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Abstract

In this paper we introduce a quadric representatiofithe product of two pseudo-Riemannian
isometric immersions. We characterize the product of submanifolds whose quadric represen-
tation satisfies\H, = AH,,, for a real constank, whereH,, is the mean curvature vector

field of . As for hypersurfaces, we prove that the only ones satisfying that equation are
minimal products as well as products of a minimal hypersurface and another one which has
constant mean and constant scalar curvatures with an appropriate relation between them. In
particular, the family of these surfaces consist&léf—1) andS!(2/3) x H!(—2) in S$(1)
andS?(1), Hi(-2/3) x S'(2), S}(2) x H!(—2/3) and aB-scroll over a null Frenet curve

with torsion=++/2 in H3(—1).

1. Introduction

Let R™*! be the pseudo-Euclidean space endowed with the standard inner product of index

t given by (a,b) = a'Gb, whereG = diag—1,...,—1,1,...,1] stands for the matrix of the
t m—t+1

metric with respect to the usual rectangular coordinates. Let us now denMénby) a pseudo-
Riemannian manifold of dimensiom, index ;. and constant curvatureand SA(m + 1,t) the
set of selfadjoint endomorphisms &f" " equipped with the metrig(4, B) = 4trac§ AB). Let
[+ M (k) — SA(m + 1,t) be the map defined by(p) = pp'G. Then given an isometric
immersionz : M — M, (k) the mapy : M/ — SA(m,u) defined byy = f oz is also
an isometric immersion which will be called the quadric representatid\ﬁ)f Then in [L6] we
have classified pseudo-Riemannian surfaces whose quadric representation satisfies a characteristic
differential equation involving the Laplacian. Since that Laplacian equation yields isoparametric
surfaces, we showed that family is made up by pseudo-Riemannian standard products and totally
geodesic surfaces. We were able to distinguish the prodli¢k) x H! (2k) c H3(k), k < 0,
andsSi (2k) x S*(2k) C S3(k), k > 0, as the only minimal not totally geodesic surfaces iifgk)
ands$(k), respectively, whose quadric representation satisfies that Laplacian equation. Then we
extended the characterization of the Clifford torus given by Barros and Gdijajq]).

As standard products play a chief role in that classification problem, we are going to find a
quadric representation for pseudo-Riemannian product submanifolds into indefinite space forms.

Let Sj(k) (k > 0) andH} (k) (k < 0) be the pseudo-Euclidean hypersurfaces of constant

curvaturek given by

Sp(R) = {z € BRI (o) = 1)
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and )

respectively. We will refer them as the hyperquadrics of constant curvatul&e consider a
map f from the pseudo-Riemannian produﬂﬂl(k) x N (k) of two hyperquadrics of constant
curvaturek into the space of redin + 1) x (n+ 1) matricesht which is an isometric immersion.
General properties of this map are obtained, for instafiége,an isometric immersion of 1-type
(in the sense of B.Y. Chen) and the associated eigenvalkeist- n) (see Section 1).

Let us recall Chen'’s definition of type (seg)|. Let M be a pseudo-Riemannian submanifold
of R;”“' and A the Laplacian on\/?. ThenM is said to be of finite type if the position vector
X of M7 in R/ has the following form

T
X:XO+ZXi7 AX; = N X,
=1

whereX| is a constant map anx is an eigenvalue o\. If all eigenvalues are mutually different
M? is said to be of-type. If M/ is of r-type and one of the,; is zero, M will be said of null
r-type. M is said to be of infinite type if it is not of finite type.

Given isometric immersions : M — le(k) andy : Ny — N, (k), we define a new
isometric immersionp : M x Nf — M by ¢ = f(z,y). Throughtout this paper the immersion
¢ will be called thequadric representation of the product immersiany).

In a series of early papers{[ [3], [14], [15]) we have pointed out substantial differences
between definite and indefinite Riemannian submanifolds with regard to the spectral behaviour
of the mean curvature vector field. We have shown indeed many examples of submanifolds into
indefinite space forms without counterparts into definite space forms. The key point concerns
to the diagonalizability of the shape operator. Now, in dealing wittwe state the following
problem:

Could you determine the shapeMTg and Nf; into the corresponding hyperquadrics
via the quadric representation of the produat! x Nf ?

In trying to solve this question, we will study the spectral behaviour of the mean curvature
vector fieldH, of . Actually we wish to know what kind of geometric information abauf
and N could arise from the Laplacian equati&d,, = AH,,. We guess this condition will play
a chief role in solving that problem, because we already know the characterization of hypersur-
faces satisfying that equation into indefinite space forms (54e[L5]). As for the Chen-type
of a submanifold, it is well known that a equation likeH = M\H allows to reach only up to
submanifolds of 2-type with a zero eigenvalue (the so called null 2-type) ZpedHowever, for
our quadric representatias the corresponding equatiada//, = AH,, yields 2-type immersions
(see Theorem 3.3).

Some interesting consequences can be mentionedz L}t be a pseudo-Riemannian product
of hypersurfaces. TheAH, = AH,, if and only if one of them is minimal and the other one has
constant mean and constant scalar curvature with an appropriate relation between them. However
the case\ = 0 deserves a special attention. In fact, from the Beltrami equaiien- —nH, we
getA%2x = —nAH, so that the mean curvature vector field is harmonic, thak i, = 0 if and
only if Az? = 0. Then B.Y. Chen called such a submanifolds biharmonic submanifolds and stated
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the following conjectured]: The only biharmonic submanifolds in Euclidean spaces are the min-
imal ones. In early paper8,[14, 15] we have found that, among others, the flat totally umbilic
hypersurfaces are counterexamples to that conjecture into indefinite ambient spaces. However,
the products of two flat totally umbilic hypersurfaces via the quadric representation are not bi-
harmonic. In fact, we have shown that those products are the only ones satisfying the equation
AH, = C, C being a nonzero constant vector in the normal bundle. Finally, by using the quadric
representation of a pseudo-Riemannian product, we are able to give a new non-existence result:
There is no pseudo-Riemannian product of surfaces with biharmonic quadric representation.

We are very grateful to the referee for many helpful suggestions.

2. General properties of a product immersion

Let M:f(k) and N, (k) be two hyperquadrics of non-zero constant curvatustandardly
embedded iR7"*! andR?*!, respectively. We can define an immersiprirom the pseudo-
Riemannian producM;"(k) x N, (k) into the space of rean + 1) x (n + 1) matricesdt
by

feM (k) x Ny(k) — M
(,q) — p®q

where® : R x R — 90t is given byu ® v = Guv'Ge, G1 and Gy standing for the
matrices of the standard metrics &'"! andR?*!, respectively. We abbreviatZEff(k:) and
N, (k)asM, andN,,.

To study general properties gf we proceed as follows. Givefp,q) € MT X N: and
(Xp,Yy) € T(pq) (M), x N), there are curves : I C R — M, and@: J C R — N, such
thata(0) = p, &/(0) = X, 5(0) = ¢ andf’(0) = Y,. To compute the differential of we have

PooKp¥e) = G| Fa®80)= 5| abes
d
= 4| amesorame 5| s

= Xp®q+pRY,
Therefore, for short, we write down
df(X,)Y)=X®q+pY.

Let V be the usual flat connection oM. Let (V, W) be a vector field OMZL x N and take
a point(p, q) € Mf x N, atangent vectofX,, Y,) and curves:(t) and3(t) as before. Then

3
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for the covariant derivative we have

~ d

Vi, (VW) =l dfa,s0) Vo Wao)
4

dt |,

d d

= ) Ve®os0 +Vao)e 4

d d
T Y a(t) @ W(B(0)) + a(0) ® a

+ W(B(t))

t=0
= Vx,VOq+V,0Y, + X, W, +p& Vy, W,

whereV' andV” are the usual flat connections Rﬁ’“ andR”*!, respectively. By using now
the Gauss equation

=1

Vx,V = Vi,V = kX, V)p,

=2

Vy,W = Vi W —k(Yy, Wo)g,

V! andV? being the Levi-Civita connections d\?IT andN Z respectively, we have

Vi, (VW) = df(VXV,.ViW)+VeY + X oW )
— k{(X, V) + (Y, W)}/,

where, as usually, ) denotes the metric.

Let g be the metric i)t defined byg(4, B) = ktr(G1AGyBY), for A, B € 9, then f
becomes an isometric immersion. Notice tBAt endowed withg, is isometric to a pseudo-
Euclidean space of indéxn+1—s)+s(m+1—t)or (m+1)(n+1)—s(m+1)—t(n+1)+2st,
provided that: > 0 or k < 0, respectively. Then it is easy to see that

IX VY @W) = k(X,Y)(V,W). 2

Now, a straightforward computation from (1) allows us to obtain the second fundamentar form
of f
c(X,Y), (VW) =VY+XeW —-k{(X,V)+ (Y, W)}f.

We are going to get the mean curvature vector figjdof f. To do that, le £y, ..., E,}and
{F1,..., F,} belocal orthonormal frames MZ‘ andN |, respectively. Thek(E1,0),...,(Eny,0),

(0, F1),...,(0, F,)} is a local orthonormal frame off;’ x ;. From (3) we find
5((Ei70)7 (Euo)) = —k&if,
&((OvFj)7(07Fj)) = _knjfa

wheree; = (E;, E;) andn; = (F}, F};). Therefore

H = (Zag(@,m,(&,o»+Znﬁ<<o,Fj>,<0,Fj>>) ()

m-+n
T i=1 j=1

— —kf.
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From here and the Beltrami equatidnf = —(m + n)H; we obtain the following interesting
result.

Proposition 2.1 The isometric immersioli : ]\7[;7 x NI\ — 90 is of 1-type with associated
eigenvalug:(m + n), thatis,Af = k(m +n)f.

As a consequence of pseudo-Riemannian version of Takahashi’s the@ijeand[[20]) we
have the following.

Corollary 2.2 The isometric immersioyfi is minimal in the hyperquadric abt given by{A €
M:g(A,A) =k,

3. The quadric representation

Letx : M? — MT C Rt andy : NY — N, c R?*! be two isometric immersions and
let o : M x N§ — 9 be the isometric immersion defined byp, q) = f(z(p), y(q)). From
now on,y will be called thequadric representation of the pseudo-Riemannian product immersion
(@,9).

We are going to get properties ofandy coming from those of. To do that, letf7, andH,,
be the mean curvature vector fieldsiodindy, respectively. Lef{, andH , be the mean curvature
vector fields in the corresponding pseudo-Euclidean ambient spaces. Since the hyperquadrics are
totally umbilic we have

H,=H,—kr, H,=H,—ky.

Let o, ando, be the second fundamental forms associated émdy, respectively. Then the
second fundamental form g¢f can be written as

o, =df(0z,0y4) + 0.

Our first goal is to characterize the product immersipng;) whose quadric representatignis
of 1-type. Bearing in mind the above relation among the second fundamental forms, we have

tr(op) = df(tr(oz),0) — kjp + df (0, tr(0y)) — ke
= df(tr(oz), tr(ay)) — k(I + O

Then by lettingH , the mean curvature vector field associateg twe obtain
(J +OHp = df (jHy, LHy) — k(j + O )

Proposition 3.1 The quadric representatiop of a pseudo-Riemannian product immersieny )
is of 1-type if and only i andy are minimal immersions. Moreover, the associated eigenvalue is
given byk(j + ¢).

Proof. First, if z andy are minimal, from (1) and the Beltrami equatity = —(j + ¢)H,, we
easily deduce thahp = k(j + £)p.
Assume now thap satisfies the equation

Ap = A — vo), A eR,
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wherepy € M is a constant matrix. By using again Beltrami equation and (1) we find
Npo = df (jHz, LHy) +{X —k(j + ) }o.
Now, letV € %(MZ ), take covariant derivative in (2) and use (1) to obtain

0 = %df(V,O)df(ija CHy) +{\—k(j + 5)}%df(v,0)80 (3
df GVVH,0)+ VR Hy+{ A —k([i+0)}Vey
= jVVH, @y+ V@ H, +{\—k(j+0)}V®y.

Since this can be viewed as an endomorphisf@ph', we apply it toy to get0 = k1 jG1 (Vi H,)+
k=X —k(j + £)}G1V and then

k(G +0) — A

Vv H, =
v j

v,

because’; is invertible. Bringing this to (3) we deduce thdt ® H, = 0, which implies that
H, = 0. A similar reasoning, by taking in (2) covariant derivative with respect to a vector field
W € X(NY), leads toH,, = 0 and the proof finishes.

From now on, we will pay attention to the equation

AH, = \H,,  A€R.

Let (p,q) be a point inM7 x Nf and choose local orthonormal framgg’, ..., E;} and
{F1,...,F;} on M and N, respectively, such th&f'§, E.(p) =0, foralla =1,...,j, and
V%ﬁFg(q) =0, forall 3 =1,...,1, whereV* andV¥ are the Levi-Civita connections ol
andN ﬁ, respectively. From (1) we easily get

(G+OH,=jH, @y+lzx H,
Taking covariant derivative here we obtainatq)
VeirEao) V(50§ + OHy = jV Vi Ho@y+ (¥ Ea© H,
— VB Vp Hy®y+(6,(Ea, Fo) ® H,
and
%df(O,Fﬁ)%df(O,Fﬁ)(j +0H, = jH,®0,(Fs Fp)+lz® ﬁ;ﬁﬁ;ﬁﬁy’

wheres, anda, are the second fundamental formsMﬁ and Nﬁ in R;”“ andRQ*l, respec-
tively. Therefore we have

(j+0AH,=jAH, @ y+lz® AH, —2j(H, ® H,. (5)
By assuming thah H, = AH,,, we obtain from (5) that

JAH, @ y+lx @ AH, —2j0H, @ Hy = jH, @y + lx ® H,),

6
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which we apply tay to get
JEkTIGIAH , + ((AH,, y)Grx — 250(H y, y)G1Hy = \jk ' G1H, + M{H,,y)G1z.
As (H,,y) = —1 andG is invertible, the above equation writes as
GETYAH , +5(20 = Xk H, + 6O\ + (AH , y))z = 0.
A similar reasoning by applying te’ leads to
CTYAH, 4+ 025 — N Hy + (N + (AH,, 2))y = 0.
By multiplying now the above equation lywe find
EYG(AH  x) + 0(AH ,, y)) + Mo (0 + §) — 265 = 0.
From (9), the following useful lemma can be easily obtained.

Lemma 3.2 If the quadric representatiop of a pseudo-Riemannian product immersiany)
satisfies the equatiod H,, = A\H,,, then the functions, = (AH,,z) andc, = (AH,,y) are
both constant and related by (9).

Now next theorem can be proved.

Theorem 3.3 Letp : M x N§ — 91 be the quadric representation of a pseudo-Riemannian
product (z, y), wherez : M — ]\7./2” andy : NY — N, are isometric immersions. Then
AH, = \H, for nonzero constant real numbarif and only if one of the following statements
holds:

(1) Bothz andy are minimal and\ = k(j + ¢);

(2) x is minimal andy is of 1-type with associate eigenvalug:j or 2-type with associated
eigenvalues\ — kj and —kj, that is,y = y1 + y2 (y1,y2 # 0) such thatAy; = —kjy; and
Ays = (A = kj)ys;

(3) vy is minimal andzx is of 1-type with associate eigenvalug:/ or 2-type with associated
eigenvalues\ — k¢ and —k/, that is,x = 1 + 2 (x1, 22 # 0) such thatAx; = —kfz; and
AJZQ = ()\ — ké)l’g.

Proof. If H, = 0 andH, = 0 then we haveAH, = —k?(j + {)z ® y andH, = —kz ® y.
Therefore we gefNH,, = AH,,, with A\ = k(j + ¢).
If M is minimal inMZL andy = y1 + y2 (y1,y2 # 0) such thatAy; = —kjy; andAy, =
(A — kj)yo then
A%y + (2kj — M)Ay — kj(A — kj)y =0,

which is the same as (8). Then (5) implies thall, = A\H.,.

A similar reasoning applies Wﬁ is minimal in N, and M/ is of 1-type with associate eigen-
value—k/ or 2-type with associated eigenvalues/ and\ — k2.

To prove the converse, bring (7) and (8)Add, = AH,. Bearing in mind Lemma 3.2 and
Jeg +Ley = 2kjl — \(j + ¢) we obtainH, ® H, = 0. This equation yield${, = 0 or H, = 0 or
both simultaneously. Now if, for instancH,, # OthenAFIy = —k2ty andc, = —k{. Therefore,
(7) can be rewritten as

A%z + (2k0 — N Az — k6N — kf)z = 0.

7
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Let p(t) be the polynomiap(t) = > + (2kf — \)t — kf(\ — k{), whose discriminant ia? # 0.
Thenp(A)z = 0 and using 11, Proposition 4.3] we have is of finite type less than or equal
to two. If x is of 1-type, then it is totally umbilical and so with associated eigenvalké If x

is of 2-type, then the associated eigenvalues are the rogtg pfthat is,\ — k¢ and—k¢. That
completes the proof.

Now we are going to analyze when the quadric representation is biharmonic, thafis= 0.
Then we also have thdi, = 0 or H, = 0, but not simultaneously according to Theorem 3.3.
SupposeV} is minimal in N, thenp(A)z = 0 wherep(t) = (¢ + k¢)?. Hencex should be,
according to 11, Proposition 4.2], of infinite type or of 1-type with associated eigenvaliké
But Theorem 3.3 implies that should be of infinite type. So the the following result has been
shown.

Proposition 3.4 Lety : M x Nf — M be the quadric representation of a pseudo-Riemannian
product(z, y), wherez : M — MZ‘ andy : Nj — N are isometric immersions. Thenis
biharmonic if and only if one of the following statements holds:

(1)  is minimal andy is of infinite type withA%y + 2kjAy + k2j%y = 0;

(2) y is minimal andz is of infinite type withA%z 4 2k¢Ax + k20(%z = 0.

4. The quadric representation of a product of hypersurfaces

This section is devoted to prove the following major result.

Theorem 4.1 Letz : M"~! — M, andy : NJ~' — N be hypersurfaces. The quadric
representationy of a pseudo-Riemannian product (of, y) satisfies the equatiodhH, = \H.,,

A € R, if and only if one of the following statements holds:

(1) Bothz andy are minimal and\ = k(m + n — 2).

(2)  is minimal andy has nonzero constant mean curvatafgand constant scalar curvature
such that

ry= s (= D2+ 0= )+ 2y0d) + kG — 1)?)
(n—1)? 2

A=k -2
(m+n )+m+n_26yay

(3) ¥ is minimal andr has nonzero constant mean curvatutgand constant scalar curvature,
such that

N 2 2 2
Tx_m—l—n—Z{(m 1) (m;—n 3)(k +ezai) + k(n—1)*}
)\:k(m+n—2)+u5ma§

m+mn—2

Proof. From [7, Lemma 3] we can easily compute the constaptandc, given in Lemma 3.2 as
er=—(m—1D(k+e02), ¢y =—(n—1)(k+eyad),

wheree, anda, (resp.c, anda,) are the sign and mean curvatureldf™ ! in Mff (resp.Ng*1
in ]\77;). It follows the constancy of the mean curvatures, and one of them vanishes according to
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Theorem 3.3 and Proposition 3.4. Assume now thais a non vanishing constant, then from (7)
we have

(m—DAH, +k(m—1)2(n —1) = X DH, +k(n — 1)(A —k(n — 1))z = 0.
By using again, Lemma 3] we get
tr(S2) = A —k(m — 1) — 2k(n — 1),
whereS,, stands for the shape operatoriaf” ! in MT. Equating thez-component we obtain
0=—k(m—1)2(k+e,02) —2k*(m — 1)(n — 1) = k*(n — 1)® + Mk(m +n — 2),
and then

(m — 1)2 2

Now the Gauss equation implies that

e = (m—1)*(Hy, Hy) — k(m—1) —tr(S?)
= (m =12k +era2) +2k(n—1) =\,

and sor, is also constant. Moreover, by substitutingn the above equation we deduce
(mA4n—2)7 = (m—1)2*(m+n—3)(k+eza?) + k(n —1)2

The same computation works if we assume thats a nonzero constant.

To prove the converse, it suffices to consider case (2) or (3). Let us assume wgrl —
N (k) is minimal andz : M™ ! — J\fof(k:) has nonzero constant mean curvatuseand
constant scalar curvature such that

_ 12 _ 2 12
Tx_m—l—n—Q{(m 1) (m;Ln 3)(k +epa) + k(n— 1)}
)\:k(m+n—2)+u€xa§

m+mn—2

By using [7, Lemma 3] we deduce
AH, = (tr(5%) + k(m — 1))H, — k(m — 1)(e,02 + k)z.

From the Gauss equation jointly with the formulae foandr,, we get

E(m —1)(ez02 + k) = %((m +n—2)A—k(n—1)% = 2k(m —1)(n — 1))
tr(S2) + k(m —1) = A — 2k(n — 1).
The last three equations lead to
A%z + (2k(n — 1) = M)Az — k(n — DA = k(n — 1))z =0,

and reasoning as in Theorem 3.3 we obt@aiH, = \H.,.

9
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The above theorem contains the characterization of products of hypersurfaces whose quadric
representation is biharmonig & 0). In the following result we extend the harmonicity condition
and study the equatioh I/, = C', whereC'is a constant vector in the normal bundle. First of all,
we will show a class of hypersurfaces whose products satisfy the asked equatiéh #ith The
classification of totally umbilic hypersurfaces M1 — M:f(k) is givenin [L8, Theorem 1.4],
and we know that such a hypersurface is an open piece of either a pseudoSgphire/r?), or a
pseudo-hyperbolic spad&”*(—1/r%) or R7*~!, according to H ., H ;) is positive, negative or
zero, respectively. Inthe last case, the isometric immersioR”* ! — MZL(k:) C R™is given
by z = f — x0, 2o being a fixed vector iR andf : R~ — R the function defined by
flut, . yum—1) = (q(u),u1, ..., um-1,q(u)), whereg(u) = a (u, u)+ (u, v)+c, wherea andc
are constant real numbers, especiallf 0 andv is a vector inR™~1. We will refer this example
as dflat totally umbilic hypersurfacdt is not difficult to see that\x = —2a(m—1)(1,0,...,0,1)
and soAH , = 0. Therefore, ifr : M"~' — M (k) andy : Nj~" — N (k) are two flat totally
umbilic hypersurfaces, there exist two non-zero constaatsdb such thatAH, = RA, A being
the following nonzero matrix igdt:

1 0 0 -1
0 O 0 O
0 O 0 O
-1 0 0 1

whereR = —8ab(m — 1)(n — 1)/(m +n — 2).

Theorem 4.2 Letz : M"~! — M, andy : N}~' — N, be hypersurfaces. The quadric
representationp of a pseudo-Riemannian product of (x,y) satisfies the equatidp = C, C
being a constant vector in the normal bundle, if and only if one of the following statements holds:
(1) = is minimal andy has nonzero constant mean curvatuaggand constant scalar curvature,
such that
Ty = k(m —1)(5 —2n —m),

(m+n—2)32

(n—1)2 ~

2 _
o, = —gyk

" eyk <0,

andC = 0.
(2) v is minimal andz has nonzero constant mean curvatutgand constant scalar curvature,
such that
T = k(n—1)(5 —2m —n),
9 (m+n —2)?
o, = —€ka, 6xk < 0,
andC = 0.
(3) Bothz andy are flat totally umbilic hypersurfaces ard = RA, for any R # 0, whereA is

the matrix given in the above.

Proof. The sufficiency is a consequence of Theorem 4.1 and example exhibited before this theo-
rem.
By using (5),AH, = C can be rewritten as

(m+n—-2)C=m-1)AH, @y+(n—1)z@AH,—2(m—1)(n—1)H, ® H,.

10
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Then apply (2) toy andW € X(N7~') to obtain

(m+n-2)Cy = k*(m-1)GAH, + (n—1)(AH,,y)Giz 3)
+2(m —1)(n — 1)G1H,
(m+n—-2)CW = (n—1){AH,,W)Gz. (4)

From here, ag(C,z ® W) = 0, we deduce tha&ﬁy is normal toNZfl. Therefore, from (4),
we getG1Cy = A, A being a constant. Then (3) writes as follows

(m—1)AH, =k(m+n—2)A—k(n—1)cyx —2k(m —1)(n — 1)H,, (5)

wherec, is the function onV ! given in Lemma 3.2, from which we gej is constant.
A similar reasoning withx! andV € X(M™1), leadsAH , to be normal taV/7*~! and then

(n—1)AH, =k(m+n—2)B—k(m—1)cy — 2k(m — 1)(n — 1)H,,

whereB = G,C'z andc, is constant.
From the above equations the following relation betweeandc, can be easily obtained

(m+n—2){A,z) =k ' (m—1ec, +k 7 (n—1)c, —2(m—1)(n—1) = (m+n—2)(B,y).
From here, jointly with (5) and (6), we can rewrite (2) as follows

(m—1)(n—1)

C=k(A B) — k*(A -2
(ARy+z®B) -k (A z)z®yY ee—

H,® H,.

Taking the covariant derivative alonge W here we deduce that

(m—1)(n—1)

0=kEAQW — (A,z)z@W —2
m-+n—2

H, © Vi H,.

If H, = 0, an easy argument from (7) and the above equation y&lgs0, then from Theorem
4.1 we get (1). IfH, = 0, then as above we obtain (2). So we can assumeHha# 0 and

H, #0.
Let ¢ be a vector field normal taZ! in ML” such that(¢, H,) # 0. From (8) we have

(€, Hy) Vi Hy = k(m +n — 2)/(2(m — 1)(n — 1)){A, &)W, and so
m+n—2

(& He)AHy = —k’m@‘l’@gy-

Now, multiplying the above equation bywe getk(m+n—2)/(2(m—1))(A,&) = (£, Hy)(cy +
k(n — 1)), (9) brings us

Aﬁy = —c,H,.

A similar reasoning yields to
AH, = —c,H,.

By combining these two equations with (5) and (6) we deduce

(cz —2k(n—1))Az+k(n — 1)cyx —k(m+n—-2)A = 0,
(cy —2k(m —1)Ay+k(m —1)czy —k(m+n—-2)B = 0.
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If ¢, = 2k(m — 1), thenc, = 0 and B = 0. Therefore we obtain thakH, = k(m — 1)H,,
which is a contradiction. Assume now that # 2k(n — 1) andc, # 2k(m — 1), thenz andy
satisfyAz = ax + bandAy = cy + d, wherea,c € R, b € R andd € R?*! are constant.
From (10) and (11) we easily get= —c, andc = —c,,.

From (2)

(m+n—-2)C = (m—1)AH,@y+(n—1)z®AH,—2(m—-1)(n—1)H, ® H,
= —(m-1)e;H, @y—(n—1)eyz @ Hy —2(m —1)(n—1)H, ®
= ATy +cyr ® Ay — 2Ax ® Ay
= (acz+ccy —2ac)x @y + (cz —20)b @y + (¢y —2a)r @d — 20 @ d.

Take the covariant derivative of

0= (m+n—2)VaewC = (acy + ccy — 2ac)x @ W + (cz — 2c)b @ W,

then we get

(cz —2¢)b=—(a+2c)b=0.
Similarly

(cy —2a)d = —(2a+c)d = 0.
So

(m+n—-2)C=-2b®d.

SinceH, # 0 andH, # 0, C # 0 and hencé # 0 andd # 0. From (12) and (13)a = 0
andc = 0. Therefore the mean curvature vector fields\of—! andN;‘1 in the corresponding
pseudo-Euclidean spaces are constant.

On the other hand, by using the Beltrami equation we fi\d, z) = —(m — 1)(H,,z) =
(m—1) and so(m—1) = (b, z). This shows thad/*~! is contained in a hyperplane and therefore
M™ ! is totally umbilic in M;"(k). The same is valid foiV?~'. Now from [18, Theorem
1.4] we know thatV/™~! is an open piece of a pseudo-sph8fe ! (1/r2), a pseudo-hyperbolic
spaceH™ !(—1/r?) or a flat totally umbilic hypersurface, but only the latter has constant mean
curvature vector field. The same occurij* and so we get (3).

It is worth noticing that this theorem gives a characterization of the products of two flat totally
umbilic hypersurfaces as the only ones satisfying the equatiip = C, whereC' # 0.

5. The quadric representation of a product of surfaces

We start this section by providing some examples of surfaces, in the De SitterSgparand
in the anti-De Sitter spadd;(—1), such that the quadric representation of their product with a
minimal surface satisfies the equatidi/, = A\H..

Example 5.1 Let N7 be a minimal surface iM?(k). Let M2 be a non flat totally umbilic surface
in NZ>(k), k* = 1, such thatk = —1, e being the sign of\/2 in N’ (k). Then}2 is an open
piece of H}(—1/r?) C H3(—1), S}(1/r?) C H(-1), H?*(-1/r?) c S3(1), or S*(1/r?) C
S$(1). ThenAH, = \H,, if and only if M2 is an open piece dfl}(—1) C H3(-1), S*(1) C
S3(1), S¥(1) € H3(—1) or H?(—1) C S$(1), where the constarnit is given by—4, 4, —2 and2,
respectively.
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Example 5.2 The families of standard productsMi’(k) are given by

@)SH(1/r?) x SH1/(1 —7?)) € S$(1),1 —r? >0,

(HY(—1/r?) x HY(=1/(=1+7r?)) C H}(-1), -1+ 1% >0,

(i) S*(1/r?) x HY(1/(1 —r?)) C S3(1),1 —-7r? <0,

(V) SL(1/r%) x H}_,(=1/(1+ %)) C H(-1).

Unless-? = 1/2in the families (i) and (ii), those surfaces are of 2-type with eigenvgliigs’, 1/(1—
)}, {=1/r%, —1/(=1 + )}, {1/r%,1/(1 — r*)}and {1/r%, —1/(1 + r?)}, respectively. Let
N? be a minimal surface irj\ZIi’(k) and M? a standard product. Then the quadric represen-
tation ¢ satisfies the equatiodhH, = M\H,, if and only if M? is S}(2) x S1(2) c S}(1),
H(-2) x H(-2) C H(-1), S(2/3) x H(-2) C S$(1), S}(2) x H}(-2/3) C H3(-1)
orSt(2) x Hi(—2/3) c H$(—1), where the constarkis given by4, —4, 8/3, —8/3 and—8/3,
respectively.

Example 5.3 B-scroll over a null curve Let c(s) be a null curve inl3(—1) C R3 with an
associated Cartan framdel, B, C'}, i.e.,{A, B, C'} is a pseudo-orthonormal frame of vector fields
alongc(s),

(A,A) =(B,B) =0, (A,B) = —1,
<A,C>:<B,C>:O, <CaC>:1a
satisfyingé(s) = A(s) andC(s) = —aA(s) — k(s)B(s), wherea is a nonzero constant and

k(s) # 0 for all s. Then the mapr : (s,u) — c(s) + uB(s) parametrizes a Lorentzian
surfaceM? in H3(—1) called aB-scroll. The B-scroll has non-diagonalizable shape operator
with minimal polynomialg(t) = (¢t — a)? and so it has constant mean curvature= a and
constant Gauss curvatuée = a>. Therefore ifN? is a minimal surface ifil3(—1) and¢ is que
quadric representation éffZ x N3, the equatiom\H, = AH,, holds if and only ifa*> = 2 and
A= -2,

Theorem 5.4 Let M2 and N? be two surfaces in the De Sitter spasg = M(1), and g

M? x N? — 9n =~ RS the quadric representation of their product. Thesatisfies the equation
AH, = \H, if and only if one of the following statements holds:

(1) Both M2 and N? are minimal inS?, where\ = 4;

(2) One surface is minimal i63 and the other one is an open piece of the totally umbilic surface
H?(—1), where)\ = 2;

(3) One surface is minimal i3 and the other one is an open piece of the standard product surface
S1(2/3) x H'(—2), where) = 8/3.

Theorem 5.5 Let M2 and N7 be two surfaces in the anti-De Sitter spddg = M3(~1), and

¢ M? x N2 — 9 = RIS the quadric representation of their product. Thersatisfies the
equationAH, = AH, if and only if one of the following statements holds:

(1) Both M2 and N2 are minimal inH?, where\ = —4;

(2) One surface is minimal ifil and the other one is an open piece of the totally umbilic surface
S2(1), wherex = —2;

(3) One surface is minimal ifil and the other one is an open piece of the standard product
surfaceH}(—2/3) x S'(2) or $1(2) x H'(-2/3), where\ = —8/3;

(4) One surface is minimal il and the other one is an open piece dBascroll over a null-Frenet
curve with torsiont+/2, wherel = —2.

13
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Proof of Theorems 5.4 and 5.9n view of Theorem 4.1, we can assume tIMf X NC% is not
minimal. Then eithen/? or Nj has to be minimal, so we can suppd\é{% is minimal. Therefore
Theorem 4.1 yield$/? is an isoparametric surface. Hent£ is totally umbilical, aB-scroll, a
pseudo-Riemannian product or a complex circle (see the Appendix for the complete description
of isoparametric surfaces in Lorentzian 3-space forms). From the above examples we 3€g that
is an open piece of totally umbilic surfacg$(1) c H3, H?(—1) C S} or a B-scroll in H$ with

2 = 2. As for product surfaces, we gét? is an open piece of one the products given in this
theorem. Finally, we are going to show that the last caseMg’ats a complex circle can not be
given. In fact, sincey, andr, are related by, = —4 + 3¢,a2, which can be rewritten by using
the shape operatdt, as

(tr(Sz))? — 4tr(S?) + 8¢, = 0,

a straightforward computation shows that a complex circle can not satisfy that equation.
As a consequence of that theorems we obtain the following.

Corollary 5.6 There is no pseudo-Riemannian product of surfaces with biharmonic quadric rep-
resentation.

6. A few more examples

This section is devoted to show a few more examples of hypersurfaces such that the quadric
representation satisfies the equatidfl, = \H.,.

Example 6.1 Letz : M1 — Mm(k:) R *! be a hypersurface whose shape operator
has a characteristic polynomial given bit) = (t — a)™ !, a € R, and lety : N}™' —
N (k) ¢ R?*! be a minimal hypersurface Then by the Jordan normal form wergsg)
(m—1)a andtr(Sg) = (m — 1)a®. Since the mean curvature, = a and the scalar curvature
7o = (m —1)(n — 1)(k + eza?), it follows from Theorem 4.2 thah H, = \H,, if and only if
a? = —ezk(m +n —2)/(m — 1), e-k < 0, and in this casa = k(n — 1).

Let M~ be non-flat totally umbilic inlZ}, (k) andN} " minimal in N}, (k). Sinces,k < 0,
we only have the following possibilities fakz;"~! and A}, (k): Hp~!(—1/r?) c H(k),
Smt(1/r?) C HP(k), H'S(=1/r%) C Sp(k), S 1(1/7“ ) C Sp(k). In all cases the
shape operator i§, = al, wherea? is given by(—1 — kr?)/r?, (1 — kr?)/r?, (1 + kr?)/r2,
(;1_14— k:rz)/v;:, respjgtlively. The\H, = \H,, ifmand onTLy_i11‘ M VisHp (k) C Hg(k),
Spcy (k) € S(k), S (=k(n—1)/(m—1)) C H(k), H"y (=k(n—1)/(m—1)) C Sj(k).
Note that the two first ones are minimal hypersurfaces, in fact, they are totally geodesic.

To find new examples, we recall the construction of some hypersurfaces we have used in early
papers.

Generalized umbilic hypersurface of degre@® 19]). Letc: I ¢ R — HY*(k) C ]RQ”“ be
a null curve with an associated pseudo-orthonormal frameB, 71, ..., Z,,—3,C} alongc(s)
such that: = A(s) andC' = —aA(s) — x(s)B(s), wherex(s) # 0 anda is a nonzero constant.
Then the map: : I x R x R™=3 — H(k) C Ry defined by

z(s,u,2) = (14 f(2))c(s) + uB(s +sz +9(Z))C(S),
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wheref(z) andg(z) are solutions of

k
kg+af = -

1
kg + 17 = k(- =2,

parametrizes, in a neighborhood of the origin, a Lorentzian hypersu/lof@f:é1 of Hy"(k). The
mean curvaturey is the nonzero constantand the minimal polynomial of its shape operator is

q(t) = (t — a)®.
Generalized umbilic hypersurface of degre3 19)). Letc: I ¢ R — Hy*(k) ¢ Ry
be a null curve with an associated pseudo-orthonormal frame3, Y, 71, ..., Z,,—4,C} such

thate = A(s) andC' = —aA(s) + k(s)Y (s), with x(s) # 0 anda a nonzero constant. Then the
mapz : [ x R x R x R™™* — H(k) C Ry defined by

m—4

2(s,u,y,2) = (1+ f(2))e(s) +uB(s) + yY (s) + > 2Z;(s) + (
j=1

1

a

+9(2))C(s),

wheref(z) andg(z) are solutions of

k
kg+af = ——
a
1
kg + 2 = k(=2 =),

parametrizes, in a neighborhood of the origin, a Lorentzian hypersuﬂfﬁ{éél in H*. Then
Mlm‘1 has constant mean curvature= a # 0 and the minimal polynomial of its shape operator
is given byq(t) = (t — a)?.

Then by takingV/™~! C ML” as a generalized umbilic hypersurface of degree two or three
andN}~! minimal in N, (k), the quadric representation of the prodd€f*—! x N7~ satisfies
AH, = \H, ifand only if a®> = —(e;k)(m +n — 2)/(m — 1).

Example 6.2 Let N7~! be minimal inN, (k) and M~ = SE(1/r2) x HI". P (k/(1 — kr?))
into S” ; (k), k > 0 andl — kr? < 0, with r*> = (m+n—p—2)/k(n—1). Then it is well known
(see [1]) that M~ is of 2-type with associated eigenvalugs= p/r? = kp(n—1)/(m+n—p—
2)and)y = k(m—p—1)/(1—kr?) = —k(n—1). Itis easy to see that; = A — k(n— 1), where
A=k(n—1)(m+n—2)/(m+n—p—2). Therefore, by applying Theorem 38H, = \H,.

Now, let N*~1 be minimal inN}, (k) and M~ = Sh(1/r?) x HI". P~ (k/(1 — kr?))
H™(k), k < 0and1 — kr? > 0, with r> = —p/k(n — 1). Then asM*~! is of 2-type with
associated eigenvalugs = p/r? = —k(n — 1) andly = k(m — p — 1)/(1 — kr?), itis easy to
see thaty = A —k(n—1), whereh = k(n—1)(m+n—2)/(n+p—1). Therefore, by applying
Theorem 3.3AH, = \H,,.

Any other choices of radii produce examples of hypersurfackg™ ! with both constant
mean and scalar curvatures such that, for any minimal hypersdﬁ?éé, the quadric represen-
tation does not satisfy the conditidaid, = \H,,.

As for remaining productd/™~! = S%(1/r2?) x ST P (k/(1 — kr?)) € S™(k), k > 0
and1 — kr? > 0, and M1 = HE(—1/7%) x HI PN (k/(1 + kr?)) € HZ,(k), k < 0 and
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1+ kr? > 0, they are minimal when? = p/k(m — 1) and so the equatioA H, = AH,, holds.
Otherwise, they are of 2-type with associate eigenvajugs?, k(m — p — 1)/(1 — kr?)} and
{—p/r? k(m —p—1)/(1 + kr?)}, respectively. Therefore there is n@accomplishing Theorem

3.3. Indeed, in the former case both eigenvalues are positive and, in order to apply Theorem 3.3,
one of them should be negative; in the latter, just the contrary occurs.

Note that in this example the minimal hypersurfaflsfg‘1 in N (k) can be replaced by a
minimal submanifolde and everything works fine. We must only charige- 1) by /.

7. Appendix: Isoparametric surfaces in Lorentzian 3-space forms

Let M‘;’(k) be a 3-space form of constant curvatiire R. A model forMi’(k) is the Lorentz-
Minkowski spacel? if k = 0, the De Sitter spacg;(k) if k& > 0 and the anti De Sitter space
H3(k) if k < 0. Let M2 be a (spacelike or Lorentzian) surface]\ﬁ(k) and denote by the
Weingarten endomorphism associated to a unit normal vector field. If the minimal polynomial
of the shape operator is independent of each poirt/gf M2 is said to be isoparametric. The
possibly complex roots of that polynomial are called the principal curvatures.

The selfadjoint endomorphisi$ion a tangent space 8f? has a matrix of exactly one of the
following three types:

A0 A0 p—
o (30) s (A 0) mse(2 )

In types | and 1lI, S is relative to an orthonormal basis while in case Il the basis is pseudo-
orthonormal, that is, a bas{sY, Y} such that X, X) =0 = (Y,Y) and(X,Y) = —1. Thus the
classification of isoparametric surfaces]\iﬁ’(k) should be done by distinguishing three cases,
according to the canonical form of the shape operétor

Type I: S is diagonalizable If A = x thenM? is nothing but an open piece of a totally umbilical
surface. Otherwise, following K. Nomizw2®], and N. Abe—N. Koike-S. Yamaguchi][ we get
that M2 is an open piece of one of the following products:

(i) HY(—1/7?) x R, S}(1/7?) x RorLL x SY(1/r?)if k = 0.

(i) H'(=1/r%) x SY(k/(1 + kr?)) or SH(1/r?) x SY(k/(1 — kr?)), 1 — kr? > 0, if k > 0.
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(i) Hi(—1/72) x SY(k/(1 + kr?)), 1+ kr? < 0, H (—=1/7r?) x St(k/(1 + kr?)), 1+ kr? < 0,

or Y (—1/r?) x HY(k/(1 + kr?)), 1+ kr? > 0,if k <O0.

Type II: S has a double real eigenvaluén this case, following L. Gravesly], and M. Magid,
[19, if & = 0, and L.J. Alas—A. Ferandez—P. Lucas?], and M. Dajczer—K. Nomizu,12], if

k # 0, we deduce that/2 is locally an open piece of B-scroll. This surface has been described
in Example 5.3.

Type lll: S has complex eigenvalue$hen from Codazzi’'s equations we can easily deduce that
X andY induce parallel vector fields oh/? and therefore\/? is a flat Lorentzian surface with
parallel second fundamental form in the pseudo-Euclidean space M‘s‘ié(ﬂe) is lying. Then

by using [L8, Theorem 1.15 and 1.17] we obtali? is congruent to a complex circle i (k).

Let a + bi be a non-zero complex number such that- b2 = 1/k. The following mapsr =
(z', 2%, 23, 2%) : R? — Hj(k) C R} describes a complex circle:

xl(ul, u2) b cosh us cosuy — asinh us sinuq,
wQ(ul, uz2) = asinhugcosu; + bcoshugsinuy,
w?’(ul, ug) = acoshugcosuy + bsinhugsinug,
x4(u1, uz) = acoshugsinu; — bsinhug cosuy,

where(u, uz) is the usual coordinate systemid with the Lorentz metridls? = (duy)? —(duz)?
andRj is equipped with the metriés? = (dz')? + (dz?)? — (dz3)? — (d=*)%. The shape operator
S'is given by

A —pu 2ab -1
S = A= =
<,u, A)’ ka2 +02) M7z

with respect to the usual fran{e{%, 6%}. This surface is calledeomples circleof radiusa + bi

by Magid, [1§].

Note added. We would like to point out that some time after this paper was written we have
met a series of papers by B.Y.Chef]([[9], [10]) where a quadric representation for Riemannian
product immersions is considered as a tensor product immersions (se&3$21]).
Acknowledgements. We wish to thank to the referee for their careful suggestions in order to
improve this article.
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