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Abstract

In this paper we characterize the product of submanifolds whose quadric representationϕ
satisfies∆⊥Hϕ = λHϕ, for a real constantλ, whereHϕ is the mean curvature vector field of
ϕ. We also characterize the product of submanifolds whose quadric representation has mean
curvature vector field proper for the Jacobi operator in terms of conditions on the factors of
the product. As for curves and surfaces, a complete classification is given.

1. Introduction

In a recent paper, [8], we have introduced a representation of a product of indefinite Rieman-
nian manifolds in a certain space of selfadjoint matrices. It is the so called quadric representation
ϕ. This is a nice tool to study the geometry of submanifolds, into indefinite space forms, as de-
termined by the geometry of their product isometrically immersed into the corresponding pseudo-
Euclidean space. Actually, we found a characterization of indefinite Riemannian products whose
quadric representation satisfies∆Hϕ = λHϕ, ∆ being the Laplacian operator on the product and
Hϕ the mean curvature vector field of the quadric representation. Thus, in particular, for surfaces
into De SitterS3

1(1) and anti De SitterH3
1(−1) spaces we have shown that such equation only

holds either for products of minimal surfaces or products of a minimal surface and one of the
following surfaces:H2(−1), S1(2/3) × H1(−2), S2

1(1), S1(2) × H1
1(−2/3), S1

1(2) × H1(−2/3)
and aB-scroll over a null Frenet curve with torsion±√2.

The problem of finding non minimal submanifolds with harmonic mean curvature vector field
was first stated and studied by B.Y. Chen (see [6]), who proposed to call them biharmonic submani-
folds. Then, in [8], some contributions in that line are given. However, the condition∆Hϕ = λHϕ

always yields to hypersurfaces with both constant mean and scalar curvatures. Since the mean cur-
vature vector field lies in the normal bundle, it seems natural to work with the normal Laplacian
and study the new equation∆⊥Hϕ = λHϕ. Now one might think that a characterization of
biharmonic submanifolds in the normal bundle should improve that just obtained with regard to
the Laplacian. In fact,∆⊥Hϕ = λHϕ implies thatλ should vanish. This and the fact that the
constancy neither the mean curvature nor scalar curvature can be asserted point out substantial
differences between∆⊥Hϕ = λHϕ and∆Hϕ = λHϕ.

On the other hand, it is well known that the Jacobi operatorJ is defined on the normal bundle
in terms of the normal Laplacian and the Simons operator (see [11]). Then it seems natural to
ask for submanifolds whose quadric representation satisfiesJHϕ = λHϕ. We characterize the
indefinite products hypersurfaces satisfying this equation finding that they have to be of constant
mean and constant scalar curvatures with an appropriate relation beetwen them. In particular,
explicit formulas for the mean and scalar curvatures of the hypersurfaces can be given provided
that their quadric representation have Jacobi mean curvature vector field (i.e.,JHϕ = 0). A
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complete classification is achieved when we consider surfaces into De SitterS3
1 and anti De Sitter

H3
1 spaces. It is worth pointing out that, for surfaces intoS3

1 andH3
1, the characterizations obtained

here fromJHϕ = λHϕ have nothing to do with those got in [8] coming from∆Hϕ = λHϕ.

2. Preliminaries

Let M
m+1
µ (k) andN

n+1
ν (k) be two hyperquadrics of constant curvaturek standardly embed-

ded inRm+2
t andRn+2

s , respectively. We can define an immersionf from the pseudo-Riemannian

productM
m+1
µ (k)×N

n+1
ν (k) into the space of real(m + 2)× (n + 2) matricesM by

f : M
m+1
µ (k)×N

n+1
ν (k) → M

(p, q) → p⊗ q

where⊗ : Rm+2
t × Rn+2

s → M is given byu ⊗ v = G1uvtG2, G1 andG2 standing for the
matrices of the standard metrics onRm+2

t andRn+2
s , respectively.

Some properties of the immersionf are listed below (see [8]). Let (p, q) be a point inM
m+1
µ ×

N
n+1
ν and(X,Y ) a vector field onM

m+1
µ ×N

n+1
ν , then

df(p,q)(Xp, Yq) = Xp ⊗ q + p⊗ Yq.

Let ∇̃ be the usual flat connection onM and(V, W ) a vector field onM
m+1
µ ×N

n+1
ν . Then for

the covariant derivative we have

∇̃df(X,Y )df(V, W ) = df(∇1
XV,∇2

Y W ) + V ⊗ Y + X ⊗W

− k(〈X, V 〉+ 〈Y,W 〉)f, (2.1)

where∇1
and∇2

are the usual flat connections onRm+2
t andRn+2

s , respectively, and∇1 and∇2

are the Levi-Civita connections onM
m+1
µ andN

n+1
ν , respectively.

Let g̃ be the metric onM defined bỹg(A,B) = ktr(G1AG2B
t), for A, B ∈ M. Notice that

M, endowed with̃g, is isometric to a pseudo-Euclidean space of indext(n + 2) + s(m + 2)− 2st
or (m +2)(n +2)− t(n + 2)− s(m +2)− 2st, provided thatk > 0 or k < 0, respectively. Then

g̃(X ⊗ V, Y ⊗W ) = k 〈X, Y 〉 〈V, W 〉 (2.2)

and thereforef is an isometric immersion. Now, a straightforward computation from (2.1) allows
us to obtain the second fundamental formσ̃ of f

σ̃((X, Y ), (V, W )) = V ⊗ Y + X ⊗W − k(〈X, V 〉+ 〈Y,W 〉)f.

Let x : M j
c → M

m+1
µ ⊂ Rm+2

t andy : N `
d → N

n+1
ν ⊂ Rn+2

s be two isometric immersions

and letϕ : M j
c ×N `

d → M be the isometric immersion defined byϕ(p, q) = f(x(p), y(q)). From
now on,ϕ will be called thequadric representation of the pseudo-Riemannian product immersion
(x, y).

By letting Hx andHy the mean curvature vector fields ofx andy, respectively, andHx and
Hy the mean curvature vector fields in the corresponding pseudo-Euclidean ambient spaces, we
have

Hx = Hx − kx, Hy = Hy − ky,
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(j + `)Hϕ = jHx ⊗ y + `x⊗Hy,

whereHϕ is the mean curvature vector field associated toϕ.
If (X,Y ) is a vector field along(x, y) then

(X ⊗ Y )T = k(〈X, x〉x⊗ Y T + 〈Y, y〉XT ⊗ y),

where()T denotes the tangential component.

3. Products in M with mean curvature vector field proper for the
normal Laplacian

In this section we are going to study the equation

∆⊥Hϕ = λHϕ, λ ∈ R,

where∆⊥ is the Laplacian operator in the normal bundle ofM j
c ×N `

d in M.
Let (p, q) be a point inM j

c × N `
d and choose local orthonormal frames{E1, ..., Ej} and

{F1, ..., F`} on M j
c andN `

d, respectively, such that∇x
Eα

Eα(p) = 0, for all α = 1, . . . , j, and

∇y
Fβ

Fβ(q) = 0, for all β = 1, . . . , `, where∇x and∇y are the Levi-Civita connections onM j
c

andN `
d, respectively.

Taking covariant derivative in (2.4), we obtain at(p, q) that

∇̃df(Ei,0)Hϕ =
1

(j + `)
(j∇1

Ei
Hx ⊗ y + `Ei ⊗Hy),

by using (2.5), we get the normal component,

∇̃⊥df(Ei,0)Hϕ =
1

(j + `)
(j∇1⊥

Ei
Hx ⊗ y + `Ei ⊗Hy).

By derivating here and taking the normal component we have

∇̃⊥df(Ei,0)∇̃⊥df(Ei,0)Hϕ =
1

(j + `)
(j∇1⊥

Ei
∇1⊥

Ei
Hx ⊗ y + `∇1

Ei
Ei ⊗Hy)

=
1

(j + `)
(j∇1⊥

Ei
∇1⊥

Ei
Hx ⊗ y + `σx(Ei, Ei)⊗Hy),

whereσx is the second fundamental form ofM j
c in Rm+2

t . Analogously

∇̃⊥df(0,Fi)
∇̃⊥df(0,Fi)

Hϕ =
1

(j + `)
(jHx ⊗ σy(Fi, Fi) + `x⊗∇2⊥

Fi
∇2⊥

Fi
Hy).

Therefore we have

∆⊥Hϕ =
1

(j + `)
(j∆⊥Hx ⊗ y + `x⊗∆⊥Hy − j`(Hx ⊗Hy + Hx ⊗Hy)). (3.2)

By assuming that∆⊥Hϕ = λHϕ, from (3.2) we deduce that

j∆⊥Hx ⊗ y + `x⊗∆⊥Hy − j`(Hx ⊗Hy + Hx ⊗Hy) = λ(jHx ⊗ y + `x⊗Hy).
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Since this can be viewed as an endomorphism onRn+2
s , we apply it toy to get

jk−1G1∆⊥Hx + `
〈
∆⊥Hy, y

〉
G1x− j`

〈
Hy, y

〉
G1Hx = λjk−1G1Hx + λ`

〈
Hy, y

〉
G1x.

As
〈
Hy, y

〉
= −1 andG1 is invertible, the above equation writes as

jk−1∆⊥Hx + j(`− λk−1)Hx + `(λ + kj +
〈
∆⊥Hy, y

〉
)x = 0.

A similar reasoning by applying toxt leads to

` k−1∆⊥Hy + `(j − λk−1)Hy + j(λ + k` +
〈
∆⊥Hx, x

〉
)y = 0.

By multiplying now the above equation byy we find

j
〈
∆⊥Hx, x

〉
+ `

〈
∆⊥Hy, y

〉
+ λ(j + `) = 0.

Bringing (3.3) and (3.4) to∆⊥Hϕ = λHϕ, bearing in mind (3.5), we obtainHx ⊗Hy = 0. This
equation yieldsHx = 0 or Hy = 0 or both simultaneously. Now suppose thatHx 6= 0, then
∆⊥Hy = 0 and so (3.3) can be rewritten as

jk−1∆⊥Hx + j(`− λk−1)Hx + `(λ + kj)x = 0.

Since∆⊥x = 0 andM
m+1
µ is umbilic inRn+2

s , then∆⊥Hx = ∆⊥Hx. So we deduce from the
last equation thatλ = 0 and

∆⊥Hx + k`Hx = 0.

A straightforward computation shows that if one immersion is minimal and the other one verifies
the above equation, then∆⊥Hϕ = 0. Therefore, we have just proved the following theorem.

Theorem 3.1 Let ϕ : M j
c × N `

d → M be the quadric representation of a pseudo-Riemannian
product(x, y). Then∆⊥Hϕ = λHϕ if and only if λ = 0 and one of the following statements
holds:
(1) M j

c is minimal inM
m+1
µ andy verifies the equation∆⊥Hy = −kjHy.

(2) N `
d is minimal inN

n+1
ν andx verifies the equation∆⊥Hx = −k`Hx.

In particular, ifMm
c andNn

d are hypersurfaces inM
m+1
µ andN

n+1
ν , respectively, we have the

following consequences.

Corollary 3.2 Let ϕ : Mm
c × Nn

d → M be the quadric representation of a pseudo-Riemannian
product of hypersurfaces. Then∆⊥Hϕ = λHϕ if and only if λ = 0 and one of the following
statements holds:
(1) Mm

c is minimal inM
m+1
µ andy verifies the equation∆αy = −kmαy, whereαy stands for

the mean curvature ofNn
d in N

n+1
ν .

(2) Nn
d is minimal inN

n+1
ν andx verifies the equation∆αx = −knαx, whereαx stands for the

mean curvature ofMm
c in M

m+1
µ .
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Corollary 3.3 There is no compact Riemannian product of hypersurfaces inM
m+1
µ × N

n+1
ν ,

k > 0, with proper mean curvature vector field inM.

The above results can be sharpened in low dimensions. Indeed, we can apply Corollary 3.2 to
products of curves to obtain the following result (see [7]).

Proposition 3.4 Letγ1 : I1 → M
2
µ andγ2 : I2 → N

2
ν be two unit speed curves andϕ = γ1 ⊗ γ2

the quadric representation of the product. Then∆⊥Hϕ = λHϕ if and only ifλ = 0, one curve is
a geodesic and the other one has curvatureρ given by

ρ(s) = a cos(
√
−εks) + b sin(

√
−εks) if εk < 0,

ρ(s) = a cosh(
√

εks) + b sinh(
√

εks) if εk > 0,

wherea, b ∈ R andε is the character of the curve.

In [5] we have just constructed a new class of submanifolds inH3
1(−1) defined by means of

two semi-Riemannian submersionsπs : H3
1(−1) → H2

s(−1/4), s = 0, 1 (see details therein). By
pulling back viaπs a non-null curveβ in H2

s(−1/4) we get the total horizontal lift ofβ, which is
an immersed flat surfaceMβ in H3

1(−1), that will be called thesemi-Riemannian Hopf cylinder
associated toβ. Notice that ifs = 0, Mβ is a Lorentzian surface, whereas ifs = 1, Mβ is
Riemannian or Lorentzian, according toβ be spacelike or timelike, respectively.

Letβ : I → H2
s(−1/4) be a unit speed curve with Frenet frame{T, ξ2} and curvature function

ρ. Let β̄ be a horizontal lift ofβ toH3
1(−1) with Frenet frame{T̄ , ξ̄2, ξ

∗
3}, curvatureρ̄ = ρ ◦ πs

and torsionτ = 1. Recall thatξ∗3 is nothing but the unit tangent vector field to the fibers alongβ̄.
Then the Hopf CylinderMβ can be orthogonally parametrized as

X(t, z) =
{

cos(z)β̄(t) + sin(z)ξ∗3(t) whens = 0,
cosh(z)β̄(t) + sinh(z)ξ∗3(t) whens = 1.

Notice that a unit normal vector field toMβ intoH3
1(−1) is obtained from the complete hori-

zontal lift of ξ2 and it is, of course,̄ξ2 along each horizontal lift ofβ. As a consequence we have
thatMβ is a flat surface and its mean curvature functionα is given byα = 1

2 ρ̄.
Now from Theorem 3.1 and [7, Proposition 15] we have

Proposition 3.5 Let Mβ be a Hopf cylinder intoH3
1(−1) and N `

d a minimal submanifold in

N
n+1
ν (−1). Let ϕ the quadric representation ofMβ × N `

d. Then∆⊥Hϕ = λHϕ if and only
if λ = 0 and one of the following statements holds:
1) β is a timelike curve withρ(t) = a cosh(

√
`t) + b sinh(

√
`t).

2) β is a spacelike curve withρ(t) = a cos(
√

`t) + b sin(
√

`t).

Observe that this result produces infinitely many examples of products satisfying∆⊥Hϕ =
λHϕ with non constant mean curvature inM

m+1
µ (k)×N

n+1
ν (k).

4. Products in M with mean curvature vector field proper for the
Jacobi operator

Let f : M → M̃ be a pseudo-Riemannian immersion, with̃M of constant curvaturec. Let J
be the Jacobi operator associated to the immersionf defined by

J = ∆⊥ − Ã− dim(M)cI,
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whereÃ is the Simons operator defined by
〈
Ãξ, ζ

〉
=tr(Aξ ◦ Aζ), Aξ being the Weingarten

endomorphism associated toξ, andI is the identity map on the normal bundle. In this section we
want to characterize the products inM whose mean curvature vector field verifies the equation
JHϕ = λHϕ, λ ∈ R, in terms of conditions on the immersionsx andy.

By using a formula proved in [4] we have

JHϕ = 2∆⊥Hϕ − (∆Hϕ)⊥.

In [8] we found that

∆Hϕ =
1

(j + `)
(j∆Hx ⊗ y + `x⊗∆Hy − 2j`Hx ⊗Hy),

and so, we get

(∆Hϕ)⊥ =
1

(j + `)
(j(∆Hx)⊥ ⊗ y + `x⊗ (∆Hy)⊥ − 2j`Hx ⊗Hy).

Bringing (3.2) and the above equation to (4.1) we obtain

JHϕ =
1

(j + `)
(jJ̄xHx ⊗ y + `x⊗ J̄yHy − 2j`(Hx ⊗Hy − k2x⊗ y)),

whereJ̄x and J̄y are the Simons operators associated to the immersionsx : M j
c → Rn+2

s and
y : N `

d → Rm+2
t , respectively.

By assuming thatJHϕ = λHϕ, from (4.2) we have

jJ̄xHx ⊗ y + `x⊗ J̄yHy − 2j`(Hx ⊗Hy − k2x⊗ y) = λ(jHx ⊗ y + `x⊗Hy),

which we apply toy to get

k−1jG1J̄xHx + `
〈
J̄yHy, y

〉
G1x + 2kj`G1x = λk−1jG1Hx − λ`G1x.

As G1 is invertible, the above equation writes as

jJ̄xHx = λjHx − (2k2j` + λk` + k`
〈
J̄yHy, y

〉
)x.

A similar reasoning by applying toxt leads to

`J̄yHy = λ`Hy − (2k2j` + λkj + kj
〈
J̄xHx, x

〉
)y.

By multiplying now the above equation byy we find

j
〈
J̄xHx, x

〉
+ `

〈
J̄yHy, y

〉
= −λ(j + `)− 2kj`.

Bringing (4.3) and (4.4) toJHϕ = λHϕ, using the above relation, we obtainHx ⊗Hy = 0. This
equation yieldsHx = 0 or Hy = 0. Now if we supposeHx 6= 0, thenJ̄yHy = `y and so (4.3)
can be rewritten as

jJ̄xHx = λjHx − (2k2j` + λk` + k2`2)x.
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Now, letJx be the Jacobi operator associated to the immersionx : M j
c → M

m+1
µ . By a straight-

forward computation we get

J̄xHx = JxHx + kj
〈
Hx,Hx

〉
x.

Therefore, from the last two equations, we deduce that

JxHx = λHx, with λ = − j2

j + `
〈Hx,Hx〉 − k(j + `).

As a consequence〈Hx,Hx〉 is constant. It is easy to see that if one immersion is minimal and the
other one verifies the above two equations thenJHϕ = λHϕ. If both submanifolds are minimal
then a direct computation shows thatHϕ satisfies the required equation withλ = −k(j + `). So
we have proved the following result.

Theorem 4.1 Let ϕ : M j
c × N `

d → M be the quadric representation of a pseudo-Riemannian
product(x, y). ThenJHϕ = λHϕ if and only if one of the following statements holds:

(1) M j
c is minimal inM

m+1
µ andy verifies the equationJyHy = λHy with λ = − `2

j+` 〈Hy,Hy〉−
k(j + `) and〈Hy,Hy〉 constant.

(2) N `
d is minimal inN

n+1
ν andx verifies the equationJxHx = λHx with λ = − j2

j+` 〈Hx, Hx〉 −
k(j + `) and〈Hx, Hx〉 constant.

Now, let Mm
c and Nn

d be hypersurfaces inM
m+1
µ and N

n+1
ν , respectively. Suppose that

Hx 6= 0, then from (4.5) we obtain

εxm2α2
x = −(m + n)(λ + k(m + n)),

whereεx andαx are the sign and mean curvature ofMm
c in M

m+1
µ . Thereforeαx is constant.

From the equation (4.5), asJxHx = −(εxtr(S2
x) + km)Hx, we get

εxtr(S2
x) = −(λ + km),

whereSx stands for the shape operator ofMm
c in M

m+1
µ . By the Gauss equation we have

τx = m2
〈
Hx,Hx

〉− km− εxtr(S2
x)

= m2(k + εxα2
x) + λ,

whereτx is the scalar curvature ofMm
c in M

m+1
µ . This equation leads toτx is constant, and by

eliminatingλ we deduce

(m + n)τx − εxm2(m + n− 1)α2
x = k(m + n)(m2 −m− n).

Thus we have proved the following results.

Theorem 4.2 The quadric representationϕ of a pseudo-Riemannian product of hypersurfaces
satisfies the equationJHϕ = λHϕ if and only if one of the following statements holds:

(1) Mm
c ×Nn

d is minimal inM
m+1
µ ×N

n+1
ν andλ = −k(m + n).

7
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(2) Mm
c is minimal inM

m+1
µ and Nn

d has nonzero constant mean curvatureαy and constant
scalar curvatureτy such that

τy =
1

m + n
{εyn

2(m + n− 1)α2
y + k(m + n)(n2 −m− n)}

λ = − n2

m + n
εyα

2
y − k(m + n)

(3) Nn
d is minimal inN

n+1
ν andMm

c has nonzero constant mean curvatureαx and constant scalar
curvatureτx such that

τx =
1

m + n
{εxm2(m + n− 1)α2

x + k(m + n)(m2 −m− n)}

λ = − m2

m + n
εxα2

x − k(m + n)

Corollary 4.3 The quadric representationϕ of a pseudo-Riemannian product of hypersurfaces
has Jacobi mean curvature vector field, that is,JHϕ = 0, if and only if one of the following state-
ments holds:
(1) Mm

c is minimal inM
m+1
µ andNn

d has constant mean and scalar curvatures given by

α2
y = −εyk

(
m + n

n

)2

, τy = −km(2n + m), with kεy < 0;

(2) Nn
d is minimal inN

n+1
ν andMm

c has constant mean and scalar curvatures given by

α2
x = −εxk

(
m + n

m

)2

, τx = −kn(2m + n), with kεx < 0.

As a consequence ofkε < 0 in the above proposition, we get

Corollary 4.4 (1) There is no Riemannian product of hypersurfaces inM
m+1
0 × N

n+1
0 , k > 0,

with Jacobi mean curvature vector field inM.
(2) There is no Riemannian product of hypersurfaces inM

m+1
1 ×N

n+1
1 , k < 0, with Jacobi mean

curvature vector field inM.

The above results can be sharpened for surfaces. Actually we have the following.

Proposition 4.5 Let M2
c andN2

d be two surfaces in theS3
u(1), u = 0, 1. Then the quadric rep-

resentationϕ of the product satisfiesJHϕ = λHϕ if and only if one of the following statements
holds:
(1) M2

c ×N2
d is minimal inS3

1×S3
1, whereλ = −4.

(2) u = 1, a surface is minimal inS3
1 and the other one is aB-scroll over a null-curve with torsion

equal to±√2, whereλ = −6.

Proposition 4.6 Let M2
c and N2

d be two surfaces in theH3
u(−1), u = 0, 1. Then the quadric

representationϕ of the product satisfiesJHϕ = λHϕ if and only if M2
c × N2

d is minimal in
H3

u ×H3
u, whereλ = 4.
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Proof of Propositions.In view of Theorem 4.2, we can assume thatM2
c ×N2

d is not minimal.
Then eitherM2

c or N2
d has to be minimal, so we can supposeN2

d is minimal. Therefore Theorem
4.2 yieldsM2

c is an isoparametric surface. HenceM2
c is totally umbilical, aB-scroll, a pseudo-

Riemannian product or a complex circle (see [1],[2] and [9]). A straightforward computation
shows that the surfaces in Propositions are the only isoparametric surfaces satisfying the relation
in Theorem 4.2.

Sinceλ 6= 0 for the above products of surfaces, we can state the following.

Corollary 4.7 There is no pseudo-Riemannian product of surfaces with Jacobi mean curvature
vector field inM.

We can apply Theorem 4.1 to products of curves. LetM̃ be a semi-Riemannian manifold
and consider an immersed curveγ : I → M̃ . As usual, the metric will be denoted by〈,〉 and the
Riemannian connection by∇. LetV (t) be the tangent vector toγ atγ(t) andT (t) the unit tangent
vector, so we haveγ′(t) = v(t)T (t), wherev(t) = (ε1 〈V (t), V (t)〉)1/2 is the speed ofγ andε1 =
〈T, T 〉 denotes its causal character. The curvatureρ(t) of γ is given byρ(t)2 = ε2 〈∇T T,∇T T 〉,
ε2 being the causal character of∇T T .

The Frenet equations forγ can be partially written as

∇T T = ε2ρξ2,

∇T ξ2 = −ε1ρT − ε3τξ3,

∇T ξ3 = ε2τξ2 + δ,

whereδ ∈ span{T, ξ2, ξ3}⊥, 〈ξi, ξi〉 = εi andτ is the torsion function (the second curvature if
n > 3).

By using some results of [7] we have

Proposition 4.8 Let γ1 : I1 → M
m+1
µ andγ2 : I2 → N

n+1
ν be two fully immersed unit speed

curves andϕ the quadric representation of the product. ThenJHϕ = λHϕ if and only if one of
the following statements holds:
(1) Both curves are geodesic, andλ = −2k.
(2) A curve is geodesic and the other one is a pseudocircle or a pseudohyperbola of curvatureρ
given byρ2 = 2ε2k, andλ = −3k.
(3) A curve is geodesic and the other one is an helix with curvatureρ and torsionτ related by
2ε3τ

2 − ε1ρ
2 = −2ε1ε2k, andλ = − ε2

2 ρ2 − 2k.

Consequently we obtain

Corollary 4.9 There is no product of curves inS3 (orH3
1) with Jacobi mean curvature vector field

in M.

5. A few more examples

This section is devoted to show a few more examples of hypersurfaces whose quadric repre-
sentation satisfies the equationJHϕ = λHϕ.
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Example 5.1 Let x : Mm
c −→ M

m+1
µ (k) ⊂ Rm+2

t be a hypersurface whose shape operator has a

characteristic polynomial given byq(t) = (t−a)m, a ∈ R, and lety : Nn
d −→ N

n+1
ν (k) ⊂ Rn+2

s

be a minimal hypersurface. Then by the Jordan normal form we gettr(Sx) = ma andtr(S2
x) =

ma2. An easy computation yields

J̄xHx = −(εx tr(S2
x) + km)Hx + km(k +

εx

m2
tr(Sx)2)x. (5.1)

ThereforeJHϕ = λHϕ if and only if a2 = εxk(m + n)/m, εxk > 0, and in this caseλ =
−k(2m + n).

Let Mm
c be totally umbilic inM

m+1
µ (k) andNn

d minimal in N
n+1
ν (k). Sinceεxk > 0, we

only have the following possibilities forMm
c andM

m+1
µ (k): Hm

µ−1(−1/r2) ⊂ Hm+1
µ (k) and

Sm
µ (1/r2) ⊂ Sm+1

µ (k). In both cases the shape operator isSx = aI, wherea2 is given by
(−1− kr2)/r2 and(−1 + kr2)/r2, respectively. ThenJHϕ = λHϕ if and only if Mm

c is totally
geodesic, that is,Mm

c is an open piece ofHm
µ−1(k) ⊂ Hm+1

µ (k) or Sm
µ (k) ⊂ Sm+1

µ (k).
To find new examples, we recall the construction of some hypersurfaces we have used in early

papers.
Generalized umbilic hypersurface of degree 2([3, 10]). Let c : I ⊂ R −→ Sm+1

1 (k) ⊂ Rm+2
1

be a null curve with an associated pseudo-orthonormal frame{A,B, Z1, . . . , Zm−2, C} alongc(s)
such thatċ = A(s) andĊ = −aA(s) − ρ(s)B(s), whereρ(s) 6= 0 anda is a nonzero constant.
Then the mapx : I × R × Rm−2 −→ Sm+1

1 (k) ⊂ Rm+2
1 defined by

x(s, u, z) = (1 + f(z))c(s) + uB(s) +
m−2∑

j=1

zjZj(s) + (
1
a

+ g(z))C(s),

wheref(z) andg(z) are solutions of

kg + af = −k

a

kg2 + f2 = k(
1
a2
− |z|2),

parametrizes, in a neighborhood of the origin, a Lorentzian hypersurfaceMm
1 of Sm+1

1 (k). The
mean curvatureα is the nonzero constanta and the minimal polynomial of its shape operator is
q(t) = (t− a)2.

Generalized umbilic hypersurface of degree 3([3, 10]). Let c : I ⊂ R −→ Sm+1
1 (k) ⊂ Rm+2

1

be a null curve with an associated pseudo-orthonormal frame{A,B, Y, Z1, . . . , Zm−3, C} such
that ċ = A(s) andĊ = −aA(s) + ρ(s)Y (s), with ρ(s) 6= 0 anda a nonzero constant. Then the
mapx : I × R × R × Rm−3 −→ Sm+1

1 (k) ⊂ Rm+2
1 defined by

x(s, u, y, z) = (1 + f(z))c(s) + uB(s) + yY (s) +
m−3∑

j=1

zjZj(s) + (
1
a

+ g(z))C(s),

wheref(z) andg(z) are solutions of

kg + af = −k

a

kg2 + f2 = k(
1
a2
− |z|2 − y2),

10
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parametrizes, in a neighborhood of the origin, a Lorentzian hypersurfaceMm
1 in Sm+1

1 . ThenMm
1

has constant mean curvatureα = a 6= 0 and the minimal polynomial of its shape operator is given
by q(t) = (t− a)3.

Then by takingMm
c ⊂ M

m+1
µ as a generalized umbilic hypersurface of degree two or three

andNn
d minimal inN

n+1
ν (k), the quadric representation of the productMm

c ×Nn
d satisfiesJHϕ =

λHϕ if and only if a2 = εxk(m + n)/m.

Example 5.2 Let Nn
d be minimal inN

n+1
ν (k) andMm

c = Sp
u(1/r2) × Sm−p

c−u (k/(1 − kr2)) ⊂
Sm+1

c (k), k > 0, such that1 − kr2 > 0 andk2n(n + 2m)r4 − kn(m + n + 2p)r2 + p(m +
n − p) = 0. Then it is well known that the shape operator ofMm

c in M
m+1
µ is diagonalizable

having eigenvaluesλ andµ determined byλ2 = (1 − kr2)/r2 andµ2 = k2r2/(1 − kr2), with
multiplicitiesp andm− p, respectively. Therefore, by applying (5.1), it is not difficult to see that
JHϕ = λHϕ with λ = (−p + k(2p−m)r2)/(r2(1− kr2)).

Now, let Nn
d be minimal inN

n+1
ν (k) and Mm

c = Hp
u(−1/r2) × Hm−p

c−u (k/(1 + kr2)) ⊂
Hm+1

c+1 (k), k < 0, such that1+kr2 > 0 andk2n(n+2m)r4+kn(m+n+2p)r2+p(m+n−p) = 0.

The shape operator ofMm
c in M

m+1
µ is diagonalizable with eigenvaluesλ andµ given byλ2 =

(1 + kr2)/r2 andµ2 = k2r2/(1 + kr2), and multiplicitiesp andm− p, respectively. Therefore,
by applying (5.1), we see thatJHϕ = λHϕ with λ = (p + k(2p−m)r2)/(r2(1 + kr2)).

As for remaining productsMm
c = Sp

u(1/r2)×Hm−p
c−u (k/(1− kr2)) ⊂ Sm+1

c+1 (k), k > 0, such
that1−kr2 < 0 andMm

c = Sp
u(1/r2)×Hm−p

c−u (k/(1−kr2)) ⊂ Hm+1
c (k), k < 0, it is not difficult

to see that there is nor such thatk2n(n + 2m)r4 − kn(m + n + 2p)r2 + p(m + n − p) = 0.
Then any choice of radiusr produces a hypersurfaceMm

c with both constant mean and scalar
curvatures such that, for any minimal hypersurfaceNn

d , the quadric representation does not satisfy
the conditionJHϕ = λHϕ.

Note that in this example the minimal hypersurfaceNn
d in N

n+1
ν (k) can be replaced by a

minimal submanifoldN `
d and everything works fine. We must only changen by `.
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