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1. Introduction

The quadric representation of a submanifold has become a very useful tool in certain classi-
fication problems of Riemannian submanifolds (s&le[[4], [5], [9] and [16]). In [13], in order
to classify constant mean curvature surfaces into non-flat pseudo-Riemannian space forms, we
brought the quadric representation into the realm of indefinite space forms. Recentlg] in [
and [14], the quadric representation has been also defined for product of pseudo-Riemannian sub-
manifolds and has been used to solve some open questions related with a Chen’s conjecture on
biharmonicity (see for instanc8]). The purpose of this paper is to present the quadric represen-
tation in the most general setting and then look for a classification of submanifolds such that the
mean curvature vector field of its quadric representation is proper for the Laplacian.

The reason for dealing with this condition is twofold. On one hand, viewing the quadric
representation as an isometric immersion, we pointed out that is a natural assumption in terms of
finite type submanifolds. On the other hand, the equafidh = AH has provided a source of
properties for indefinite submanifolds without counterparts for Riemannian submanifolds (see for
instance 2], [10], [11]). Furthermore, we know thah I = A\H allows to get 1-type and null
2-type submanifolds, as well as infinite-type submanifolds ($pe Here, in Part |, we provide
preliminary computations and examples which we need in Part Il. Sinces Parts | and Il represent
a whole, we also give in advance the main results of our work which are contained in Part Il. Our
main theorem gives a complete characterization of hypersurfaces whose quadric representation
satisfies the equatioh H = AH + (¢ — ¢o). As a consequence, in dealing with surfaces into
de Sitter and anti de Sitter worlds, we have got nice characterizations, among others, for minimal
B-scrolls and complex circles. A characterization of submanifolds whose quadric representation
satisfiesA H = \H is also given.

2. Basics

Let R™*2 be the pseudo-Euclidean space of dimension 2 with metric(, ) having a matrix,
with respect to the standard coordinate system, givetvby diaglei, ..., emt2|, Wheree; =
cov =gy = —landegy) = -+ = gpuye = 1. Let us denote bys A(m + 2, s) the space of
selfadjoint operators oR”*2, that is,SA(m + 2,s) = {P € gl(m + 2,R) : P!G = GP'}, P!
standing for the transpose Bf LetS™*!(r) andH™ ! (—r), » > 0, be the central hyperquadrics
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of R™+2 defined by

SetHr) = {z e R (z,2) =07,
HY' (1) = {z € RI™: (z,2) = -},

These hypersurfaces are of constant curvatyré and —1/r2, respectively. Without loss of
generality, assume that = 1. For short we will writed™ " (k), k = <1, to indicateS™+!(1)
or ™! (—1), according tdk = 1 or k = —1, respectively.

Let us consider the map : M "' (k) — SA(m + 2, ) defined byf(u) = uu'G, whereu
is regarded as a 1-column matrix. It is easy to see fhatan isometric immersion provided that

SA(m+2,s) is endowed, as usual, with the metfid®, Q) = %tr(PQ). Thenf is said to behe
second standard immersiaf Mm+1(k) into SA(m + 2, s). This map has been deeply studied in
the Riemannian case (see for instarige[[9] and [16]).

At any pointu € 17" (k), the normal space af"™ " (k) in SA(m + 2, s), at f(u), is

—m-+1

ThyM™ " (k) = {P € SA(m+2,s) : (P — AI)u = 0, for some\ € R},

I being the identity matrix. Thug(u) € TfL(u)]\Z/mH(k). The second fundamental forgnof f is
given by
F(X,Y) = (XY"+YXHG - 2k(X,Y) f(u),

for X, Y in 7,00 (k). Itis well known thatdZ™*" (k) is minimally immersed byf in a

pseudosphere or a pseudohyperbolic spacetiin + 2, s) centered atm’“TQI (see LI)).
Letx : M} — J\Z/m+1(k) C R™*2 be an isometric immersion and consider the new isometric

immersiony = fox, that will be calledthe quadric representatioof (M”, ). Let X(M?") be the
C°°(M )-module of smooth vector fields an
Define amapb : X(M)}) x X(M]}) — C>®(M]}; SA(m + 2,s)) by

P(X,Y) = (XY'+YXHG,

whereC>(M'; SA(m + 2, s)) is the algebra of differentiable functions frald, into SA(m +
2,s).

Then it is not difficult to see tha® is symmetric,C> (M )-bilinear and parallel, that is,
Vz(®(X,Y)) = ®(VzX,Y) + ®(X,VzY), V andV standing for the pseudo-Riemannian
connections o A(m + 2, s) andR™+2, respectively. The endomorphish{ X, Y') is character-
ized by®(X,Y)(2) = (Y, 2)X + (X, Z)Y.

Notice that, in the Riemannian case, this formula has a simple geometric meankgnid
Y is an orthonormal basis for a plafk then®(X,Y) is zero onlIt, and onII is a symmetry
sendingX toY andY to X.

Let @ and H denote the mean curvature vector fields associated to
x: M} — Mm+1(k) C R7™*2 andy, respectively. Then an easy computation shows that

~ _ 1
H=%(xz,H)+ —tro,
n

wheretr(®) = > " | &;®(E;, E;), {Ei}-, being a local orthonormal frame tangentifj’ and
E; = <E1,EZ>
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GivenZ € X(M"), define a maplz : X(M?) x X(M?) — C®(M?"; SA(m + 2,s)) by
Uz(X,Y)=®(X,VyZ).

In what followsA andA will denote the Laplacians associatedt@ndV, respectively. Then
we have the following

Lemma 2.1 With the above notations we have
o o _ 1~
AH = —n®(H,H) + ®(x,AH) + —A(tr &) — 2tr(V ).
n

Proof. Let p € M, and consider a local orthonormal frafig; }7_, such thatV g, E;(p) =0, V
being the pseudo-Riemannian connectiomadf. Then

zH(p) == Zgi%Ei%Eif{(p)'
=1
A straightforward computation yields
VEVEH{p) = ®VgE,H)(p)+ 0z, VE,VeH)(p)
_ 1~ ~
+ 2(1)(E’L: VEZH)(p) + EVEZVEZ (tr (b)(p)a
and then the lemma follows. N
Now we are going to give a complete description’dfir ®) by applying this endomorphism
onZ € X(M?) and¢ € X+ (M?) C %(Mm+1(/~c)). Letp € M and{E;}"_, be a local
orthonormal frame tangent /]’ such thatV g, E;(p) = 0. Then

n

A(tr®)(p) =2 e®(AE;, Ei)(p) — 2 &ig;9(Vg, Ei, Vi, Ei)(p),

i=1 ij
and so
Ruw®)(2)p) = 25 el (AL 2)E; + (2 )AL} )
=1
— 4Z€i8j <§EjEi, Z>(p)§Ej(p)Ei-
i,J
By using the Gauss and Weingarten formulae we find that

ijijW(p) = Zéi {(?EJ?E]W, E)E; + 2<§EjI/V, ?E]E»El
i=1
+ 2V, W, E)Vg, E; + 2(W,Vg, E)V, E;
+ (W, ijﬁEJEJEz + (W, Eﬁﬁ]gjvE]Ez} (p),

and then
AW (p) = (AW)(p) =2 eig;(V,W, Vi, Ei)Ei(p)
2%
—2Y i (Ve,W,E)V g Ei(p) — 2 _eig;(W, Vg, E)V g, Ei(p)

0,] ]

4 iai{a/v, AE;)E; + (W, E;) AE;} (p).
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At the pointp, this equation yields

Atr®)(By) = 4 eei{(Ve,Er, Vi, E)E; + (Vi B, E)V i, B}
1]
+2(AE)*
= Q(AEk)l +4 Z Ei€j<J(Ej, Ek>, J(Ej, Ez)>Eu
Y]
o being the second fundamental form/df? in R”*2. On the other hand, it is easy to see that

V' standing for the normal connectionbf? in R7+2. Write o (E;, Ey) = S0 " "2 6,(S, B}, E ),
where{{i, ..., &m—n+2}, Em—nt+2 = x, is a local orthonormal frame of normal vectorsitf’ in
R™2 5, = (€., &) andS, denotes the shape operator associatégl.tdhen

m—n+2
ZsiemEj,Ek),a(Ej,EmEi(p) = <Z &S?) (Ex)(p)

m—n+1
= < > 5r53+“> (Ek)(p)-

r=1

Therefore
_ _ m—n+1
A(tr ) (Eg)(p) = =20V, () H + 4 ( > 68+ k:I) (Ep)(p),
r=1
so that
_ B m—n—+1
A(tr®)(Z) = —2nVZH + 4 ( > 68t + kI) (2),
r=1

forall Z € X(M)}).
Similar computations lead to

A(tr ®)(x) = 4nH

and
m—n+1

A(tr@)(€) = —2ntr(Ug)(€) =4 Y 6, tr(S¢oS, )& + 4k tr(Se)z,

r=1

forany¢ € X+ (M?) C 36(]\?[’”“(@). From equations (3)—(5) we have
m—n+2
AH(Z) = 4 (sH + % > mf) (Z) —4V%H + (AH, Z)z, @)
r=1
. 4 m—n+1
AHE) = —4u(Pg)) =~ D o tx(SeoS)ér — 20(H,E)H
r=1
+ <2!<:n<H7 &)+ (AH,¢) + iktr(S@) x, (8)

AH(z) = kAT +2(n+2)H +2((AH,z) — k(n +2))z
+ k(AH)*, 9)
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H being the mean curvature vector fieldXaf? in 77" (k) and(AH)* the component o 7

normal toM;} in J\Zlm+1(l<;). Note that equations (7)—(9) completely characterize the endomor-
phismAH.
Itis also quite easy to see thel( Z) = (2/n)Z, H(¢) = (H, &)z andH (z) = kH — .

Finally we state the following useful result, just obtained in the Riemannian caSg in [

Lemma 2.2 Let {Ey,.. .lEmlJrl} be a local pseudo-orthonormal frame tangent]%m+1(k).
Then at every point € 7™ (k) we have

m+41
I=kf(x)+ ) &BEG.
=1

3. A 2-type equation for hypersurfaces: Examples
Throughout this section we shall deal with hypersurfatgs in ]\me+1(k). Let N be a unit

normal vector field taV/]* in Mm+1(l<:), S the shape operator associatedMcand « the mean
etr(S)
m

curvature function of\/)" in J\Z/m+1(k) defined bya = . The following formula forA /

can be found in§, Lemma 3],
AH =25(Va) + emaVa + (Aa + catr(S?) + kma)N — km(k + ea®)z,

wheres = (N, N).
Assume now that the quadric representatiosatisfies the equation

AH = XH + pu( — o)

for some real constants and u, g being a constant matrix. It is not difficult to see that a
hypersurface of finite type less than or equal to two satisfies (11). However, the converse does not
hold as we have pointed out ifh][

For convenience, we shall call = —upy and then equation (11) will be written down as
A=AH - )\H — wup. Then a straightforward computation from (7)—(10) yields the following
system of equations

AZ) = %5%2) +4aS(Z) + %(Qk(m 1) = N)Z

—4Z(a)N + (AH, Z)z, (12)
A(N) = —4eAa—2¢ (jz tr(S?) + ma2> N

+e(Va + (etr(S?) + (3m + 4)k — Na)z, (13)
Alz) = k(AH)" +k(Aa+ a(etr(S?) + (3m +4)k — \))N

—(2ema® + 4k(m + 1) — 2\ + kp)z. (14)

5



Arch. Math. (Basel) 68 (1997), 520-528

If we suppose that the mean curvatarés constant, then the above system reduces to

AZ) = %92(2) +4aS(Z) + %(Qk(m +1) = \)Z, (15)
A(N) = —2 <§Ltr(52) + ma2> N

+ (tr(S?) + (3m + 4)ek — eNax, (16)
A(z) = k(etr(S*) + (3m +4)k — N)aN

—(2ema® + 4k(m + 1) — 2\ + kp)z. 17)

Now we are going to give some examples where these equations can be checked out.

Example 3.1 Let M]* be a minimal hypersurface dﬂmﬂ(k) such that the shape operator veri-

fiesS? = al, a € R. Then one immediately checks that” satisfies equations (15)—(17) with
A=2(m+1)(k+eca), p=4ek(m+2)a

and
k

= —1I.
2] ma2

Example 3.2 (Generalized totally umbilical hypersurfacegt Mmﬂ(k) be either the anti De
Sitter spac&I?"*!(—1) or the De Sitter spac®” ' (1). Lety: I c R — M (k) c R™*2be a
null curve with a local pseudo-orthonormal frafé, B, 71, . .., Z,,—2, C'} tangent toMm’Ll(k)
along~ such that

(A,A) =(B,B) =0,(A,B) = —1,
and
i(s) = Als),
C(s) = —n(s)B(s),

—m—+1

for a certain function:(s) # 0. Thenthemap : I x R x R™~2 — M" " (k) c R™*2 given by

m—2
w(s,u,2) = f(2)1(s) +uB(s) + Y % Zi(s),  f(z) = V1-klz],
j=1

parametrizes a minimal Lorentzian hypersurface which is called a generalized totally umbilical
hypersurface (it is called B-scroll overy whenm = 2). It is easy to show tha¥/ (s, u) = C(s)
defines a unit normal vector field and the shape opefassociated toV verifiesS? = 0. The
example before says that this hypersurface satisfies\that 2k(m + 1)ﬁ .

Example 3.3 (Complex circle)etz : R? — H3(—1) be the map defined by
x(u,v) = (cosucosh v, sinu cosh v, sin u sinh v, — cos u sinh v).

Itis easy to see thatparametrizes a minimal Lorentzian surfacélif{ —1) that is called complex
circle (see 19).
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A unit normal vector field is given by
N(u,v) = (sinwusinh v, — cos u sinh v, — cos u cosh v, — sin u cosh v),
. . ) O0x Ox
and the shape operatSrassociated t@V has a matrix, relative to the usual ba |%, 0 [ of
u v

(0 1),

So we haves? = —I and, again from Example 3.1, the complex circle satisfies

form

_ N 1
AH = —12H + 16 (g0+4l> .

Example 3.4 (Non flat totally umbilical hypersurface#) non flat totally umbilical hypersurface
is given by cuttingl\7[m+1(k) by a hyperplane ilR”*+2. Without loss of generality we can choice
the hyperplané® with the latter coordinate being constant and giverfay— er2, ¢ = +1,r > 0.
ThenM!" can be described by the sy, vk — er?) : {y,y) = er?}, and therefore the quadric
representation has matrix of form

yy! Vk —er?y
Vk —er2yt  k—er?

(p:

Since
¢ 2¢(m+1)
Alyy') = — 5w G

Em
Ay = —5vy,
T

C being a constant matrix, we deduce thas of 2-type and so equatiohd = \H + w(p — o)
holds, for appropriata and.

Example 3.5 (Pseudo-Riemannian standard products)

Let MP(g1r1) x N™ P(eq9r9) be a pseudo-Riemannian product with + eor3 = k, where
MP(e1r1) and N™P(eqry) are pseudo-spheres or pseudo-hyperbolic spaces according:to
ore; = —1, respectively. Let: andy be the standard immersions bf?(¢;r;) and NP (gar2)
into the corresponding pseudo-Euclidean spﬁ{‘?ﬁ? anng”_p“, respectively. Them x y is
an isometric immersion a¥/?(e;7r1) x N™7P(earg) into Mmﬂ(k) whose quadric representation
o = (z x y)(x x y)!G has matrix of form

_ zxtGr zy'Go
S\ yr'Gr yy'Ga )

7
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G, andG, standing for the metrics oRL™! andR;"’p“, respectively. A straightforward com-
putation yields

2e1(p+1)

A(z2'Gy) = Tmthl — 2111,
i

T 72

€ ga(m —
A(ya'Gy) = (12p + 2(2p)> yz'Gy,

1 2

2e9(m—p+1
Ayy'Gy) = 2(742)3/3/502 = 2Im—py1.
2

ThereforeAH = \H + u(p — o) if and only if we only have two distinct eigenvalues. Hence
k = &1 = e9 and the radii are given by

2 p+1 2 m—p—i—l

a)r{ =——andr; = ————
()7"1 22 Ty m 2
b)r? = L2 apgp2 = P

m+ 2 m + 2 5
2 P 9 Mm—p+

C = and =
()7“1 ma2 T m 4+ 2
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