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Abstract

In this paper we characterize the product of submanifolds whose quadric represeptation
satisfiesA H, = AH,, for a real constant, whereH,, is the mean curvature vector field of

. We also characterize the product of submanifolds whose quadric representation has mean
curvature vector field proper for the Jacobi operator in terms of conditions on the factors of
the product. As for curves and surfaces, a complete classification is given.

1. Introduction

In a recent paperg], we have introduced a representation of a product of indefinite Rieman-
nian manifolds in a certain space of selfadjoint matrices. It is the so called quadric representation
. This is a nice tool to study the geometry of submanifolds, into indefinite space forms, as de-
termined by the geometry of their product isometrically immersed into the corresponding pseudo-
Euclidean space. Actually, we found a characterization of indefinite Riemannian products whose
quadric representation satisfiag?, = \H,,, A being the Laplacian operator on the product and
H, the mean curvature vector field of the quadric representation. Thus, in particular, for surfaces
into De SitterS?(1) and anti De SittefI3(—1) spaces we have shown that such equation only
holds either for products of minimal surfaces or products of a minimal surface and one of the
following surfacesH?(—1), S'(2/3) x H'(-2), S}(1), S}(2) x Hj(-2/3), S1(2) x H}(-2/3)
and aB-scroll over a null Frenet curve with torsiain/2.

The problem of finding non minimal submanifolds with harmonic mean curvature vector field
was first stated and studied by B.Y. Chen (€k fvho proposed to call them biharmonic submani-
folds. Then, in 8], some contributions in that line are given. However, the condifiégh, = \H,,
always yields to hypersurfaces with both constant mean and scalar curvatures. Since the mean cur-
vature vector field lies in the normal bundle, it seems natural to work with the normal Laplacian
and study the new equatiaﬁin = AH,. Now one might think that a characterization of
biharmonic submanifolds in the normal bundle should improve that just obtained with regard to
the Laplacian. In factAH, = \H,, implies that\ should vanish. This and the fact that the
constancy neither the mean curvature nor scalar curvature can be asserted point out substantial
differences between' H,, = AH,, andAH, = A\H,,.

On the other hand, it is well known that the Jacobi operdtizrdefined on the normal bundle
in terms of the normal Laplacian and the Simons operator (58§ [Then it seems natural to
ask for submanifolds whose quadric representation satigfits = AH,. We characterize the
indefinite products hypersurfaces satisfying this equation finding that they have to be of constant
mean and constant scalar curvatures with an appropriate relation beetwen them. In particular,
explicit formulas for the mean and scalar curvatures of the hypersurfaces can be given provided
that their quadric representation have Jacobi mean curvature vector field/{ig.= 0). A
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complete classification is achieved when we consider surfaces into DeS3ittad anti De Sitter
H3 spaces. Itis worth pointing out that, for surfaces if@ndH?, the characterizations obtained
here fromJH, = AH, have nothing to do with those got i][coming fromAH, = A\H.,.

2. Preliminaries

Let ]\ZIZLH(I{:) andNZH(k:) be two hyperquadrics of constant curvatirstandardly embed-

ded inR;’”‘+2 andR”*2, respectively. We can define an immersjbfiom the pseudo-Riemannian
productﬂf+1(k) x N (k) into the space of redin + 2) x (n + 2) matricest by

v

oM Ry x N k) -

14

(p,q) — p®Rgq

where® : R x R?2 — M is given byu ® v = Giuv!Ge, G1 and G, standing for the
matrices of the standard metrics Rﬁ‘“ andR7*2, respectively.

Some properties of the immersigrare listed below (sed]). Let (p, ¢) be a point inZ\ZZ1+1 X

N"*! and(X,Y) a vector field orY\foH x N'™ then

df(p,q) (Xp,Yy) =X, ®q+p®Y,.

Let V be the usual flat connection 6t and(V, W) a vector field onZ\Z/ZHl X NZH. Then for

the covariant derivative we have

Vaxyydf (VW) = df(VXV,VEW)+ VoY +XeW

whereV' andV” are the usual flat connections B2 andR7+2, respectively, and' andv?
are the Levi-Civita connections dﬁ:fﬂ and N, respectively.

Let g be the metric ot defined byg(A, B) = ktr(G1AG2B?), for A, B € 9. Notice that
oM, endowed withy, is isometric to a pseudo-Euclidean space of indext- 2) + s(m + 2) — 2st
or (m+2)(n+2)—t(n+2)— s(m+2) — 2st, provided thak > 0 or k < 0, respectively. Then

IXQV,Y QW) =k(X,Y)(V,W) 2.2)

and thereforef is an isometric immersion. Now, a straightforward computation from (2.1) allows
us to obtain the second fundamental fa¥rof f

o(X,Y),(V,\IV)=VRY+XW —k((X,V)+(Y,W))f.

j — 1 — 1 . . .
Letz : M! — MZ1+ C R andy : N/ — NI ¢ R™2 be two isometric immersions

and lety : M7 x N5 — 9 be the isometric immersion defined byp, q) = f(x(p),y(q)). From
now on,y will be called thequadric representation of the pseudo-Riemannian product immersion
(2,9).

By letting H,, and H,, the mean curvature vector fields ofandy, respectively, andf, and
H, the mean curvature vector fields in the corresponding pseudo-Euclidean ambient spaces, we
have

H,=H, — kz, H,=H, - ky,



Angel Ferrandez, Pascual Lucas and Miguel Angel Merofio, Biharmonic products in the normal bundle

(j+€)H¢:jﬁx®y+fl’®ﬁya

whereH, is the mean curvature vector field associateg.to
If (X,Y)is avector field alongx, y) then

(XeY) =k(X,2)z0Y" +(Y,y) X" ®y),

where()” denotes the tangential component.

3. Products in 9t with mean curvature vector field proper for the
normal Laplacian

In this section we are going to study the equation
AtH,=)H,, MR,

whereA " is the Laplacian operator in the normal bundle\éf x N in 9.

Let (p,q) be a point inM? x Nf and choose local orthonormal framég, ..., E;} and
{F},..., Fy} on M and N, respectively, such thal%, E.(p) = 0, foralla = 1,...,5, and
V%ﬁFﬁ(q) =0, forall 3 =1,...,¢ whereV® andV¥ are the Levi-Civita connections ai?
and N4, respectively.

Taking covariant derivative in (2.4), we obtain(at ¢) that

= 1
VarwoHe = 1 H)(JVEH » @y +LE ® Hy),

by using (2.5), we get the normal component,
oL 1
VareoHe = +£)(9V 5 H, @y+(E o H,).

By derivating here and taking the normal component we have
Ve Vi H, = ! (j
df (E:,0) ¥ df (3,0 @ G+¢

=l 1|
= Hz E, E)® H,),
(j+£)(JV AY ® Y+ L. ( ) ® Hy)

wheres, is the second fundamental form bf? in ]R;"”. Analogously

<l\
=

? ®y+€VEE ® Hy)

— =

= = I _ 2 =2 =
Vi Varo.my He = m(jﬂx @0y (F, F) + Ltz @V 5V 5. Hy).

Therefore we have

1= e -
AtH, = ) (GAtH, @ y+Llr @ AYH, — j¢(H, ® H, + H, ® H,)). (3.2)

By assuming thaAiH¢, = A\H,, from (3.2) we deduce that

JATH, @y + e @ ATH, — j0(H, @ Hy+ H, @ Hy) = \jH, @y +lx @ H,).
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Since this can be viewed as an endomorphisiRph?, we apply it toy to get
kY AYH, 40 <ALﬁy, y> Giz — jt (H,,y) Gy Hy = Njk Gy H, + M (H,,y) Gy,

As (H,,y) = —1 andG is invertible, the above equation writes as

GEIAYH 4 §(6— MY Hy + 0O+ kj + <AJ‘FIy,y>)J: —0.
A similar reasoning by applying te’ leads to

Ry G = MYy O R (AT 2y = 0.
By multiplying now the above equation ywe find

j <Alﬁx,x> ny <ALﬁy,y> FAG+0) =0.

Bringing (3.3) and (3.4) td&LH¢ = A\H,, bearing in mind (3.5), we obtaif, ® H, = 0. This
equation yieldsH, = 0 or H, = 0 or both simultaneously. Now suppose thfa; # 0, then
Aiﬁy = 0 and so (3.3) can be rewritten as

GETIAYH 4 j(0 = MY Hy + O\ + kj)z = 0.

SinceAltz =0 and]\Z/’Trl is umbilic in R?*2, thenALH, = A+H,. So we deduce from the
last equation that = 0 and
AYH, + k(H, = 0.

A straightforward computation shows that if one immersion is minimal and the other one verifies
the above equation, themin = 0. Therefore, we have just proved the following theorem.

Theorem 3.1 Let ¢ : M x Ng — 90 be the quadric representation of a pseudo-Riemannian
product(z,y). ThenA+H, = \H,, if and only if A = 0 and one of the following statements
holds: .
(1) M is minimal in]\ZTJr andy verifies the equatiod H,, = —kjH,,.
(2) N§ is minimal in]\7’,jJrl andz verifies the equatiodh™ H, = —k(H,,.

In particular, if M and N} are hypersurfaces ijtT{Z"“rl
following consequences.

and N, respectively, we have the

Corollary 3.2 Lety : M" x N} — 9 be the quadric representation of a pseudo-Riemannian
product of hypersurfaces. Thek'H, = AH,, if and only if A = 0 and one of the following
statements holds:

(1) M is minimal inMZ”rl andy verifies the equatiod\a, = —kmay,, Wherea,, stands for
the mean curvature a¥7 in N+,
(2) N} is minimal in]\7,7f+1 andz verifies the equatioha, = —kna,, Wherea,, stands for the

. — 1
mean curvature oM in i1, "
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Corollary 3.3 There is nho compact Riemannian product of hypersurfaceﬁz?ﬁrl X NZH,

k > 0, with proper mean curvature vector field 9.

The above results can be sharpened in low dimensions. Indeed, we can apply Corollary 3.2 to
products of curves to obtain the following result (sép.[

Proposition 3.4 Let~y, : I; — MZ andvy, : Iy — Nz be two unit speed curves agd= v; ® o
the quadric representation of the product. Then H, = AH,, if and only if A = 0, one curve is
a geodesic and the other one has curvatugiven by

p(s) = acos(vV—cks)+ bsin(v—eks) if ek <0,
p(s) = acosh(Veks)+ bsinh(Veks) if ek >0,
wherea, b € R ande is the character of the curve.

In [5] we have just constructed a new class of submanifold€i-1) defined by means of
two semi-Riemannian submersions: H3(—1) — H2(—1/4), s = 0, 1 (see details therein). By
pulling back viar, a non-null curve3 in H2(—1/4) we get the total horizontal lift of, which is
an immersed flat surfack/s in H;(—1), that will be called thesemi-Riemannian Hopf cylinder
associated tg3. Notice that ifs = 0, Mg is a Lorentzian surface, whereassif= 1, M3 is
Riemannian or Lorentzian, accordingide spacelike or timelike, respectively.

Lets : I — H2(—1/4) be a unit speed curve with Frenet frafig &} and curvature function
p. Let 3 be a horizontal lift ofg to H$(—1) with Frenet frame{T', &, &5}, curvaturep = p o
and torsionr = 1. Recall that¢; is nothing but the unit tangent vector field to the fibers algng
Then the Hopf Cylindef/3 can be orthogonally parametrized as

X(t,2) = { cos(2)B(t) + sin(2)&3(t) whens = 0,
’ cosh(z)3(t) + sinh(z)&3(t) whens = 1.

Notice that a unit normal vector field /5 into H$ (—1) is obtained from the complete hori-
zontal lift of & and it is, of courset, along each horizontal lift of. As a consequence we have
that M is a flat surface and its mean curvature functois given bya = %ﬁ.

Now from Theorem 3.1 and/[ Proposition 15] we have
Proposition 3.5 Let M be a Hopf cylinder intoH?(—1) and N§ a minimal submanifold in
N2*Y(~1). Let the quadric representation dflz x Ni. ThenALH, = \H, if and only
if A = 0 and one of the following statements holds:

1) 3 is a timelike curve with(t) = a cosh(v/ft) + bsinh(\/¢t).
2) 3 is a spacelike curve with(t) = a cos(v/¢t) + bsin(v//t).

Observe that this result produces infinitely many examples of products satigfyiif), =

AH,, with non constant mean curvature]ﬁﬁ?“(k) x N (k).

4. Products in 2t with mean curvature vector field proper for the
Jacobi operator

Let f : M — M be a pseudo-Riemannian immersion, withof constant curvature. Let .J
be the Jacobi operator associated to the immergioefined by

J=At - A—dim(M)ecl,
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where A is the Simons operator defined k{yflg,g> =tr(A¢ o A¢), A¢ being the Weingarten

endomorphism associatedgoand! is the identity map on the normal bundle. In this section we
want to characterize the productsfii whose mean curvature vector field verifies the equation
JH, = AH,, A € R, in terms of conditions on the immersiongndy.

By using a formula proved ird] we have

JH, =2A1H, — (AH,)*.
In [8] we found that

1

AH, = iAH, AH,—-2jlH, ® H
© (j—i—f)(] Qy+lr® y— 2j0H, ® Hy),
and so, we get
1 1 AT OVL 7o\ ) 7 77

Bringing (3.2) and the above equation to (4.1) we obtain

1 o _
Hy, = m(jJer @y + e ® JyH, — 2j((H, ® Hy - k*z ® 1)),

where J,, and Jy are the Simons operators associated to the immersianMZ — R’;“ and
y : N§ — R™2 respectively.
By assuming that H, = A\H, from (4.2) we have
JjJoHy @y +lx @ J,H, — 2j0(H, ® H, — Froy)=ANjH, ®y+lx ® Hy),
which we apply tay to get
k1 iG T Hy + €{JyHy,y) Giz + 2kjlGrx = Ak~ jG1H, — MGz

As (7 is invertible, the above equation writes as

JJeHy = NjH; — (2k25€ + Nkl + k0 (T, H,, y))x.
A similar reasoning by applying to’ leads to

CJyH, = MH, — (2k%j0 + \kj + kj (J,Hy, x))y.
By multiplying now the above equation ywe find

J(JeH e x) + 0(JyHy,y) = =\(j +€) — 2kjl.

Bringing (4.3) and (4.4) t0 H, = \H,, using the above relation, we obtaflfy @ H, = 0. This
equation yields7,, = 0 or H, = 0. Now if we supposé{, # 0, thenJ,H, = ¢y and so (4.3)
can be rewritten as

GIoHy = NjH, — (2K%j + Nkl + E*0%) .

6
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Now, let J, be the Jacobi operator associated to the immetsions? — MZLH. By a straight-
forward computation we get

JoHy = JyHy + kj (Hy Hy) .

Therefore, from the last two equations, we deduce that
j2

JoH, = AH,, with A\ = ——
Jj+Y

<Hxa Ha:> - k(] + 6)

As a consequencdd,, H, ) is constant. It is easy to see that if one immersion is minimal and the
other one verifies the above two equations thiéh, = AH,,. If both submanifolds are minimal
then a direct computation shows thid}, satisfies the required equation with= —k(j + ¢). So

we have proved the following result.

Theorem 4.1 Let ¢ : M x Nﬁ — 9 be the quadric representation of a pseudo-Riemannian
product(z,y). ThenJH, = AH,, if and only if one of the following statements holds:

(1) M{ is minimal in]\Zl'Z1+1 andy verifies the equatiod, H, = AH, with A = —j% (Hy, Hy)—

k(j + ¢) and(H,, H,) constant.

(2) Nﬁ is minimal in]\7:,”rl andx verifies the equatiod, H, = \H, with A\ = —]% (Hy, Hy) —

k(j + ¢) and (H,, H,) constant.

Now, let M* and N} be hypersurfaces iMZ1+1 and NZH, respectively. Suppose that
H, # 0, then from (4.5) we obtain

sxm2ai =—(m+n) A+ k(m+n)),

wheree, and o, are the sign and mean curvature/df” in MZLH. Thereforea,, is constant.
From the equation (4.5), ak H, = —(e,tr(S?) + km)H,, we get

£tr(8%) = —(\ + km),

—m-+1

whereS,, stands for the shape operator/df” in M, * . By the Gauss equation we have

T = m? <ﬁx, ﬁm> —km — sxtr(Sg)
= m*(k+ega2) + A

, . omtl
wherer, is the scalar curvature af/!" in MZ”r

eliminating\ we deduce

. This equation leads tg, is constant, and by

(m 4 n)7p — exm*(m +n — 1)a2 = k(m +n)(m? —m —n).
Thus we have proved the following results.

Theorem 4.2 The quadric representatiop of a pseudo-Riemannian product of hypersurfaces
satisfies the equatiofnH, = AH,, if and only if one of the following statements holds:

(1) M7* x N7 is minimal ind, ' x N andA = —k(m + n).

7
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. . . — 1
(2) M™ is minimal in MZH and N} has nonzero constant mean curvaturg and constant
scalar curvaturer, such that

1 2 2 2

Ty = m+n{syn (m+n—1ay, +k(m+n)(n” —m—n)}
n? 9

A= —m+n5yay—k(m+n)

. .. . o=n+l
(3) N7} is minimal mN’,f+ and M ™ has nonzero constant mean curvatureand constant scalar
curvaturer, such that

1

_ 2 C1\n2 2 _ .
Ty = m+n{€xm (m+n—1)a;+k(m+n)(m*—m—n)}
2
A= —Lexai—k(m+n)
m-+n

Corollary 4.3 The quadric representatiop of a pseudo-Riemannian product of hypersurfaces
has Jacobi mean curvature vector field, thatig/, = 0, if and only if one of the following state-
ments holds:

(1) MI™ is minimal inMZ‘Jrl and N} has constant mean and scalar curvatures given by

2
a; = —gyk (m;— n> , Ty = —km(2n +m), with ke, < 0;

. .. . o=n+l .
(2) N7 is minimal inN,, " and M" has constant mean and scalar curvatures given by

2
o2 = —ezk <m + n) , Tz = —kn(2m +n), with ke, < 0.
m

As a consequence &t < 0 in the above proposition, we get
Corollary 4.4 (1) There is no Riemannian product of hypersurfaceﬂZﬁﬁ”rl X Ng“, k > 0,
with Jacobi mean curvature vector fieldn.
—n+1

(2) There is no Riemannian product of hypersurfaceﬁWﬁJrl x Ny, k <0, with Jacobi mean
curvature vector field .

The above results can be sharpened for surfaces. Actually we have the following.

Proposition 4.5 Let M2 and N7 be two surfaces in thg3(1), u = 0,1. Then the quadric rep-
resentationy of the product satisfies H, = A\H,, if and only if one of the following statements
holds:

(1) M2 x N?is minimal inS$ xS}, wherex = —4.

(2) u = 1, a surface is minimal i§$ and the other one is &-scroll over a null-curve with torsion
equal to++/2, where\ = —6.

Proposition 4.6 Let M/? and N2 be two surfaces in th&3(—1), v = 0,1. Then the quadric
representationy of the product satisfied H, = A\H,, if and only if M? x N2 is minimal in
H3 x H3, where) = 4.
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Proof of PropositionsIn view of Theorem 4.2, we can assume tMi X Nj is not minimal.
Then eitherd/? or Nj has to be minimal, so we can suppd§§ is minimal. Therefore Theorem
4.2 yieldsM? is an isoparametric surface. Hent£? is totally umbilical, aB-scroll, a pseudo-
Riemannian product or a complex circle (sé&[R] and [9]). A straightforward computation
shows that the surfaces in Propositions are the only isoparametric surfaces satisfying the relation
in Theorem 4.2.

Since\ # 0 for the above products of surfaces, we can state the following.

Corollary 4.7 There is no pseudo-Riemannian product of surfaces with Jacobi mean curvature
vector field in91.

We can apply Theorem 4.1 to products of curves. Letbe a semi-Riemannian manifold
and consider an immersed curye I — M. As usual, the metric will be denoted By and the
Riemannian connection By. Let V' (¢) be the tangent vector tpat~(¢) and7'(¢) the unit tangent
vector, so we have' (t) = v(t)T'(t), wherev(t) = (1 (V(t), V(t)))'/? is the speed of ands; =
(T, T) denotes its causal character. The curvatte of v is given byp(t)? = e3 (V7 T, V1 T),
€2 being the causal characterafyT.

The Frenet equations farcan be partially written as

VrT = e2p&o,
V& = —e1pl —e37€3,
Vrés = €78 + 0,

wheres € span{T, &, &}, (&, &) = &; andr is the torsion function (the second curvature if
n > 3).
By using some results o] we have

Proposition 4.8 Lety; : [ — ]\Z/'Trl andvy : I, — NZH be two fully immersed unit speed
curves andp the quadric representation of the product. TheH, = AH,, if and only if one of

the following statements holds:

(1) Both curves are geodesic, and= —2k.

(2) A curve is geodesic and the other one is a pseudocircle or a pseudohyperbola of cupvature
given byp? = 25k, and\ = —3k.

(3) A curve is geodesic and the other one is an helix with curvgtused torsionr related by
2e37% — g1p? = —2e169k, and\ = —%Qp2 — 2k.

Consequently we obtain
Corollary 4.9 There is no product of curves §F (or H$) with Jacobi mean curvature vector field

in 901.

5. Afew more examples

This section is devoted to show a few more examples of hypersurfaces whose quadric repre-
sentation satisfies the equatiditd, = \H,,.
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Example 5.1 Letx : M" — MZLH(I{) ]Rm+2 be a hypersurface whose shape operator has a

characteristic polynomial given ly(t) = (t—a)™,a € R, and lety : N} — N"“(k) C RH2
be a minimal hypersurface. Then by the Jordan normal form werg&) = ma andtr(S2) =
ma?. An easy computation yields

JoH, = — (24 tr(S2) + km)Hy + km(k + % tr(S,)?)z. (5.1)
ThereforeJH, = AH,, if and only if a®> = e,k(m + n)/m, e,k > 0, and in this case\ =
—k(2m +n).

Let M be totally umbilic ianH(k) and N7 minimal in N7 (k). Sincee,k > 0, we
only have the following possibilities foa/* and MmH(k): H,T_l(—l/rQ) C Hz”l(k) and
Sm(l/r ) C Sm+1(k). In both cases the shape operatoSis = al, wherea? is given by
(—1 — kr?)/r? and(—l + kr?)/r?, respectively. Theo H, = AH,, if and only if M is totally
geodesic, that is)/;" is an open piece dfl}" | (k) € H}'+! (k) or S (k) C ;P! (k).

To find new examples, we recall the construction of some hypersurfaces we have used in early
papers.

Generalized umbilic hypersurface of degre@2 10)). Letc: I ¢ R — ST (k) c R +2
be a null curve with an associated pseudo-orthonormal flaté3, 71 , . . ., Z,,,—2, C'} alongce(s)
such that: = A(s) andC' = —aA(s) — p(s)B(s), wherep(s) # 0 anda is a nonzero constant.
Thenthe map: : I x R x R™~2 — ST (k) ¢ R7 defined by

z(s,u,z) = (1 + f(2))e(s) + uB(s) + ZZ] +9(2))C(s),

wheref(z) andg(z) are solutions of

k
kg+af = —-

a

1
R )]

parametrizes, in a neighborhood of the origin, a Lorentzian hypersubtg¢ef SQ”“(I@). The
mean curvaturer is the nonzero constaatand the minimal polynomial of its shape operator is
q(t) = (t —a)*.

Generalized umbilic hypersurface of degre@ 3 10]). Letc: I C R — S’f‘“(k) C RT“
be a null curve with an associated pseudo-orthonormal frame3,Y, 71, ..., Z,,—3,C} such
thate = A(s) andC = —aA(s) + p(s)Y (s), with p(s) # 0 anda a nonzero constant. Then the
mapz : [ x R x R x R™™3 — S (k) ¢ R defined by

m—3
rls,,9,2) = (14 F(2))els) +uB(s) + 97 (s) + 3 575(5) + (- +g())C(s),
7=1

wheref(z) andg(z) are solutions of

k
kg+af = ——
a
1
kg + = /“7(?—1212—92)7
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parametrizes, in a neighborhood of the origin, a Lorentzian hypersuifgic@n S{”“. ThenM{"
has constant mean curvature= a # 0 and the minimal polynomial of its shape operator is given
by ¢(t) = (t — a)®.

Then by takingM* C MZLH as a generalized umbilic hypersurface of degree two or three

andN} minimal in N2*Y(k), the quadric representation of the produfl’ x N} satisfies/ H, =
AH, if and only if a® = e, k(m + n)/m.

Example 5.2 Let N} be minimal inN"* (k) and M™ = SB(1/r2) x S P(k/(1 — kr?)) C
Sm+(k), k > 0, such thatl — kr? > 0 andk?n(n + 2m)r* — kn(m + n + 2p)r? + p(m +

n —p) = 0. Then it is well known that the shape operatori@f™ in MT“ is diagonalizable
having eigenvaluea and . determined by\? = (1 — kr?)/r? andp? = k%r?/(1 — kr?), with
multiplicities p andm — p, respectively. Therefore, by applying (5.1), it is not difficult to see that
JH, = AH, with A = (—p + k(2p — m)r?)/(r*(1 — kr?)).

Now, let N7 be minimal NN (k) and M™ = HE(—1/r2) x H"P(k/(1 + kr2)) C
H’gﬂl(lﬂ), k < 0, such that +kr? > 0 andk?n(n+2m)rt+kn(m-+n+2p)r2+p(m-+n—p) = 0.
The shape operator @i/ in MTH is diagonalizable with eigenvalugésand given by \? =
(1+ kr?)/r? andu? = k?r%/(1 + kr?), and multiplicitiesp andm — p, respectively. Therefore,
by applying (5.1), we see thatH, = AH,, with A = (p + k(2p — m)r?)/(r*(1 + kr?)).

As for remaining productd/™ = S%(1/r?) x H[* F(k/(1 — kr?)) C SI'4'(k), k > 0, such
thatl —kr? < 0andM™ = S5 (1/r?) x H" P(k/(1—kr?)) Cc H* L (k), k < 0, itis not difficult
to see that there is nosuch thatc?n(n + 2m)r* — kn(m + n + 2p)r? + p(m +n — p) = 0.
Then any choice of radius produces a hypersurfade* with both constant mean and scalar
curvatures such that, for any minimal hypersurfagg the quadric representation does not satisfy
the condition/ H, = AH,,.

Note that in this example the minimal hypersurfagg in NZH(k) can be replaced by a

minimal submanifoIdN§ and everything works fine. We must only changby /.
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