# On the Gauss map of $B$-scrolls 

Luis J. Alías, Angel Ferrández, Pascual Lucas and Miguel Angel Meroño<br>Tsukuba J. Math. 22 (1998), 371-377

(Partially supported by DGICYT grant PB94-0750 and Fundación Séneca COM-05/96 MAT)


#### Abstract

$B$-scrolls over null curves in the 3-dimensional Lorentz-Minkowski space $\mathbb{L}^{3}$ are characterized as the only ruled surfaces with null rulings whose Gauss map satisfies the condition $\Delta G=\Lambda G, \Lambda$ being and endomorphism of $\mathbb{L}^{3}$. This note completes the classification of such surfaces given by S.M. Choi in Tsukuba J. Math. 19 (1995), 285-304.


## 1. Introduction

Let $M$ be a connected surface in Euclidean 3-space $\mathbb{R}^{3}$ and let $G: M \rightarrow \mathbb{S}^{2} \subset \mathbb{R}^{3}$ be its Gauss map. It is well known (see [9]) that $M$ has constant mean curvature if and only if $\Delta G=\|d G\|^{2} G, \Delta$ being the Laplace operator on $M$ corresponding to the induced metric on $M$ from $\mathbb{R}^{3}$. As a special case one can consider Euclidean surfaces whose Gauss map is an eigenfunction of the Laplacian, i.e., $\Delta G=\lambda G, \lambda \in \mathbb{R}$. In [3], C. Baikoussis and D.E. Blair asked for ruled surfaces in $\mathbb{R}^{3}$ whose Gauss map satisfies $\Delta G=\Lambda G$, where $\Lambda$ stands for an endomorphism of $\mathbb{R}^{3}$. They showed that the only ones are planes and circular cylinders. Recently, S. M. Choi in [5], investigates the Lorentz version of the above result and she essentially obtains the same result. Namely, the only ruled surfaces in $\mathbb{L}^{3}$ whose Gauss map satisfies $\Delta G=\Lambda G$ are the planes $\mathbb{R}^{2}$ and $\mathbb{L}^{2}$, as well as the cylinders $\mathbb{S}_{1}^{1} \times \mathbb{R}^{1}, \mathbb{R}_{1}^{1} \times \mathbb{S}^{1}$ and $\mathbb{H}^{1} \times \mathbb{R}^{1}$.

It should be pointed out that all surfaces obtained above have diagonalizable shape operator. However, it is well known that a self-adjoint linear operator on a 2 -dimensional Lorentz vector space has a matrix of exactly three types, two of them being non-diagonalizable. This makes a chief difference with regard to the Riemannian submanifolds that has been greatly exploited (see, for example, [1], [2] and [7]). To illustrate the current situation, we bring here the famous example of L . K. Graves (see $[\mathbf{8}]$ ), the so called $B$-scroll. This is a surface which can be parametrized as a "ruled surface" in $\mathbb{L}^{3}$ with null directrix curve and null rulings, i.e., $X(s, t)=x(s)+t B(s), x(s)$ being a null curve and $B(s)$ a null vector field along $x(s)$ satisfying $\left\langle x^{\prime}, B\right\rangle=-1$.

The main purpose of this short note is to complete Choi's classification of ruled surfaces in $\mathbb{L}^{3}$ whose Gauss map satisfies the condition $\Delta G=\Lambda G$. Actually, we will show that $B$-scrolls over null curves are the only ruled surfaces in $\mathbb{L}^{3}$ with null rulings satisfying the above condition.

We would like to thank to the referee for bringing to our attention the preprint [6], where some related topics are considered.

## 2. Setup

Let $x: I \subset \mathbb{R} \rightarrow \mathbb{L}^{3}$ be a regular curve in $\mathbb{L}^{3}$ and $B: I \subset \mathbb{R} \rightarrow \mathbb{L}^{3}$ a vector field along $x$. Consider the ruled surface parametrized by $X(s, t)=x(s)+t B(s)$. Let us write down, as usually,
$X_{s}:=\partial X / \partial s=x^{\prime}+t B^{\prime}$ and $X_{t}:=\partial X / \partial t=B$. Observe that, at $t=0, X_{s}(s, 0)=x^{\prime}(s)$ and $X_{t}(s, 0)=B(s)$. Then $X(s, t)$ is a regular surface in $\mathbb{L}^{3}$ provided that the plane $\Pi=$ span $\left\{x^{\prime}, B\right\}$ is non degenerate in $\mathbb{L}^{3}$. In fact, the matrix of the metric of $X(s, t)$ is given by

$$
\mathbf{g}(s, t)=\left(\begin{array}{cc}
\left\langle x^{\prime}, x^{\prime}\right\rangle+2 t\left\langle x^{\prime}, B^{\prime}\right\rangle+t^{2}\left\langle B^{\prime}, B^{\prime}\right\rangle & \left\langle x^{\prime}, B\right\rangle+t\left\langle B^{\prime}, B\right\rangle \\
\left\langle x^{\prime}, B\right\rangle+t\left\langle B^{\prime}, B\right\rangle & \langle B, B\rangle
\end{array}\right)
$$

so that when the plane $\Pi$ is spacelike (repectively, timelike) $X(s, t)$ parametrizes a spacelike surface (repectively, timelike surface) on the domain

$$
\{(s, t) \in I \times \mathbb{R}: \operatorname{det} \mathbf{g}(s, t)>0 \quad \text { (respectively, } \operatorname{det} \mathbf{g}(s, t)<0)\}
$$

According to the causal character of $x^{\prime}$ and $B$, there are four possibilities:
(1) $x^{\prime}$ and $B$ are non-null and linearly independent.
(2) $x^{\prime}$ is null and $B$ is non-null with $\left\langle x^{\prime}, B\right\rangle \neq 0$.
(3) $x^{\prime}$ is non-null and $B$ is null with $\left\langle x^{\prime}, B\right\rangle \neq 0$.
(4) $x^{\prime}$ and $B$ are null with $\left\langle x^{\prime}, B\right\rangle \neq 0$.

Let us first see that, with an appropiate change of the curve $x$, cases (2) and (3) can be locally reduced to (1) and (4), respectively. Let $X(s, t)$ be in case (2). Reparametrizing the null curve $x$ and normalizing the rulings $B$ if necessary, we may assume that

$$
\langle B, B\rangle=\varepsilon= \pm 1, \quad \text { and } \quad\left\langle x^{\prime}, B\right\rangle=-1
$$

so that

$$
g(s, t)=\operatorname{det} \mathbf{g}(s, t)=\varepsilon\left(2 t\left\langle x^{\prime}, B^{\prime}\right\rangle+t^{2}\left\langle B^{\prime}, B^{\prime}\right\rangle\right)-1<0
$$

We are looking for a curve $\gamma(s)=x(s)+t(s) B(s)$ in the surface with $\left\langle\gamma^{\prime}, \gamma^{\prime}\right\rangle=\varepsilon$ and such that $\gamma^{\prime}$ and $B$ are linearly independent. Writing $\gamma^{\prime}=x^{\prime}+t^{\prime} B+t B^{\prime}$, the condition $\left\langle\gamma^{\prime}, \gamma^{\prime}\right\rangle=\varepsilon$ is equivalent to the following differential equation for $t=t(s)$

$$
\left(t^{\prime}\right)^{2}-2 \varepsilon t^{\prime}+g(s, t)=0
$$

From (1) the discriminant of (2) is positive and we can locally integrate (2) to obtain $t$. Besides, $\gamma^{\prime}$ and $B$ are linearly independent because $\left\langle\gamma^{\prime}, \gamma^{\prime}\right\rangle=\langle B, B\rangle=\varepsilon$ and $\left\langle\gamma^{\prime}, B\right\rangle=-1+t^{\prime} \varepsilon \neq \pm \varepsilon$ due to (2). This shows that $X(s, t)$ can be reparametrized as in case (1) taking $\gamma$ as the directrix curve. On the other hand, if $X(s, t)$ is in case (3), reparametrizing the null curve $x$ and normalizing the rulings $B$ if necessary, we may assume that

$$
\left\langle x^{\prime}, x^{\prime}\right\rangle=\varepsilon= \pm 1, \quad \text { and } \quad\left\langle x^{\prime}, B\right\rangle=-1
$$

We are now looking for a curve $\gamma(s)=x(s)+t(s) B(s)$ in the surface with $\left\langle\gamma^{\prime}, \gamma^{\prime}\right\rangle=0$ and $\left\langle\gamma^{\prime}, B\right\rangle \neq 0$ Writing $\gamma^{\prime}=x^{\prime}+t^{\prime} B+t B^{\prime}$, the condition $\left\langle\gamma^{\prime}, \gamma^{\prime}\right\rangle=0$ now becomes

$$
2 t^{\prime}=\varepsilon+2 t\left\langle x^{\prime}, B^{\prime}\right\rangle+t^{2}\left\langle B^{\prime}, B^{\prime}\right\rangle
$$

Equation (3) can be locally integrated to obtain $t$. Moroever, $\left\langle\gamma^{\prime}, B\right\rangle=\left\langle x^{\prime}, B\right\rangle \neq 0$. Thus, using the curve $\gamma$ as the directrix, $X(s, t)$ can be reparametrized as in case (4).

Since case (1) has been discussed in [5], we will pay attention to the latter one which we aim to characterize in terms of the Laplacian of its Gauss map. Therefore, let $M$ be a ruled surface in $\mathbb{L}^{3}$ parametrized by $X(s, t)=x(s)+t B(s)$, where the directrix $x(s)$, as well as the rulings $B(s)$,
are null. Furthermore, and without loss of generality, we may assume $\left\langle x^{\prime}, B\right\rangle=-1$. First of all, we will do a detailed study of this kind of surfaces.

The matrix of the metric on $M$ writes, with respect to coordinates ( $s, t$ ), as follows

$$
\left(\begin{array}{cc}
2 t\left\langle x^{\prime}, B^{\prime}\right\rangle+t^{2}\left\langle B^{\prime}, B^{\prime}\right\rangle & -1 \\
-1 & 0
\end{array}\right)
$$

In terms of local coordinates $\left(y_{1}, \ldots, y_{n}\right)$, the Laplacian $\Delta$ of a manifold is defined by (see [4, p. 100])

$$
\Delta=-\frac{1}{\sqrt{|g|}} \sum_{i, j} \frac{\partial}{\partial y_{i}}\left(g g^{i j} \frac{\partial}{\partial y_{j}}\right),
$$

where $g=\operatorname{det}\left(g_{i j}\right)$ and $\left(g_{i j}\right)$ denotes the components of the metric with respect to $\left(y_{1}, \ldots, y_{n}\right)$. Then the Laplacian on the surface $M$ is nothing but

$$
\Delta=-2 \frac{\partial^{2}}{\partial s \partial t}-2\left\{\left\langle x^{\prime}, B^{\prime}\right\rangle+t\left\langle B^{\prime}, B^{\prime}\right\rangle\right\} \frac{\partial}{\partial t}-\left\{2 t\left\langle x^{\prime}, B^{\prime}\right\rangle+t^{2}\left\langle B^{\prime}, B^{\prime}\right\rangle\right\} \frac{\partial^{2}}{\partial t^{2}}
$$

Now we will recall the notion of cross product in $\mathbb{L}^{3}$. There is a natural orientation in $\mathbb{L}^{3}$ defined as follows: an ordered basis $\{X, Y, Z\}$ in $\mathbb{L}^{3}$ is positively oriented if $\operatorname{det}[X Y Z]>0$, where $[X Y Z]$ is the matrix with $X, Y, Z$ as row vectors. Now let $\omega$ be the volume element on $\mathbb{L}^{3}$ defined by $\omega(X, Y, Z)=\operatorname{det}[X Y Z]$. Then given $X, Y \in \mathbb{L}^{3}$, the cross product $X \times Y$ is the unique vector in $\mathbb{L}^{3}$ such that $\langle X \times Y, Z\rangle=\omega(X, Y, Z)$, for any $Z \in \mathbb{L}^{3}$.

Then the Gauss map can be directly obtained from $X_{s} \times X_{t}$ getting

$$
G(s, t)=x^{\prime}(s) \times B(s)+t B^{\prime}(s) \times B(s) .
$$

By putting $C=x^{\prime} \times B$, then $\left\{x^{\prime}, B, C\right\}$ is a frame field along $x$ of $\mathbb{L}^{3}$. In this frame, we easily see that $B^{\prime} \times B=-f B, f$ being the function defined by $f=\left\langle x^{\prime}, B^{\prime} \times B\right\rangle$. Thus

$$
G(s, t)=-t f(s) B(s)+C(s) .
$$

Also, and for later use, we find out that

$$
B^{\prime}=-\left\langle x^{\prime}, B^{\prime}\right\rangle B-f C
$$

and

$$
C^{\prime}=-f x^{\prime}-\left\langle x^{\prime}, x^{\prime \prime} \times B\right\rangle B .
$$

As for the shape operator $S$ we have that

$$
G_{t}:=\frac{\partial G}{\partial t}=B^{\prime} \times B=-f B=-f X_{t}
$$

and

$$
G_{s}:=\frac{\partial G}{\partial s}=-\left(\left\langle x^{\prime}, x^{\prime \prime} \times B\right\rangle+t f^{\prime}\right) X_{t}-f X_{s} .
$$

So $S$ writes down as

$$
\left(\begin{array}{cc}
f & 0 \\
t f^{\prime}+\left\langle x^{\prime}, x^{\prime \prime} \times B\right\rangle & f
\end{array}\right) .
$$

A straightforward computation yields

$$
\Delta G=2\left\{f^{\prime}+t f\left\langle B^{\prime}, B^{\prime}\right\rangle\right\} B-2 f^{2} C
$$

We now present a very typical example.
Example. Let $x(s)$ be a null curve in $\mathbb{L}^{3}$ with Cartan frame $\{A, B, C\}$, i.e., $A, B, C$ are vector fields along $x$ in $\mathbb{L}^{3}$ satisfying the following conditions:

$$
\begin{gathered}
\langle A, A\rangle=\langle B, B\rangle=0, \quad\langle A, B\rangle=-1 \\
\langle A, C\rangle=\langle B, C\rangle=0, \quad\langle C, C\rangle=1
\end{gathered}
$$

and

$$
\begin{aligned}
x^{\prime} & =A \\
C^{\prime} & =-a A-\kappa(s) B
\end{aligned}
$$

$a$ being a constant and $\kappa(s)$ a function vanishing nowhere. Then the map

$$
\begin{aligned}
X: \mathbb{L}^{2} & \rightarrow \mathbb{L}^{3} \\
(s, t) & \rightarrow x(s)+t B(s)
\end{aligned}
$$

defines a Lorentz surface $M$ in $\mathbb{L}^{3}$ that L.K. Graves [8] called a $B$-scroll. It is not difficult to see that a unit normal vector field is given by

$$
G(s, t)=-a t B(s)+C(s)
$$

and the shape operator writes down, relative to the usual frame $\left\{\frac{\partial X}{\partial s}, \frac{\partial X}{\partial t}\right\}$, as

$$
S=\left(\begin{array}{ll}
a & 0 \\
k(s) & a
\end{array}\right)
$$

Thus the $B$-scroll has non-diagonalizable shape operator with minimal polynomial $P_{S}(u)=(u-$ $a)^{2}$. It has constant mean curvature $\alpha=a$ and constant Gaussian curvature $K=a^{2}$ and satisfies $\Delta G=\lambda G$, where $\lambda=2 a^{2}$.

## 3. Main results

It seems natural to state the following problem: is a B-scroll the only ruled surface in $\mathbb{L}^{3}$ with null rulings satisfying the equation $\Delta G=\Lambda G$ ?

Then our major result states as follows.
Theorem 3.1 B-scrolls over null curves are the only ruled surfaces in $\mathbb{L}^{3}$ with null rulings satisfying the equation $\Delta G=\Lambda G$.

From here and Choi's result we have got the complete classification of ruled surfaces in the 3-dimensional Lorentz-Minkowski space whose Gauss map satisfies $\Delta G=\Lambda G$.

Corollary 3.2 A ruled surface $M$ in $\mathbb{L}^{3}$ satisfies the equation $\Delta G=\Lambda G$ if and only if $M$ is one of the following surfaces:
(1) $\mathbb{R}^{2}, \mathbb{L}^{2}$ and the cylinders $\mathbb{S}_{1}^{1} \times \mathbb{R}^{1}, \mathbb{R}_{1}^{1} \times \mathbb{S}^{1}$ and $\mathbb{H}^{1} \times \mathbb{R}^{1}$;
(2) a $B$-scroll over a null curve.

Proof of the theorem. Suppose that the Gauss map of $M$ satisfies the equation $\Delta G=\Lambda G$. From Choi's result we may suppose that $M$ has null rulings, so we only have to study the case (4). We are going to show that the function $f=\left\langle x^{\prime}, B^{\prime} \times B\right\rangle$ is constant or, equivalently, that the open set $\mathcal{U}=\left\{s \in I: f(s) f^{\prime}(s) \neq 0\right\}$ is empty. Otherwise, for $s \in \mathcal{U}$, differentiating with respect to $t$ in $\Delta G=\Lambda G$, we have

$$
2 f\left\langle B^{\prime}, B^{\prime}\right\rangle B=-f \Lambda B
$$

where we have used equations (4), (7) and (9). By (5) we obtain $\left\langle B^{\prime}, B^{\prime}\right\rangle=f^{2}$, so that from (10) we see that $-2 f^{2}$ is an eigenvalue of $\Lambda$, unless $f=0$. Then $f$ is a constant function, which is a contradiction that finishes the proof.

## Bibliography

[1] L. J. Alías, A. Ferrández and P. Lucas. 2-type surfaces in $\mathbb{S}_{1}^{3}$ and $\mathbb{H}_{1}^{3}$. Tokyo J. Math., 17 (1994), 447-454.
[2] L. J. Alías, A. Ferrández and P. Lucas. Hypersurfaces in the non-flat Lorentzian space forms with a characteristic eigenvector field. J. of Geometry, 52 (1995), 10-24.
[3] C. Baikoussis and D. E. Blair. On the Gauss map of ruled surfaces. Glasgow Math. J., 34 (1992), 355-359.
[4] B. Y. Chen. Total Mean Curvature and Submanifolds of Finite Type, volume 1 of Series in Pure Math. World Scientific, Singapur, 1984.
[5] S. M. Choi. On the Gauss map of ruled surfaces in a 3-dimensional Minkowski space. Tsukuba J. Math., 19 (1995), 285-304.
[6] S. M. Choi, U. H. Ki and Y. J. Suh. On the Gauss map of null scrolls. Preprint, 1997.
[7] A. Ferrández and P. Lucas. On surfaces in the 3-dimensional Lorentz-Minkowski space. Pacific J. Math., 152 (1992), 93-100.
[8] L. Graves. Codimension one isometric immersions between Lorentz spaces. Trans. A.M.S., 252 (1979), 367-392.
[9] E. A. Ruh and J. Vilms. The tension field of the Gauss map. Trans. Amer. Math. Soc., 149 (1970), 569-573.

