereCi = (c−4k)I+diag[ai1, ai2, ai3, ai4].

Therefore, from Proposition 3.3,M2
s is a flat isoparametric surface.

2.2) Assume now that the mean curvatureα of M2
s in M3

1(k) does not vanish. By using again (2)
and (1) we haveHx = kαN − 2x andHN = εαx, which can be written in components as

−2kαNi = 〈Cix, x〉xi, (7)

−kcNi = hi(x)xi, (8)

wherehi(x) =
∑4

j=1 δjaijxjNj + 2εα. SinceM2
s is not totally geodesic, the above equations

yield
c 〈Cix, x〉 = 2αhi(x), for all i. (9)

8
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Observe that we can write

A ∗ ϕ + kcI = −2H = −2
(
(H1x

t + xHt
1)G + I − εNN tG− 3kϕ

)
,

so that by equating the(i, j)-component, according to (7), we find

2α2(aij − 6k) = 2kα2(〈Cix, x〉+ 〈Cjx, x〉) + ε 〈Cix, x〉 〈Cjx, x〉 , i 6= j,

and

−
(
2α2(4c + 6k) + 4kα2 〈Cix, x〉+ ε 〈Cix, x〉2

)
x2

i + 2α2δi(kc + 2) = 0, i = j,

where we have used thataii = −4c. From these equations, bearing in mind thatM2
s is not

totally geodesic, we deduce thatM2
s is totally umbilical or〈Cix, x〉 are constant. Thus, from

Proposition 3.3,M2
s is a flat isoparametric surface, and the proof finishes.

In order to get a complete classification, according to the above theorem, we reduce the prob-
lem to determine which isoparametric surfaces inM3

1(k) satisfy (1). By considering the degreed
of the minimal polynomial of the shape operatorS, we distinguish two cases:
1) If d = 1, thenM2

s is totally umbilical and, by [10], M2
s is an open piece of a pseudosphere, a

pseudohyperbolic space or a flat totally umbilical surface. But an easy computation shows that the
last one does not satisfy (1).
2) If d = 2, thenM2

s is, according to [1], [3] and [10], a semi-Riemannian product, aB-scroll
over a null curve or a complex circle. However, equation (1) is only satisfied for the first one.

Now, we are ready to state our main classification theorem.

Theorem 5.3 Let M2
s be a semi-Riemannian constant mean curvature surface inM3

1(k) whose
quadric representation satisfies∆ϕ = A∗ϕ+B. ThenM2

s is an open piece of one of the following
surfaces:
1) S2(r), S2

1(r),H2(−r),H2
1(−r).

2)H1(−r)×S1(
√

1 + r2), S1
1(r)×S1(

√
1− r2),H1

1(−r)×S1(
√

r2 − 1), S1
1(r)×H1(−√1 + r2),

H1(−r)×H1(−√1− r2).

Remark 5.4 Obviously, the same computations work when the ambient space is a non-flat Rie-
mannian space formS3 or H3. In both cases, the equation (1) characterizes the totally umbilical
surfaces and Riemannian standard products.

This theorem allows us to distinguish minimal surfaces inM3
1(k) via its quadric representa-

tion. More precisely, we have the following consequences.

Corollary 5.5 Let M2
s be a minimal surface inM3

1(k) whose quadric representation satisfies
∆ϕ = A ∗ϕ + B. ThenM2

s is totally geodesic or an open piece of one of the following products:
S1

1(
√

2/2)× S1(
√

2/2),H1(−√2/2)×H1(−√2/2).

The Clifford torus characterization found by Barros-Garay in [6] can be directly obtained from
Theorem 5.3 as follows.

Corollary 5.6 LetM2 be a compact, minimal surface inS3 whose quadric representation is min-
imal in some hyperquadric ofSA(4, 0). ThenM2 is totally geodesic or the Clifford torus.
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