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1. Introduction

In a series of early papers2][and [4], we have classified semi-Riemannian surfadés$
into semi-Riemannian space forms3 (k) satisfying the Laplacian equatiohz = Az + B in
the isometric immersion. The key point to achieve the classification is to show that condition
implies the isoparametricity of the surface. For instance, that family iconsists of the products
L x S'(r), R x H!(—r) andR x Si(r), as well asl?>(—r), S?(r) and minimal surfaces. A richer
family was obtained into De Sitter and anti De Sitter worlds where, apart from minimal surfaces,
all surfaces were explicitly listed idl]. Since it is well known that the class of minimal surfaces
in those ambient spaces is quite interesting and large enough to deserve a deep study, we propose
to distinguish minimal surfaces or, more generally, constant mean curvature (CMC) surfaces. That
idea was first exploited by A. Ro&]], M. Barros and B.Y. Cherg], and M. Barros and F. Urbano
[7], in order to study spectral geometry of minimal submanifolds in the sphere, where they asked
for the eigenvalue behaviour of the products of the Laplacian eigenfunctions.

Given a submanifold: : M™ — R™ the products of the coordinate functions allow us
to define a smooth map from M™ into the setSM (m) of (m x m)-real symmetric matrices
defined byy = za! (in general, not an isometric immersion). This will be called the quadric
representation ai/™. In [9], I. Dimitric made a nice study of that map. 18][ M. Barros and O.J.
Garay, using the quadric representation of a surfa@? jmave obtained a new characterization
of the Clifford torus, among all compact minimal and non totally geodesic surfac’s as the
only surface whose quadric representation is mass-symmetric in some hypersphere and minimal
in some concentric hyperquadric. Recentf], fhe same authors, in order to improve their above
result, stated the following problem: are there compact minimal surfa@sith quadric repre-
sentation living minimally in some hyperquadric. 8/ (4) others than the Clifford torus and the
totally geodesic 2-sphere? They show that the answer is negative.

As for semi-Riemannian surfaces, we were interesting in a more general problasi:
sify CMC semi-Riemannian surfaces in the non-flat 3-dimensional semi-Riemannian space forms
whose quadric representations into the $et(4,v) of selfadjoint matrices satisfies a certain
Laplacian differential equationNotice that according ta] Theorem 1] the flat case should be
avoided. We have observed that, under Barros-Garay conditions, the quadric representtion
a CMC semi-Riemannian surface i3 (k), k # 0, satisfies the matricial Laplacian equation
Ap = A x ¢ + B (see section 3 for the definition of the star prodsjct Then an interesting
problem arises as followscould you characterize CMC semi-Riemannian surfaces iigk)
whose quadric representation satisfies that equation?
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It should be pointed out that, on one hand, we do not need the surface to be either compact or
minimal. On the other hand, since the surface is now endowed with a semi-Riemannian metric,
our problem naturally generalizes that of Barros-Garay. Therefore, it seems reasonable to hope
for finding a richer class of CMC semi-Riemannian surfaces than in the Riemannian situation.
Actually, our main result states as follows:

Let M2 be a semi-Riemannian constant mean curvature surfack/fik) whose
quadric representation satisfigsy = A * ¢ + B. ThenM? is an open piece of one
of the following surfaces:

1)S?(r), S3(r), HP (=), HE (7).

2)H' (—r) x SY(V1 +72),S}(r) x SHV1 —72), Hi(—r) x S'(vr2 — 1), S}(r) x
HY (=1 + 72), HY (—r) x HY(—v1 —r?).

2. Preliminaries

LetR? be the pseudo-Euclidean 4-dimensional space endowed with the standard inner product
of indexv given by(a, b) = a'Gb, whereG = diag[dy, da, J3, 04], §; = +1, stands for the matrix
of the metric with respect to the usual rectangular coordinates. Throughout this paper, vectors in
R? will be regarded as column matrices apy will denote the transpose matrix. As usual, let
S ={z € R} : (x,2) = 1} andH3 = {z € R} : (v,z) = —1} be the unit pseudosphere and
the unit pseudohyperbolic space, respectively, viewed as hypersurfaces of index one with constant
sectional curvaturé = +1 andk = —1, respectively. From now or/$ (k) will denoteS$ or H3
according tok = 1 or k = —1, andR? the pseudo-Euclidean space whéfg (k) is lying.

Let SA(4,v) = {B € gl(4,R) : B'G = GB} be the set of selfadjoint endomorphisms of
R? equipped with the metrig(B, C) = Strace(BC). Let f : M3(k) — SA(4,v) be the map
defined byf(z) = z2!G. It is easy to see that is an isometric immersion, that is called the
second standard immersion &f3(k), and its second fundamental forris given by

F(X,Y) = (XY'"+YXHG - 2k (X,Y) f(z), (1)

foranyz € M3(k) andX,Y € T, M3 (k).

Given an isometric immersion : M2 — M3(k) of a semi-Riemannian surfadd? into
M3(k), the mapyp : M2 — SA(4,v) defined byy = fox is also an isometric immersion that
will be called the quadric representation/af?. Then the mean curvature vector fields and H
associate to the immersiomsandy, respectively, are related by the formula

2
H = (Hia' +2H})G + ) &EE/G — 2k,

i=1

where{E1, E,} is an orthonormal frame field tangentAé? ande; = (E;, E;),i = 1,2.

3. First characterization results

Let us suppose that the quadric representafios: (¢i;) of the isometric immersion :
M?2 — M3 (k) satisfies the system of differential equations

Agi; = aijpij + bij, foralli, j,

2
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for some real numbers;; andb;;. From the definition ofp, it is easy to see that;; = a;; and
bij = 0;6;b;;. Therefore the above conditions can be globally written as

Ap=Axp+ B,

whereA = (a;;) is a symmetric matrix3 = (b;;) is a selfadjoint endomorphism, and the star
product« associates to each pair of matri€es= (c¢;;) andD = (d;;) the matrixC'« D = (c;;jd;;).

The first geometric meaning of that equation is contained in the following lemma, where we
prove that a surface satisfying (1) lies in a hyperquadri hf

Lemma3.1 Letx : M2 — M:3(k) be an isometric immersion whose quadric representation
satisfiesAp = A x ¢ + B. ThenM 2 is contained in the hyperquadric defined @z, z) = ¢, for
some real constarnt

Proof. First, observe thatBz, z) = 2kg(B, ¢), then it suffices to show that'g(B, ¢) = 0 for
any vector fieldX tangent toM?2. Writing V for the Levi-Civita connection o5 A(4, ) and
using the well known equatioAy = —2H, we obtain

Xg(B,p) = g(B,Vgx)e) =9(B,df(X))
= g(Ap—Axp,df(X)) = —g(Ax*p,df (X))
= —g(p, Axdf(X)).

Taking covariant derivative in (1) we easily gét« df (X) = —2@df( x)H and therefore by using
(2) we conclude
Xg(B,p) =2Xg(p,H) = 0.

In what follows, letV be a unit vector field normal t6/2 in M3 (k), with e = (N, N), and
let S be the shape operator associatedtoThe following lemma gives an accurate description
of the endomorphisni.

Lemma3.2 Letz : M2 — Mj3(k) be a surface contained in the hyperquadric defined by
(Bx,z) = ¢, whereB € SA(4,v) andc € R. Then there exists a smooth functigion M2 such
that

Bx = BN+ kex, (2)
BN = egrad(p) + (trace(B) — 3kc + Strace(S))N + kefz, 3)
BX = —BS5X+keX + X(B)N, (4)

wheregrad (/) stands for the gradient gf and X is a tangent vector field.

Proof. Since Bz is normal toM?2 in R, there is a functiorg satisfying (2). Now equation (4)
follows easily by covariant differentiation of (2). As for equation (3), we wish to compute the
tangential componerft N)” of BN. To do that, we have

((BN)",X) = (BN, X) = (N, BX) = eX(8),
and thereforé BN)? = ¢ grad(3). Thez-component is given by

k(BN,z) =k (N, Bx) = kef3.

3
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Finally, to compute théV-component le{ £, E» } be a orthonormal frame field. Then

2
e (BN, N) = trace(B) — Z e; (BE;, E;) — k (Bx, x) = trace(B) — 3kc + [trace(S),
i=1

and the lemma follows.

It is worth pointing out that the functiof contains a nice geometric information about the
surfaceM?. To show that, we need some further computations. Let us dendtednydV the
Levi-Civita connections o2 andM?2, respectively. On one hand, covariant differentiation in (3)
yields

Vx(BN) = &Vx(grad(f)) — (trace(B) — 3kc + [Strace(S))SX + ke X
+ (S(grad(B)) + grad(trace(S)3), X) N.

On the other hand, by using (4) we get
Vx(BN)=—-B(5X) = 5?X — keSX — (S(grad(8)), X) N.
These two equations lead to
25(grad(f3)) + grad(ftrace(S5)) = 0,

eVx(grad(3)) = BS?X + (trace(B) — 4kc 4 fBtrace(S))SX — ke X.

In the following proposition we go further into the shape of the surface provided@tisah con-
stant.

Proposition 3.3 Letx : M2 — M3(k) be a constant mean curvature surface contained in the
hyperquadric defined byBz, z) = ¢, whereB € SA(4,v) andc € R. Assume that the function

6 given in Lemma 3.2 is constant. Then:

1) If 3 # 0, M2 is a flat isoparametric surface.

2) If 3 = 0 andtrace(B) # 4kc, M? is a totally geodesic surface.

Proof. From (6) we have

BS? + (trace(B) — 4kc + Btrace(S))S — ke = 0.
Now, wheng # 0, the characteristic polynomial of the shape operator is constant and therefore
M? is an isoparametric surface. Moreover, in this casgS) = —ke and so, from Gauss equa-
tion, M2 is flat. In the second case, we have= 0 and /2 is totally geodesic.

4. Some examples

In this section we will explicitly exhibit certain families of surfacesSfrandH; satisfying
equation (1) and in his turn they will support the classification we are looking for.

4
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4.1. Totally umbilical surfaces inS?

To fix the notation we will use the metric given Iy = diag[—1, 1,1, 1]. Non flat totally
umbilical surfaces ir§$ can be obtained by intersectif§ with a coordinate hyperplane and it
follows easily that all possibilities can be shown by choosiagr x4 to be constant. This is
equivalent to consider the equatian? + uz3 = p%, wherep is a non zero constan, 1 € {0, 1}
and)\ + p = 1. The attached table lists all those surfaces, which satisfy equation (1) for matrices
A andB given below.

Al p Surface A B
0 a a a 0 0 0 0
2 B 5 a b b b 0 -2 0 0
11O} 8)r=yvity a bbb 0 0 -2 0
a b b b 0 0 0 -2
-b —-b —-b -—-a -2 0 0 0
-b —-b —-b -—a 0o -2 0 0
2(_ — 2 _
0 1| H(=r)r=yp*—1 b —b —b -a 0 0 -2 0
—a —a -—a 0 0 0 0 0
b b b a —2 0 0 0
b b b a 0 -2 0 0
2 — 2
O] 1] Sitr)r=v1-p b b b a 0 0 -2 0
a a a O 0 0 0 0

wherea = 2/r% andb = 6/r2.

4.2. Totally umbilical surfaces inH?

Now we will use the metric given b¢ = diag[—1,—1, 1,1]. Reasoning as above, non flat
totally umbilical surfaces ifil; satisfying the equation (1) are listed in the following table.

X u Surface A B
0 a a a o 0 0 0
, Y a b b b 0 -2 0 0
110 Si(r),r=+p*-1 a b b b 0 0 -2 0
a b b b 0 0 0 2
0 —a —a —-a 0 0 0 0
N — —a —b —b —b 0 -2 0 0
10| H(=r)r=+1-p a4 —b —b  —b 0 0 -2 0
—a —b —b —b 0 0 0 -2
b —-b —-b -—a —2 0 0 0
-b -b -b -a 0 -2 0 0

2/ _ 2

0| 1| Hi(—r),r=+1+p b —-b —b —a 0 0 -2 0
“a4 —a -a 0 0 0 00
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wherea = 2/r% andb = 6/r2.

4.3. Standard products inS?

The standard products & satisfying the condition (1) are characterized by the equation
—z? +22 = er?, wheres = +1 stands for the sign of the surface anig a non zero real constant.
The matricesA and B are given by

a a b b -2 0 0 0
a a b b . a+c 0 —2 0 0
A=y p o o |WMtMb=——  B=| 4 4 o o
b b ¢ c 0 0 0 -2

wherea andc are given in the following table.

5 Surface a c

1 Si(r) x SH(vV1 —72) 4/7'2 4/(1 — rz)

1| B (-r) xS WVIER) | 4/ | 4/ 4 r?)

4.4. Standard products inH;}

We have the following product& (—r) xS (v/r2 — 1), SH(r) xH (=1 + r2) andH! (—r) x
H!(v/1 — r2), standardly embedded i} by means of the equations:

- S
—7 + SL’% = 7’
—x% + :c% =

respectively. They satisfy equation (1) for the matrigegiven in the following table, an® =
—21, I being the identity(4 x 4)-matrix.

Surface A a c
a a b b
HY (—r) x SH (V72— 1 a a bb —4/r? | 4/ -1
(enxsiovm-T) | [ 2 e 0 R REYIGEY
b b ¢ ¢

a b a b
S1(r) x H' (—v/TF72) boe bl apt | 4yt
b ¢ b ¢
a b a b
1 1 b ¢ b ¢ 2 2
H (—7r) x H (=1 — 12) a b a b —4/r —4/(1 —1r?)
b ¢ b ¢
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whereb = (a + ¢) /4.

5. Main results

Before to get down to the general situation, it is worthwhile to pay attention to the following
interesting case.
Consider an isometric immersian: M? — M3 (k) whose quadric representatigrsatisfies
the condition
Ap = \p + B,

where) is a real constant anB € SA(4,v). Notice thaty satisfies condition (1) with;; = A
for all 7, j. By equation (2), and using agafy = —2H, we get

2
(A —4k)p + B = —2(Hy2" + zH{)G - 2> &EElG.
i=1

By taking covariant derivative here we obtain

(A —4k)(Xz'+2X"G = —2{(VxHi)z'+ H1 X'+ XH{ +2(VxH)'} G

2
-2 Z E; {(?XEl)Ef + El(vxEl)t} G
i=1

and by applying this endomorphism on a tangent vector figlde have

2
A—4k) (X, V)2 = —2(X,Y)H, -2(VxH,Y)z -2 (E;,Y)VxE;
=1
2
~2) e (VxE,Y)E;.
=1

Equating theV-component we deduce
e(SX,Y)N = —(X,Y) Hy,

and thereforetrace(S)N = —2H;, which impliesH; = 0 andS = 0. Summarizing, we have
proved the following proposition.

Proposition 5.1 Let M2 be a surface inM$(k) whose quadric representation satisfidsy =
Ay + B. ThenM? is totally geodesic.

To get a satisfactory solution to the problem of classifying semi-Riemannian constant mean
curvature surfaces i3 (k) whose quadric representation satisfies (1), there would be suitable,
in view of Proposition 3.3, to know the family of isoparametric surfaced/gfk). To do that,
we discuss according to the character of the shape operator. Fis§ dfiagonalizable, thei/?
is totally umbilical or, by L], M2 is an open piece of a semi-Riemannian productS i not
diagonalizable with a double real eigenvalue, tiép is an open piece of &-scroll over a null
curve (seed]). Finally, if S has complex eigenvalues then, frob@], M2 is a complex circle.

Now we are ready to show our first main theorem.

7
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Theorem 5.2 Letz : M2 — M3(k) be a constant mean curvature isometric immersion whose
quadric representation satisfigsy = A * ¢ + B. ThenM? is an isoparametric surface.

Proof. We aim to show that is a constant. Assume thatthe&et {p € M2 : grad(3?)(p) # 0}
is not empty. Then (5) yields to

S(grad(p)) = — 120l

grad(f3),
showing thatS has no complex eigenvalues &n Now, if trace(.S) # 0 this equation implies that
S is diagonalizable with constant principal curvatures given-yace(S)/2 and3trace(S)/2.
Thusi/ is a semi-Riemannian product. Therefore, as we have seen before, the fuhdtion
constant, which contradicts the definitiortaf On the other hand, ifrace(.S) = 0 theni/ is totally
geodesic or a minimaB-scroll. The former cannot hold becaysshould be constant, the latter
neither can, because a minim@atscroll does not satisfy (1), as one can see by a straightforward
computation. Thus the functighis a constant.

In view of Proposition 3.3, we may assurfie= 0 andtrace(B) = 4kc. Then by Lemma 3.2
we know thatB = kcI and therefore we obtain

4
0 = A(trace(yp)) = trace(Ayp) = trace(A * p + B) = Z Siazwi + 4ke.
i=1

This equation and the equality(8;z?) = 6;a;2? + ke imply, by an easy argument, that we can
find at most two different entries in the principal diagonaldoflf there are exactly two different
ones, then/? is totally umbilical or a semi-Riemannian product. Thus we can assume that all
entries in the principal diagonal of are equal. Therefore one of the following statements holds:
1) All entriesa;; of A are equal. Then/? is, by Proposition 5.1, a totally geodesic surface.

2) There is a row containing two different entries. We distinguish between minimal and non-
minimal case.

2.1) If M2 is a minimal surface inV/3(k), then by using (2) and (1) we obtain the following
coordinate equations

4
> Gjagal+ke—4 |3 =0,  i=1,234.
j=1

Now, eitherM? is totally geodesic ofC;z, x) = 0 for all i, whereC; = (c—4k)I+diag[a;1, aso, a;3, aia).
Therefore, from Proposition 3-34’32 is a flat isoparametric surface.

2.2) Assume now that the mean curvataref M2 in M3 (k) does not vanish. By using again (2)
and (1) we havéir = kaN — 2x andHN = ax, which can be written in components as

—2kaN; = (Ciz,z)x;, (7)
—kCNi = hl(x):v,, (8)
whereh;(z) = Z?zl §ja;jx;N; + 2ea. SinceM? is not totally geodesic, the above equations

yield
c(Cix,z) = 2ahi(x), for all 4. 9)

8
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Observe that we can write
Axp+kel = —2H = -2 ((Hiz' + zH{)G + I —eNN'G — 3ky) ,
so that by equating th@, j)-component, according to (7), we find
20%(a;j — 6k) = 2ka®((Cizx, x) + (Cjz,2)) + £ (Ciw, x) (Cjz,x), i # j,
and
— (2&2(46 + 6k) + 4ka? (Ciz, x) + € (Ciz, ZC>2> x? +20%65;(kc+2) =0, i=j,

where we have used that; = —4c. From these equations, bearing in mind tAd¢ is not
totally geodesic, we deduce thaf? is totally umbilical or (C;z,z) are constant. Thus, from
Proposition 3.3)/2 is a flat isoparametric surface, and the proof finishes.

In order to get a complete classification, according to the above theorem, we reduce the prob-
lem to determine which isoparametric surfacedin(k) satisfy (1). By considering the degrée
of the minimal polynomial of the shape operatrwe distinguish two cases:
1) If d = 1, then M2 is totally umbilical and, by 0], M2 is an open piece of a pseudosphere, a
pseudohyperbolic space or a flat totally umbilical surface. But an easy computation shows that the
last one does not satisfy (1).
2) If d = 2, thenM? is, according to ], [3] and [L0], a semi-Riemannian product, 2-scroll
over a null curve or a complex circle. However, equation (1) is only satisfied for the first one.

Now, we are ready to state our main classification theorem.

Theorem 5.3 Let M2 be a semi-Riemannian constant mean curvature surfaddjtk) whose
quadric representation satisfi@sy = Axp+ B. ThenM 2 is an open piece of one of the following
surfaces:

1)S%(r), S3(r), H2(—1), H3(—r).

2)H (—r)xSY(V1 +72),SHr)xSH V1 — 72), Hi (—r) xS* (V72 — 1), SI(r) x H (=1 + 72),

H (—r) x HY(—V/1 —r2).

Remark 5.4 Obviously, the same computations work when the ambient space is a non-flat Rie-
mannian space for®> or H3. In both cases, the equation (1) characterizes the totally umbilical
surfaces and Riemannian standard products.

This theorem allows us to distinguish minimal surfaced4#(k) via its quadric representa-
tion. More precisely, we have the following consequences.

Corollary 5.5 Let M? be a minimal surface in\/3(k) whose quadric representation satisfies
Ayp = Ax ¢+ B. ThenM? is totally geodesic or an open piece of one of the following products:

S1(v2/2) x S} (v2/2), H' (~v2/2) x H (—V2/2).

The Clifford torus characterization found by Barros-Garayircgn be directly obtained from
Theorem 5.3 as follows.

Corollary 5.6 LetM? be a compact, minimal surface # whose quadric representation is min-
imal in some hyperquadric &fA(4, 0). ThenM? is totally geodesic or the Clifford torus.
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