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Abstract

In this paper we introduce a quadric representationϕ of the product of two pseudo-Riemannian
isometric immersions. We characterize the product of submanifolds whose quadric represen-
tation satisfies∆Hϕ = λHϕ, for a real constantλ, whereHϕ is the mean curvature vector
field of ϕ. As for hypersurfaces, we prove that the only ones satisfying that equation are
minimal products as well as products of a minimal hypersurface and another one which has
constant mean and constant scalar curvatures with an appropriate relation between them. In
particular, the family of these surfaces consists ofH2(−1) andS1(2/3) × H1(−2) in S3

1(1)
andS2

1(1), H1
1(−2/3) × S1(2), S1

1(2) × H1(−2/3) and aB-scroll over a null Frenet curve
with torsion±√2 in H3

1(−1).

1. Introduction

Let Rm+1
t be the pseudo-Euclidean space endowed with the standard inner product of index

t given by 〈a, b〉 = atGb, whereG = diag[−1, . . . ,−1︸ ︷︷ ︸
t

, 1, . . . , 1︸ ︷︷ ︸
m−t+1

] stands for the matrix of the

metric with respect to the usual rectangular coordinates. Let us now denote byM
m
µ (k) a pseudo-

Riemannian manifold of dimensionm, indexµ and constant curvaturek andSA(m + 1, t) the
set of selfadjoint endomorphisms ofRm+1

t equipped with the metricg(A,B) = k
2 trace(AB). Let

f : M
m
µ (k) → SA(m + 1, t) be the map defined byf(p) = pptG. Then given an isometric

immersionx : M j
c → M

m
µ (k) the mapϕ : M j

c → SA(m,µ) defined byϕ = f ◦ x is also

an isometric immersion which will be called the quadric representation ofM j
c . Then in [16] we

have classified pseudo-Riemannian surfaces whose quadric representation satisfies a characteristic
differential equation involving the Laplacian. Since that Laplacian equation yields isoparametric
surfaces, we showed that family is made up by pseudo-Riemannian standard products and totally
geodesic surfaces. We were able to distinguish the productsH1(2k) × H1(2k) ⊂ H3

1(k), k < 0,
andS1

1(2k)×S1(2k) ⊂ S3
1(k), k > 0, as the only minimal not totally geodesic surfaces intoH3

1(k)
andS3

1(k), respectively, whose quadric representation satisfies that Laplacian equation. Then we
extended the characterization of the Clifford torus given by Barros and Garay ([4], [5]).

As standard products play a chief role in that classification problem, we are going to find a
quadric representation for pseudo-Riemannian product submanifolds into indefinite space forms.

Let Sm
µ (k) (k > 0) andHn

ν (k) (k < 0) be the pseudo-Euclidean hypersurfaces of constant
curvaturek given by

Sm
µ (k) = {x ∈ Rm+1

µ : 〈x, x〉 =
1
k
}
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and

Hn
ν (k) = {x ∈ Rn+1

ν+1 : 〈x, x〉 =
1
k
},

respectively. We will refer them as the hyperquadrics of constant curvaturek. We consider a
mapf from the pseudo-Riemannian productM

m
µ (k) × N

n
ν (k) of two hyperquadrics of constant

curvaturek into the space of real(m+1)× (n+1) matricesM which is an isometric immersion.
General properties of this map are obtained, for instance,f is an isometric immersion of 1-type
(in the sense of B.Y. Chen) and the associated eigenvalue isk(m + n) (see Section 1).

Let us recall Chen’s definition of type (see [7]). Let M j
c be a pseudo-Riemannian submanifold

of Rm+1
t and∆ the Laplacian onM j

c . ThenM j
c is said to be of finite type if the position vector

X of M j
c in Rm+1

t has the following form

X = X0 +
r∑

i=1

Xi, ∆Xi = λiXi,

whereX0 is a constant map andλi is an eigenvalue of∆. If all eigenvalues are mutually different
M j

c is said to be ofr-type. If M j
c is of r-type and one of theλi is zero,M j

c will be said of null
r-type.M j

c is said to be of infinite type if it is not of finite type.
Given isometric immersionsx : M j

c −→ M
m
µ (k) andy : N `

d −→ N
n
ν (k), we define a new

isometric immersionϕ : M j
c ×N `

d −→ M by ϕ = f(x, y). Throughtout this paper the immersion
ϕ will be called thequadric representation of the product immersion(x, y).

In a series of early papers ([2], [3], [14], [15]) we have pointed out substantial differences
between definite and indefinite Riemannian submanifolds with regard to the spectral behaviour
of the mean curvature vector field. We have shown indeed many examples of submanifolds into
indefinite space forms without counterparts into definite space forms. The key point concerns
to the diagonalizability of the shape operator. Now, in dealing withϕ, we state the following
problem:

Could you determine the shape ofM j
c andN `

d into the corresponding hyperquadrics
via the quadric representation of the productM j

c ×N `
d ?

In trying to solve this question, we will study the spectral behaviour of the mean curvature
vector fieldHϕ of ϕ. Actually we wish to know what kind of geometric information aboutM j

c

andN `
d could arise from the Laplacian equation∆Hϕ = λHϕ. We guess this condition will play

a chief role in solving that problem, because we already know the characterization of hypersur-
faces satisfying that equation into indefinite space forms (see [14], [15]). As for the Chen-type
of a submanifold, it is well known that a equation like∆H = λH allows to reach only up to
submanifolds of 2-type with a zero eigenvalue (the so called null 2-type) (see [2]). However, for
our quadric representationϕ, the corresponding equation∆Hϕ = λHϕ yields 2-type immersions
(see Theorem 3.3).

Some interesting consequences can be mentioned. Let(x, y) be a pseudo-Riemannian product
of hypersurfaces. Then∆Hϕ = λHϕ if and only if one of them is minimal and the other one has
constant mean and constant scalar curvature with an appropriate relation between them. However
the caseλ = 0 deserves a special attention. In fact, from the Beltrami equation∆x = −nH, we
get∆2x = −n∆H, so that the mean curvature vector field is harmonic, that is,∆H = 0 if and
only if ∆x2 = 0. Then B.Y. Chen called such a submanifolds biharmonic submanifolds and stated
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the following conjecture [8]: The only biharmonic submanifolds in Euclidean spaces are the min-
imal ones. In early papers [3, 14, 15] we have found that, among others, the flat totally umbilic
hypersurfaces are counterexamples to that conjecture into indefinite ambient spaces. However,
the products of two flat totally umbilic hypersurfaces via the quadric representation are not bi-
harmonic. In fact, we have shown that those products are the only ones satisfying the equation
∆Hϕ = C, C being a nonzero constant vector in the normal bundle. Finally, by using the quadric
representation of a pseudo-Riemannian product, we are able to give a new non-existence result:
There is no pseudo-Riemannian product of surfaces with biharmonic quadric representation.

We are very grateful to the referee for many helpful suggestions.

2. General properties of a product immersion

Let M
m
µ (k) andN

n
ν (k) be two hyperquadrics of non-zero constant curvaturek standardly

embedded inRm+1
t andRn+1

s , respectively. We can define an immersionf from the pseudo-
Riemannian productM

m
µ (k) × N

n
ν (k) into the space of real(m + 1) × (n + 1) matricesM

by

f : M
m
µ (k)×N

n
ν (k) −→ M

(p, q) −→ p⊗ q

where⊗ : Rm+1
t × Rn+1

s −→ M is given byu ⊗ v = G1uvtG2, G1 andG2 standing for the
matrices of the standard metrics onRm+1

t andRn+1
s , respectively. We abbreviateM

m
µ (k) and

N
n
ν (k) asM

m
µ andN

n
ν .

To study general properties off , we proceed as follows. Given(p, q) ∈ M
m
µ × N

n
ν and

(Xp, Yq) ∈ T(p,q)(M
m
µ ×N

n
ν ), there are curvesα : I ⊂ R −→ M

m
µ andβ : J ⊂ R −→ N

n
ν such

thatα(0) = p, α′(0) = Xp, β(0) = q andβ′(0) = Yq. To compute the differential off we have

df(p,q)(Xp, Yq) =
d

dt

∣∣∣∣
t=0

f(α(t), β(t)) =
d

dt

∣∣∣∣
t=0

α(t)⊗ β(t)

=
d

dt

∣∣∣∣
t=0

α(t)⊗ β(0) + α(0)⊗ d

dt

∣∣∣∣
t=0

β(t)

= Xp ⊗ q + p⊗ Yq

Therefore, for short, we write down

df(X,Y ) = X ⊗ q + p⊗ Y.

Let ∇̃ be the usual flat connection onM. Let (V, W ) be a vector field onM
m
µ ×N

n
ν and take

a point(p, q) ∈ M
m
µ × N

n
ν , a tangent vector(Xp, Yq) and curvesα(t) andβ(t) as before. Then
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for the covariant derivative we have

∇̃df(Xp,Yq)df(V, W ) =
d

dt

∣∣∣∣
t=0

df(α(t),β(t))(Vα(t),Wβ(t))

=
d

dt

∣∣∣∣
t=0

(V (α(t))⊗ β(t) + α(t)⊗W (α(t)))

=
d

dt

∣∣∣∣
t=0

V (α(t))⊗ β(0) + V (α(0))⊗ d

dt

∣∣∣∣
t=0

β(t)

+
d

dt

∣∣∣∣
t=0

α(t)⊗W (β(0)) + α(0)⊗ d

dt

∣∣∣∣
t=0

W (β(t))

= ∇1
Xp

V ⊗ q + Vp ⊗ Yq + Xp ⊗Wq + p⊗∇2
Yq

W,

where∇1
and∇2

are the usual flat connections onRm+1
t andRn+1

s , respectively. By using now
the Gauss equation

∇1
Xp

V = ∇1
Xp

V − k〈Xp, Vp〉p,

∇2
Yq

W = ∇2
Yq

W − k〈Yq,Wq〉q,

∇1 and∇2 being the Levi-Civita connections onM
m
µ andN

n
ν , respectively, we have

∇̃df(Xp,Yq)df(V, W ) = df(∇1
XV,∇2

Y W ) + V ⊗ Y + X ⊗W (1)

− k{〈X,V 〉+ 〈Y, W 〉}f,

where, as usually,〈, 〉 denotes the metric.
Let g̃ be the metric inM defined byg̃(A,B) = k tr(G1AG2B

t), for A,B ∈ M, thenf
becomes an isometric immersion. Notice thatM, endowed withg̃, is isometric to a pseudo-
Euclidean space of indext(n+1−s)+s(m+1−t) or (m+1)(n+1)−s(m+1)−t(n+1)+2st,
provided thatk > 0 or k < 0, respectively. Then it is easy to see that

g̃(X ⊗ V, Y ⊗W ) = k〈X, Y 〉〈V, W 〉. (2)

Now, a straightforward computation from (1) allows us to obtain the second fundamental formσ̃
of f

σ̃((X, Y ), (V, W )) = V ⊗ Y + X ⊗W − k{〈X, V 〉+ 〈Y,W 〉}f.

We are going to get the mean curvature vector fieldHf of f . To do that, let{E1, . . . , Em} and
{F1, . . . , Fn} be local orthonormal frames ofM

m
µ andN

n
ν , respectively. Then{(E1, 0), . . . , (Em, 0),

(0, F1), . . . , (0, Fn)} is a local orthonormal frame ofM
m
µ ×N

n
ν . From (3) we find

σ̃((Ei, 0), (Ei, 0)) = −kεif,

σ̃((0, Fj), (0, Fj)) = −kηjf,

whereεi = 〈Ei, Ei〉 andηj = 〈Fj , Fj〉. Therefore

Hf =
1

m + n




m∑

i=1

εiσ̃((Ei, 0), (Ei, 0)) +
n∑

j=1

ηj σ̃((0, Fj), (0, Fj))


 (4)

= −kf.
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From here and the Beltrami equation∆f = −(m + n)Hf we obtain the following interesting
result.

Proposition 2.1 The isometric immersionf : M
m
µ × N

n
ν −→ M is of 1-type with associated

eigenvaluek(m + n), that is,∆f = k(m + n)f .

As a consequence of pseudo-Riemannian version of Takahashi’s theorem ([7] and [20]) we
have the following.

Corollary 2.2 The isometric immersionf is minimal in the hyperquadric ofM given by{A ∈
M : g̃(A,A) = k−1}.

3. The quadric representation

Let x : M j
c −→ M

m
µ ⊂ Rm+1

t andy : N `
d −→ N

n
ν ⊂ Rn+1

s be two isometric immersions and

let ϕ : M j
c × N `

d −→ M be the isometric immersion defined byϕ(p, q) = f(x(p), y(q)). From
now on,ϕ will be called thequadric representation of the pseudo-Riemannian product immersion
(x, y).

We are going to get properties ofx andy coming from those ofϕ. To do that, letHx andHy

be the mean curvature vector fields ofx andy, respectively. LetHx andHy be the mean curvature
vector fields in the corresponding pseudo-Euclidean ambient spaces. Since the hyperquadrics are
totally umbilic we have

Hx = Hx − kx, Hy = Hy − ky.

Let σx andσy be the second fundamental forms associated tox andy, respectively. Then the
second fundamental form ofϕ can be written as

σϕ = df(σx, σy) + σ̃.

Our first goal is to characterize the product immersions(x, y) whose quadric representationϕ is
of 1-type. Bearing in mind the above relation among the second fundamental forms, we have

tr(σϕ) = df(tr(σx), 0)− kjϕ + df(0, tr(σy))− k`ϕ

= df(tr(σx), tr(σy))− k(j + `)ϕ.

Then by lettingHϕ the mean curvature vector field associated toϕ we obtain

(j + `)Hϕ = df(jHx, `Hy)− k(j + `)ϕ. (1)

Proposition 3.1 The quadric representationϕ of a pseudo-Riemannian product immersion(x, y)
is of 1-type if and only ifx andy are minimal immersions. Moreover, the associated eigenvalue is
given byk(j + `).

Proof. First, if x andy are minimal, from (1) and the Beltrami equation∆ϕ = −(j + `)Hϕ, we
easily deduce that∆ϕ = k(j + `)ϕ.

Assume now thatϕ satisfies the equation

∆ϕ = λ(ϕ− ϕ0), λ ∈ R,
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whereϕ0 ∈ M is a constant matrix. By using again Beltrami equation and (1) we find

λϕ0 = df(jHx, `Hy) + {λ− k(j + `)}ϕ.

Now, letV ∈ X(M j
c ), take covariant derivative in (2) and use (1) to obtain

0 = ∇̃df(V,0)df(jHx, `Hy) + {λ− k(j + `)}∇̃df(V,0)ϕ (3)

= df(j∇1
V Hx, 0) + `V ⊗Hy + {λ− k(j + `)}V ⊗ y

= j∇1
V Hx ⊗ y + `V ⊗Hy + {λ− k(j + `)}V ⊗ y.

Since this can be viewed as an endomorphism onRn+1
s , we apply it toy to get0 = k−1jG1(∇1

V Hx)+
k−1{λ− k(j + `)}G1V and then

∇1
V Hx =

k(j + `)− λ

j
V,

becauseG1 is invertible. Bringing this to (3) we deduce that`V ⊗ Hy = 0, which implies that
Hy = 0. A similar reasoning, by taking in (2) covariant derivative with respect to a vector field
W ∈ X(N `

d), leads toHx = 0 and the proof finishes.
From now on, we will pay attention to the equation

∆Hϕ = λHϕ, λ ∈ R.

Let (p, q) be a point inM j
c × N `

d and choose local orthonormal frames{E1, . . . , Ej} and
{F1, . . . , F`} on M j

c andN `
d, respectively, such that∇x

Eα
Eα(p) = 0, for all α = 1, . . . , j, and

∇y
Fβ

Fβ(q) = 0, for all β = 1, . . . , l, where∇x and∇y are the Levi-Civita connections onM j
c

andN `
d, respectively. From (1) we easily get

(j + `)Hϕ = jHx ⊗ y + `x⊗Hy.

Taking covariant derivative here we obtain at(p, q)

∇̃df(Eα,0)∇̃df(Eα,0)(j + `)Hϕ = j∇1
Eα
∇1

Eα
Hx ⊗ y + `∇1

Eα
Eα ⊗Hy

= j∇1
Eα
∇1

Eα
Hx ⊗ y + `σx(Eα, Eα)⊗Hy

and

∇̃df(0,Fβ)∇̃df(0,Fβ)(j + `)Hϕ = jHx ⊗ σy(Fβ, Fβ) + `x⊗∇2
Fβ
∇2

Fβ
Hy,

whereσx andσy are the second fundamental forms ofM j
c andN `

d in Rm+1
t andRn+1

s , respec-
tively. Therefore we have

(j + `)∆Hϕ = j∆Hx ⊗ y + `x⊗∆Hy − 2j`Hx ⊗Hy. (5)

By assuming that∆Hϕ = λHϕ, we obtain from (5) that

j∆Hx ⊗ y + `x⊗∆Hy − 2j`Hx ⊗Hy = λ(jHx ⊗ y + `x⊗Hy),
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which we apply toy to get

jk−1G1∆Hx + `〈∆Hy, y〉G1x− 2j`〈Hy, y〉G1Hx = λjk−1G1Hx + λ`〈Hy, y〉G1x.

As 〈Hy, y〉 = −1 andG1 is invertible, the above equation writes as

jk−1∆Hx + j(2`− λk−1)Hx + `(λ + 〈∆Hy, y〉)x = 0.

A similar reasoning by applying toxt leads to

`k−1∆Hy + `(2j − λk−1)Hy + j(λ + 〈∆Hx, x〉)y = 0.

By multiplying now the above equation byy we find

k−1(j〈∆Hx, x〉+ `〈∆Hy, y〉) + λk−1(` + j)− 2`j = 0.

From (9), the following useful lemma can be easily obtained.

Lemma 3.2 If the quadric representationϕ of a pseudo-Riemannian product immersion(x, y)
satisfies the equation∆Hϕ = λHϕ, then the functionscx = 〈∆Hx, x〉 andcy = 〈∆Hy, y〉 are
both constant and related by (9).

Now next theorem can be proved.

Theorem 3.3 Let ϕ : M j
c × N `

d −→ M be the quadric representation of a pseudo-Riemannian
product(x, y), wherex : M j

c −→ M
m
µ and y : N `

d −→ N
n
ν are isometric immersions. Then

∆Hϕ = λHϕ for nonzero constant real numberλ if and only if one of the following statements
holds:
(1) Bothx andy are minimal andλ = k(j + `);
(2) x is minimal andy is of 1-type with associate eigenvalue−kj or 2-type with associated
eigenvaluesλ − kj and−kj, that is,y = y1 + y2 (y1, y2 6= 0) such that∆y1 = −kjy1 and
∆y2 = (λ− kj)y2;
(3) y is minimal andx is of 1-type with associate eigenvalue−k` or 2-type with associated
eigenvaluesλ − k` and−k`, that is,x = x1 + x2 (x1, x2 6= 0) such that∆x1 = −k`x1 and
∆x2 = (λ− k`)x2.

Proof. If Hx = 0 andHy = 0 then we have∆Hϕ = −k2(j + `)x ⊗ y andHϕ = −kx ⊗ y.
Therefore we get∆Hϕ = λHϕ, with λ = k(j + `).

If M j
c is minimal inM

m
µ andy = y1 + y2 (y1, y2 6= 0) such that∆y1 = −kjy1 and∆y2 =

(λ− kj)y2 then
∆2y + (2kj − λ)∆y − kj(λ− kj)y = 0,

which is the same as (8). Then (5) implies that∆Hϕ = λHϕ.
A similar reasoning applies ifN `

d is minimal inN
n
ν andM j

c is of 1-type with associate eigen-
value−k` or 2-type with associated eigenvalues−k` andλ− k`.

To prove the converse, bring (7) and (8) to∆Hϕ = λHϕ. Bearing in mind Lemma 3.2 and
jcx + `cy = 2kj`−λ(j + `) we obtainHx⊗Hy = 0. This equation yieldsHx = 0 or Hy = 0 or
both simultaneously. Now if, for instance,Hx 6= 0 then∆Hy = −k2`y andcy = −k`. Therefore,
(7) can be rewritten as

∆2x + (2k`− λ)∆x− k`(λ− k`)x = 0.
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Let p(t) be the polynomialp(t) = t2 + (2k`− λ)t− k`(λ− k`), whose discriminant isλ2 6= 0.
Thenp(∆)x = 0 and using [11, Proposition 4.3] we havex is of finite type less than or equal
to two. If x is of 1-type, then it is totally umbilical and so with associated eigenvalue−k`. If x
is of 2-type, then the associated eigenvalues are the roots ofp(t), that is,λ − k` and−k`. That
completes the proof.

Now we are going to analyze when the quadric representation is biharmonic, that is,∆Hϕ = 0.
Then we also have thatHx = 0 or Hy = 0, but not simultaneously according to Theorem 3.3.
SupposeN `

d is minimal in N
n
ν , thenp(∆)x = 0 wherep(t) = (t + k`)2. Hencex should be,

according to [11, Proposition 4.2], of infinite type or of 1-type with associated eigenvalue−k`.
But Theorem 3.3 implies thatx should be of infinite type. So the the following result has been
shown.

Proposition 3.4 Letϕ : M j
c ×N `

d −→ M be the quadric representation of a pseudo-Riemannian
product(x, y), wherex : M j

c −→ M
m
µ andy : N `

d −→ N
n
ν are isometric immersions. Thenϕ is

biharmonic if and only if one of the following statements holds:
(1) x is minimal andy is of infinite type with∆2y + 2kj∆y + k2j2y = 0;
(2) y is minimal andx is of infinite type with∆2x + 2k`∆x + k2`2x = 0.

4. The quadric representation of a product of hypersurfaces

This section is devoted to prove the following major result.

Theorem 4.1 Let x : Mm−1
c −→ M

m
µ andy : Nn−1

d −→ N
n
ν be hypersurfaces. The quadric

representationϕ of a pseudo-Riemannian product of(x, y) satisfies the equation∆Hϕ = λHϕ,
λ ∈ R, if and only if one of the following statements holds:
(1) Bothx andy are minimal andλ = k(m + n− 2).
(2) x is minimal andy has nonzero constant mean curvatureαy and constant scalar curvatureτy

such that 



τy =
1

m + n− 2
{(n− 1)2(m + n− 3)(k + εyα

2
y) + k(m− 1)2}

λ = k(m + n− 2) +
(n− 1)2

m + n− 2
εyα

2
y

(3) y is minimal andx has nonzero constant mean curvatureαx and constant scalar curvatureτx

such that 



τx =
1

m + n− 2
{(m− 1)2(m + n− 3)(k + εxα2

x) + k(n− 1)2}

λ = k(m + n− 2) +
(m− 1)2

m + n− 2
εxα2

x

Proof. From [7, Lemma 3] we can easily compute the constantscx andcy given in Lemma 3.2 as

cx = −(m− 1)(k + εxα2
x), cy = −(n− 1)(k + εyα

2
y),

whereεx andαx (resp.εy andαy) are the sign and mean curvature ofMm−1
c in M

m
µ (resp.Nn−1

d

in N
n
ν ). It follows the constancy of the mean curvatures, and one of them vanishes according to
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Theorem 3.3 and Proposition 3.4. Assume now thatαx is a non vanishing constant, then from (7)
we have

(m− 1)∆Hx + k(m− 1)(2(n− 1)− λk−1)Hx + k(n− 1)(λ− k(n− 1))x = 0.

By using again [7, Lemma 3] we get

tr(S2
x) = λ− k(m− 1)− 2k(n− 1),

whereSx stands for the shape operator ofMm−1
c in M

m
µ . Equating thex-component we obtain

0 = −k(m− 1)2(k + εxα2
x)− 2k2(m− 1)(n− 1)− k2(n− 1)2 + λk(m + n− 2),

and then

λ = k(m + n− 2) +
(m− 1)2

m + n− 2
εxα2

x.

Now the Gauss equation implies that

τx = (m− 1)2〈Hx,Hx〉 − k(m− 1)− tr(S2
x)

= (m− 1)2(k + εxα2
x) + 2k(n− 1)− λ,

and soτx is also constant. Moreover, by substitutingλ in the above equation we deduce

(m + n− 2)τx = (m− 1)2(m + n− 3)(k + εxα2
x) + k(n− 1)2.

The same computation works if we assume thatαy is a nonzero constant.
To prove the converse, it suffices to consider case (2) or (3). Let us assume thaty : Nn−1

d →
N

n
ν (k) is minimal andx : Mm−1

c → M
m
µ (k) has nonzero constant mean curvatureαx and

constant scalar curvatureτx such that




τx =
1

m + n− 2
{(m− 1)2(m + n− 3)(k + εxα2

x) + k(n− 1)2}

λ = k(m + n− 2) +
(m− 1)2

m + n− 2
εxα2

x

By using [7, Lemma 3] we deduce

∆Hx = (tr(S2
x) + k(m− 1))Hx − k(m− 1)(εxα2

x + k)x.

From the Gauss equation jointly with the formulae forλ andτx we get

k(m− 1)(εxα2
x + k) =

k

m− 1
((m + n− 2)λ− k(n− 1)2 − 2k(m− 1)(n− 1))

tr(S2
x) + k(m− 1) = λ− 2k(n− 1).

The last three equations lead to

∆2x + (2k(n− 1)− λ)∆x− k(n− 1)(λ− k(n− 1))x = 0,

and reasoning as in Theorem 3.3 we obtain∆Hϕ = λHϕ.

9
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The above theorem contains the characterization of products of hypersurfaces whose quadric
representation is biharmonic (λ = 0). In the following result we extend the harmonicity condition
and study the equation∆Hϕ = C, whereC is a constant vector in the normal bundle. First of all,
we will show a class of hypersurfaces whose products satisfy the asked equation withC 6= 0. The
classification of totally umbilic hypersurfacesx : Mm−1

c → M
m
µ (k) is given in [18, Theorem 1.4],

and we know that such a hypersurface is an open piece of either a pseudo-sphereSm−1
c (1/r2), or a

pseudo-hyperbolic spaceHm−1
c (−1/r2) orRm−1

c , according to
〈
Hx,Hx

〉
is positive, negative or

zero, respectively. In the last case, the isometric immersionx : Rm−1
c → M

m
µ (k) ⊂ Rm+1

t is given
by x = f −x0, x0 being a fixed vector inRm+1

t andf : Rm−1
c −→ Rm+1

t the function defined by
f(u1, . . . , um−1) = (q(u), u1, . . . , um−1, q(u)), whereq(u) = a 〈u, u〉+〈u, v〉+c, wherea andc
are constant real numbers, especiallya 6= 0 andv is a vector inRm−1

c . We will refer this example
as aflat totally umbilic hypersurface. It is not difficult to see that∆x = −2a(m−1)(1, 0, . . . , 0, 1)
and so∆Hx = 0. Therefore, ifx : Mm−1

c → M
m
µ (k) andy : Nn−1

d → N
n
ν (k) are two flat totally

umbilic hypersurfaces, there exist two non-zero constantsa andb such that∆Hϕ = RΛ, Λ being
the following nonzero matrix inM:




1 0 · · · 0 −1
0 0 · · · 0 0
...

...
...

...
...

0 0 · · · 0 0
−1 0 · · · 0 1




,

whereR = −8ab(m− 1)(n− 1)/(m + n− 2).

Theorem 4.2 Let x : Mm−1
c −→ M

m
µ andy : Nn−1

d −→ N
n
ν be hypersurfaces. The quadric

representationϕ of a pseudo-Riemannian product of (x,y) satisfies the equation∆Hϕ = C, C
being a constant vector in the normal bundle, if and only if one of the following statements holds:
(1) x is minimal andy has nonzero constant mean curvatureαy and constant scalar curvatureτy

such that 



τy = k(m− 1)(5− 2n−m),

α2
y = −εyk

(m + n− 2)2

(n− 1)2
, εyk < 0,

andC = 0.
(2) y is minimal andx has nonzero constant mean curvatureαx and constant scalar curvatureτx

such that 



τx = k(n− 1)(5− 2m− n),

α2
x = −εxk

(m + n− 2)2

(m− 1)2
, εxk < 0,

andC = 0.
(3) Bothx andy are flat totally umbilic hypersurfaces andC = RΛ, for anyR 6= 0, whereΛ is
the matrix given in the above.

Proof. The sufficiency is a consequence of Theorem 4.1 and example exhibited before this theo-
rem.

By using (5),∆Hϕ = C can be rewritten as

(m + n− 2)C = (m− 1)∆Hx ⊗ y + (n− 1)x⊗∆Hy − 2(m− 1)(n− 1)Hx ⊗Hy.

10
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Then apply (2) toy andW ∈ X(Nn−1
d ) to obtain

(m + n− 2)Cy = k−1(m− 1)G1∆Hx + (n− 1)〈∆Hy, y〉G1x (3)

+ 2(m− 1)(n− 1)G1Hx,

(m + n− 2)CW = (n− 1)〈∆Hy,W 〉G1x. (4)

From here, as̃g(C, x ⊗W ) = 0, we deduce that∆Hy is normal toNn−1
d . Therefore, from (4),

we getG1Cy = A, A being a constant. Then (3) writes as follows

(m− 1)∆Hx = k(m + n− 2)A− k(n− 1)cyx− 2k(m− 1)(n− 1)Hx, (5)

wherecy is the function onNn−1
d given in Lemma 3.2, from which we getcy is constant.

A similar reasoning withxt andV ∈ X(Mm−1
c ), leads∆Hx to be normal toMm−1

c and then

(n− 1)∆Hy = k(m + n− 2)B − k(m− 1)cxy − 2k(m− 1)(n− 1)Hy,

whereB = G2C
tx andcx is constant.

From the above equations the following relation betweencx andcy can be easily obtained

(m + n− 2)〈A, x〉 = k−1(m− 1)cx + k−1(n− 1)cy − 2(m− 1)(n− 1) = (m + n− 2)〈B, y〉.

From here, jointly with (5) and (6), we can rewrite (2) as follows

C = k(A⊗ y + x⊗B)− k2〈A, x〉x⊗ y − 2
(m− 1)(n− 1)

m + n− 2
Hx ⊗Hy.

Taking the covariant derivative alongx⊗W here we deduce that

0 = kA⊗W − 〈A, x〉x⊗W − 2
(m− 1)(n− 1)

m + n− 2
Hx ⊗∇2

W Hy.

If Hx = 0, an easy argument from (7) and the above equation yieldsC = 0, then from Theorem
4.1 we get (1). IfHy = 0, then as above we obtain (2). So we can assume thatHx 6= 0 and
Hy 6= 0.

Let ξ be a vector field normal toMm−1
c in M

m
µ such that〈ξ, Hx〉 6= 0. From (8) we have

〈ξ,Hx〉∇2
W Hy = k(m + n− 2)/(2(m− 1)(n− 1))〈A, ξ〉W , and so

〈ξ,Hx〉∆Hy = −k
m + n− 2
2(m− 1)

〈A, ξ〉Hy.

Now, multiplying the above equation byy we getk(m+n−2)/(2(m−1))〈A, ξ〉 = 〈ξ,Hx〉(cy +
k(n− 1)), (9) brings us

∆Hy = −cyHy.

A similar reasoning yields to
∆Hx = −cxHx.

By combining these two equations with (5) and (6) we deduce

(cx − 2k(n− 1))∆x + k(n− 1)cyx− k(m + n− 2)A = 0,
(cy − 2k(m− 1))∆y + k(m− 1)cxy − k(m + n− 2)B = 0.

11
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If cy = 2k(m − 1), thencx = 0 andB = 0. Therefore we obtain that∆Hx = k(m − 1)Hx,
which is a contradiction. Assume now thatcx 6= 2k(n − 1) andcy 6= 2k(m − 1), thenx andy
satisfy∆x = ax + b and∆y = cy + d, wherea, c ∈ R, b ∈ Rm+1

t andd ∈ Rn+1
s are constant.

From (10) and (11) we easily geta = −cx andc = −cy.
From (2)

(m + n− 2)C = (m− 1)∆Hx ⊗ y + (n− 1)x⊗∆Hy − 2(m− 1)(n− 1)Hx ⊗Hy

= −(m− 1)cxHx ⊗ y − (n− 1)cyx⊗Hy − 2(m− 1)(n− 1)Hx ⊗Hy

= cx∆x⊗ y + cyx⊗∆y − 2∆x⊗∆y

= (acx + ccy − 2ac)x⊗ y + (cx − 2c)b⊗ y + (cy − 2a)x⊗ d− 2b⊗ d.

Take the covariant derivative ofC

0 = (m + n− 2)∇̃x⊗W C = (acx + ccy − 2ac)x⊗W + (cx − 2c)b⊗W,

then we get
(cx − 2c)b = −(a + 2c)b = 0.

Similarly
(cy − 2a)d = −(2a + c)d = 0.

So
(m + n− 2)C = −2b⊗ d.

SinceHx 6= 0 andHy 6= 0, C 6= 0 and henceb 6= 0 andd 6= 0. From (12) and (13),a = 0
andc = 0. Therefore the mean curvature vector fields ofMm−1

c andNn−1
d in the corresponding

pseudo-Euclidean spaces are constant.
On the other hand, by using the Beltrami equation we find〈∆x, x〉 = −(m − 1)〈Hx, x〉 =

(m−1) and so(m−1) = 〈b, x〉. This shows thatMm−1
c is contained in a hyperplane and therefore

Mm−1
c is totally umbilic in M

m
µ (k). The same is valid forNn−1

d . Now from [18, Theorem
1.4] we know thatMm−1

c is an open piece of a pseudo-sphereSm−1
c (1/r2), a pseudo-hyperbolic

spaceHm−1
c (−1/r2) or a flat totally umbilic hypersurface, but only the latter has constant mean

curvature vector field. The same occurs forNn−1
d and so we get (3).

It is worth noticing that this theorem gives a characterization of the products of two flat totally
umbilic hypersurfaces as the only ones satisfying the equation∆Hϕ = C, whereC 6= 0.

5. The quadric representation of a product of surfaces

We start this section by providing some examples of surfaces, in the De Sitter spaceS3
1(1) and

in the anti-De Sitter spaceH3
1(−1), such that the quadric representation of their product with a

minimal surface satisfies the equation∆Hϕ = λHϕ.

Example 5.1 Let N2
d be a minimal surface inM

3
1(k). LetM2

c be a non flat totally umbilic surface

in M
3
1(k), k2 = 1, such thatεk = −1, ε being the sign ofM2

c in M
3
1(k). ThenM2

c is an open
piece ofH1

1(−1/r2) ⊂ H3
1(−1), S2

1(1/r2) ⊂ H3
1(−1), H2(−1/r2) ⊂ S3

1(1), or S2(1/r2) ⊂
S3

1(1). Then∆Hϕ = λHϕ if and only if M2
c is an open piece ofH1

1(−1) ⊂ H3
1(−1), S2(1) ⊂

S3
1(1), S2

1(1) ⊂ H3
1(−1) orH2(−1) ⊂ S3

1(1), where the constantλ is given by−4, 4, −2 and2,
respectively.

12
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Example 5.2 The families of standard products inM
3
1(k) are given by

(i)S1(1/r2)× S1
1(1/(1− r2)) ⊂ S3

1(1), 1− r2 > 0,
(ii)H1(−1/r2)×H1(−1/(−1 + r2)) ⊂ H3

1(−1),−1 + r2 > 0,
(iii) S1(1/r2)×H1(1/(1− r2)) ⊂ S3

1(1), 1− r2 < 0,
(iv) S1

u(1/r2)×H1
1−u(−1/(1 + r2)) ⊂ H3

1(−1).
Unlessr2 = 1/2 in the families (i) and (ii), those surfaces are of 2-type with eigenvalues{1/r2, 1/(1−
r2)}, {−1/r2,−1/(−1 + r2)}, {1/r2, 1/(1 − r2)}and{1/r2,−1/(1 + r2)}, respectively. Let

N2
d be a minimal surface inM

3
1(k) and M2

c a standard product. Then the quadric represen-
tation ϕ satisfies the equation∆Hϕ = λHϕ if and only if M2

c is S1(2) × S1
1(2) ⊂ S3

1(1),
H1(−2) × H1(−2) ⊂ H3

1(−1), S1(2/3) × H1(−2) ⊂ S3
1(1), S1

1(2) × H1(−2/3) ⊂ H3
1(−1)

or S1(2) × H1
1(−2/3) ⊂ H3

1(−1), where the constantλ is given by4, −4, 8/3, −8/3 and−8/3,
respectively.

Example 5.3 B-scroll over a null curve. Let c(s) be a null curve inH3
1(−1) ⊂ R4

2 with an
associated Cartan frame{A,B,C}, i.e.,{A,B,C} is a pseudo-orthonormal frame of vector fields
alongc(s),

〈A,A〉 = 〈B, B〉 = 0, 〈A,B〉 = −1,

〈A,C〉 = 〈B, C〉 = 0, 〈C,C〉 = 1,

satisfying ċ(s) = A(s) and Ċ(s) = −aA(s) − κ(s)B(s), wherea is a nonzero constant and
κ(s) 6= 0 for all s. Then the mapx : (s, u) −→ c(s) + uB(s) parametrizes a Lorentzian
surfaceM2

1 in H3
1(−1) called aB-scroll. TheB-scroll has non-diagonalizable shape operator

with minimal polynomialq(t) = (t − a)2 and so it has constant mean curvatureα = a and
constant Gauss curvatureG = a2. Therefore ifN2

d is a minimal surface inH3
1(−1) andϕ is que

quadric representation ofM2
1 × N2

d , the equation∆Hϕ = λHϕ holds if and only ifa2 = 2 and
λ = −2.

Theorem 5.4 Let M2
c and N2

d be two surfaces in the De Sitter spaceS3
1 = M

3
1(1), and ϕ :

M2
c ×N2

d → M ∼= R16
6 the quadric representation of their product. Thenϕ satisfies the equation

∆Hϕ = λHϕ if and only if one of the following statements holds:
(1) BothM2

c andN2
d are minimal inS3

1, whereλ = 4;
(2) One surface is minimal inS3

1 and the other one is an open piece of the totally umbilic surface
H2(−1), whereλ = 2;
(3) One surface is minimal inS3

1 and the other one is an open piece of the standard product surface
S1(2/3)×H1(−2), whereλ = 8/3.

Theorem 5.5 Let M2
c andN2

d be two surfaces in the anti-De Sitter spaceH3
1 = M

3
1(−1), and

ϕ : M2
c × N2

d → M ∼= R16
8 the quadric representation of their product. Thenϕ satisfies the

equation∆Hϕ = λHϕ if and only if one of the following statements holds:
(1) BothM2

c andN2
d are minimal inH3

1, whereλ = −4;
(2) One surface is minimal inH3

1 and the other one is an open piece of the totally umbilic surface
S2

1(1), whereλ = −2;
(3) One surface is minimal inH3

1 and the other one is an open piece of the standard product
surfaceH1

1(−2/3)× S1(2) or S1
1(2)×H1(−2/3), whereλ = −8/3;

(4)One surface is minimal inH3
1 and the other one is an open piece of aB-scroll over a null-Frenet

curve with torsion±√2, whereλ = −2.
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Proof of Theorems 5.4 and 5.5.In view of Theorem 4.1, we can assume thatM2
c × N2

d is not
minimal. Then eitherM2

c or N2
d has to be minimal, so we can supposeN2

d is minimal. Therefore
Theorem 4.1 yieldsM2

c is an isoparametric surface. HenceM2
c is totally umbilical, aB-scroll, a

pseudo-Riemannian product or a complex circle (see the Appendix for the complete description
of isoparametric surfaces in Lorentzian 3-space forms). From the above examples we see thatM2

c

is an open piece of totally umbilic surfacesS2
1(1) ⊂ H3

1, H2(−1) ⊂ S3
1 or aB-scroll inH3

1 with
a2 = 2. As for product surfaces, we getM2

c is an open piece of one the products given in this
theorem. Finally, we are going to show that the last case thatM2

c is a complex circle can not be
given. In fact, sinceαx andτx are related byτx = −4 + 3εxα2

x, which can be rewritten by using
the shape operatorSx as

(tr(Sx))2 − 4 tr(S2
x) + 8εx = 0,

a straightforward computation shows that a complex circle can not satisfy that equation.
As a consequence of that theorems we obtain the following.

Corollary 5.6 There is no pseudo-Riemannian product of surfaces with biharmonic quadric rep-
resentation.

6. A few more examples

This section is devoted to show a few more examples of hypersurfaces such that the quadric
representation satisfies the equation∆Hϕ = λHϕ.

Example 6.1 Let x : Mm−1
c −→ M

m
µ (k) ⊂ Rm+1

t be a hypersurface whose shape operator
has a characteristic polynomial given byq(t) = (t − a)m−1, a ∈ R, and lety : Nn−1

d −→
N

n
ν (k) ⊂ Rn+1

s be a minimal hypersurface. Then by the Jordan normal form we gettr(Sx) =
(m − 1)a andtr(S2

x) = (m − 1)a2. Since the mean curvatureαx = a and the scalar curvature
τx = (m − 1)(n − 1)(k + εxa2), it follows from Theorem 4.2 that∆Hϕ = λHϕ if and only if
a2 = −εxk(m + n− 2)/(m− 1), εxk < 0, and in this caseλ = k(n− 1).

LetMm−1
c be non-flat totally umbilic inM

m
µ (k) andNn−1

d minimal inN
n
ν (k). Sinceεxk < 0,

we only have the following possibilities forMm−1
c and M

m
µ (k): Hm−1

µ (−1/r2) ⊂ Hm
µ (k),

Sm−1
µ (1/r2) ⊂ Hm

µ (k), Hm−1
µ−1 (−1/r2) ⊂ Sm

µ (k), Sm−1
µ−1 (1/r2) ⊂ Sm

µ (k). In all cases the
shape operator isSx = aI, wherea2 is given by(−1 − kr2)/r2, (1 − kr2)/r2, (1 + kr2)/r2,
(−1 + kr2)/r2, respectively. Then∆Hϕ = λHϕ if and only if Mm−1

c is Hm−1
µ (k) ⊂ Hm

µ (k),
Sm−1

µ−1 (k) ⊂ Sm
µ (k), Sm−1

µ (−k(n−1)/(m−1)) ⊂ Hm
µ (k),Hm−1

µ−1 (−k(n−1)/(m−1)) ⊂ Sm
µ (k).

Note that the two first ones are minimal hypersurfaces, in fact, they are totally geodesic.
To find new examples, we recall the construction of some hypersurfaces we have used in early

papers.
Generalized umbilic hypersurface of degree 2([3, 19]). Let c : I ⊂ R −→ Hm

1 (k) ⊂ Rm+1
2 be

a null curve with an associated pseudo-orthonormal frame{A, B,Z1, . . . , Zm−3, C} alongc(s)
such thatċ = A(s) andĊ = −aA(s) − κ(s)B(s), whereκ(s) 6= 0 anda is a nonzero constant.
Then the mapx : I × R × Rm−3 −→ Hm

1 (k) ⊂ Rm+1
2 defined by

x(s, u, z) = (1 + f(z))c(s) + uB(s) +
m−3∑

j=1

zjZj(s) + (
1
a

+ g(z))C(s),
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wheref(z) andg(z) are solutions of

kg + af = −k

a

kg2 + f2 = k(
1
a
− |z|2),

parametrizes, in a neighborhood of the origin, a Lorentzian hypersurfaceMm−1
1 of Hm

1 (k). The
mean curvatureα is the nonzero constanta and the minimal polynomial of its shape operator is
q(t) = (t− a)2.

Generalized umbilic hypersurface of degree 3([3, 19]). Let c : I ⊂ R −→ Hm
1 (k) ⊂ Rm+1

2

be a null curve with an associated pseudo-orthonormal frame{A,B, Y, Z1, . . . , Zm−4, C} such
that ċ = A(s) andĊ = −aA(s) + κ(s)Y (s), with κ(s) 6= 0 anda a nonzero constant. Then the
mapx : I × R × R × Rm−4 −→ Hm

1 (k) ⊂ Rm+1
2 defined by

x(s, u, y, z) = (1 + f(z))c(s) + uB(s) + yY (s) +
m−4∑

j=1

zjZj(s) + (
1
a

+ g(z))C(s),

wheref(z) andg(z) are solutions of

kg + af = −k

a

kg2 + f2 = k(
1
a
− |z|2 − y2),

parametrizes, in a neighborhood of the origin, a Lorentzian hypersurfaceMm−1
1 in Hm

1 . Then
Mm−1

1 has constant mean curvatureα = a 6= 0 and the minimal polynomial of its shape operator
is given byq(t) = (t− a)3.

Then by takingMm−1
c ⊂ M

m
µ as a generalized umbilic hypersurface of degree two or three

andNn−1
d minimal in N

n
ν (k), the quadric representation of the productMm−1

c × Nn−1
d satisfies

∆Hϕ = λHϕ if and only if a2 = −(εxk)(m + n− 2)/(m− 1).

Example 6.2 Let Nn−1
d be minimal inN

n
ν (k) andMm−1

c = Sp
u(1/r2)×Hm−p−1

c−u (k/(1− kr2))
into Sm

c+1(k), k > 0 and1−kr2 < 0, with r2 = (m+n−p−2)/k(n−1). Then it is well known
(see [7]) thatMm−1

c is of 2-type with associated eigenvaluesλ1 = p/r2 = kp(n−1)/(m+n−p−
2) andλ2 = k(m−p−1)/(1−kr2) = −k(n−1). It is easy to see thatλ1 = λ−k(n−1), where
λ = k(n− 1)(m + n− 2)/(m + n− p− 2). Therefore, by applying Theorem 3.3,∆Hϕ = λHϕ.

Now, let Nn−1
d be minimal inN

n
ν (k) andMm−1

c = Sp
u(1/r2) × Hm−p−1

c−u (k/(1 − kr2)) ⊂
Hm

c (k), k < 0 and1 − kr2 > 0, with r2 = −p/k(n − 1). Then asMm−1
c is of 2-type with

associated eigenvaluesλ1 = p/r2 = −k(n− 1) andλ2 = k(m− p− 1)/(1− kr2), it is easy to
see thatλ2 = λ−k(n−1), whereλ = k(n−1)(m+n−2)/(n+p−1). Therefore, by applying
Theorem 3.3,∆Hϕ = λHϕ.

Any other choices of radiir produce examples of hypersurfacesMm−1
c with both constant

mean and scalar curvatures such that, for any minimal hypersurfaceNn−1
d , the quadric represen-

tation does not satisfy the condition∆Hϕ = λHϕ.
As for remaining productsMm−1

c = Sp
u(1/r2) × Sm−p−1

c−u (k/(1 − kr2)) ⊂ Sm
c (k), k > 0

and1 − kr2 > 0, andMm−1
c = Hp

u(−1/r2) × Hm−p−1
c−u (k/(1 + kr2)) ⊂ Hm

c+1(k), k < 0 and
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1 + kr2 > 0, they are minimal whenr2 = p/k(m − 1) and so the equation∆Hϕ = λHϕ holds.
Otherwise, they are of 2-type with associate eigenvalues{p/r2, k(m − p − 1)/(1 − kr2)} and
{−p/r2, k(m− p− 1)/(1 + kr2)}, respectively. Therefore there is nor accomplishing Theorem
3.3. Indeed, in the former case both eigenvalues are positive and, in order to apply Theorem 3.3,
one of them should be negative; in the latter, just the contrary occurs.

Note that in this example the minimal hypersurfaceNn−1
d in N

n
ν (k) can be replaced by a

minimal submanifoldN `
d and everything works fine. We must only change(n− 1) by `.

7. Appendix: Isoparametric surfaces in Lorentzian 3-space forms

Let M
3
1(k) be a 3-space form of constant curvaturek ∈ R. A model forM

3
1(k) is the Lorentz-

Minkowski spaceL3 if k = 0, the De Sitter spaceS3
1(k) if k > 0 and the anti De Sitter space

H3
1(k) if k < 0. Let M2

s be a (spacelike or Lorentzian) surface inM
3
1(k) and denote byS the

Weingarten endomorphism associated to a unit normal vector field. If the minimal polynomial
of the shape operator is independent of each point ofM2

s , M2
s is said to be isoparametric. The

possibly complex roots of that polynomial are called the principal curvatures.

The selfadjoint endomorphismS on a tangent space ofM2
s has a matrix of exactly one of the

following three types:

I. S ∼
(

λ 0
0 µ

)
II. S ∼

(
λ 0
−1 λ

)
III. S ∼

(
λ −µ
µ λ

)

In types I and III,S is relative to an orthonormal basis while in case II the basis is pseudo-
orthonormal, that is, a basis{X, Y } such that〈X, X〉 = 0 = 〈Y, Y 〉 and〈X,Y 〉 = −1. Thus the

classification of isoparametric surfaces inM
3
1(k) should be done by distinguishing three cases,

according to the canonical form of the shape operatorS.

Type I:S is diagonalizable. If λ = µ thenM2
s is nothing but an open piece of a totally umbilical

surface. Otherwise, following K. Nomizu, [22], and N. Abe–N. Koike–S. Yamaguchi, [1], we get
thatM2

s is an open piece of one of the following products:
(i) H1(−1/r2)× R, S1

1(1/r2)× R orL × S1(1/r2) if k = 0.
(ii) H1(−1/r2)× S1(k/(1 + kr2)) or S1

1(1/r2)× S1(k/(1− kr2)), 1− kr2 > 0, if k > 0.
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(iii) H1
1(−1/r2)× S1(k/(1 + kr2)), 1 + kr2 < 0,H1(−1/r2)× S1

1(k/(1 + kr2)), 1 + kr2 < 0,
orH1(−1/r2)×H1(k/(1 + kr2)), 1 + kr2 > 0, if k < 0.
Type II: S has a double real eigenvalue. In this case, following L. Graves, [17], and M. Magid,
[19], if k = 0, and L.J. Aĺıas–A. Ferŕandez–P. Lucas, [2], and M. Dajczer–K. Nomizu, [12], if
k 6= 0, we deduce thatM2

s is locally an open piece of aB-scroll. This surface has been described
in Example 5.3.
Type III: S has complex eigenvalues. Then from Codazzi’s equations we can easily deduce that
X andY induce parallel vector fields onM2

1 and thereforeM2
1 is a flat Lorentzian surface with

parallel second fundamental form in the pseudo-Euclidean space whereM
3
1(k) is lying. Then

by using [18, Theorem 1.15 and 1.17] we obtainM2
1 is congruent to a complex circle inH3

1(k).
Let a + bi be a non-zero complex number such thata2 − b2 = 1/k. The following mapx =
(x1, x2, x3, x4) : R2

1 → H3
1(k) ⊂ R4

2 describes a complex circle:

x1(u1, u2) = b coshu2 cosu1 − a sinhu2 sinu1,

x2(u1, u2) = a sinhu2 cosu1 + b coshu2 sinu1,

x3(u1, u2) = a coshu2 cosu1 + b sinhu2 sinu1,

x4(u1, u2) = a coshu2 sinu1 − b sinhu2 cosu1,

where(u1, u2) is the usual coordinate system inR2
1 with the Lorentz metricds2 = (du1)2−(du2)2

andR4
2 is equipped with the metricds2 = (dx1)2 +(dx2)2− (dx3)2− (dx4)2. The shape operator

S is given by

S =
(

λ −µ
µ λ

)
, λ =

2ab

k(a2 + b2)
, µ =

−1
a2 + b2

,

with respect to the usual frame
{

∂x
∂u1

, ∂x
∂u2

}
. This surface is called acomples circleof radiusa+bi

by Magid, [18].
Note added. We would like to point out that some time after this paper was written we have
met a series of papers by B.Y.Chen ([6], [9], [10]) where a quadric representation for Riemannian
product immersions is considered as a tensor product immersions (see also [13], [21]).
Acknowledgements. We wish to thank to the referee for their careful suggestions in order to
improve this article.
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