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Abstract

B-scrolls over null curves in the 3-dimensional Lorentz-Minkowski sgat@re character-

ized as the only ruled surfaces with null rulings whose Gauss map satisfies the condition
AG = AG, A being and endomorphism &f. This note completes the classification of such
surfaces given by S.M. Choi in Tsukuba J. MatB.(1995), 285—-304.

1. Introduction

Let M be a connected surface in Euclidean 3-spRéeand letG : M — S? C R? be
its Gauss map. It is well known (se@]) that M has constant mean curvature if and only if
AG = ||dG||*G, A being the Laplace operator avf corresponding to the induced metric on
M from R3. As a special case one can consider Euclidean surfaces whose Gauss map is an
eigenfunction of the Laplacian, i.eAG = AG, A € R. In[3], C. Baikoussis and D.E. Blair
asked for ruled surfaces iR® whose Gauss map satisfiesi = AG, whereA stands for an
endomorphism oR3. They showed that the only ones are planes and circular cylinders. Recently,
S. M. Choi in B, investigates the Lorentz version of the above result and she essentially obtains
the same result. Namely, the only ruled surfacesiwhose Gauss map satisfid€y = AG are
the plane®R? andLL?, as well as the cylinde$! x R!, R} x St andH! x R!.

It should be pointed out that all surfaces obtained above have diagonalizable shape operator.
However, it is well known that a self-adjoint linear operator on a 2-dimensional Lorentz vector
space has a matrix of exactly three types, two of them being non-diagonalizable. This makes a
chief difference with regard to the Riemannian submanifolds that has been greatly exploited (see,
for example, 1], [2] and [7]). To illustrate the current situation, we bring here the famous example
of L. K. Graves (seeq]), the so calledB-scroll. This is a surface which can be parametrized as a
“ruled surface” inl.? with null directrix curve and null rulings, i.eX (s, t) = x(s) + tB(s), 2(s)
being a null curve and(s) a null vector field along:(s) satisfying(x’, B) = —1.

The main purpose of this short note is to complete Choi’s classification of ruled surfdces in
whose Gauss map satisfies the conditto@ = AG. Actually, we will show thatB-scrolls over
null curves are the only ruled surfacedlif with null rulings satisfying the above condition.

We would like to thank to the referee for bringing to our attention the pre@jnihere some
related topics are considered.

2. Setup

Letx : I ¢ R — L3 be a regular curve if® andB : I ¢ R — L3 a vector field along:.
Consider the ruled surface parametrized¥ls, t) = z(s)+tB(s). Let us write down, as usually,
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X, :=0X/0s =2’ +tB"andX, := 0X /0t = B. Observe that, at= 0, X,(s,0) = 2/(s) and
X:(s,0) = B(s). ThenX (s, t) is a regular surface ih? provided that the pland =span{z’, B}
is non degenerate ih3. In fact, the matrix of the metric ok (s, t) is given by

({2, 2)+ 22, By +t*(B,B') (a/,B)+t(B',B)
Blst) = < (', B) + t(B', B) (B, B) )

so that when the planH is spacelike (repectively, timelikeX (s,t) parametrizes a spacelike
surface (repectively, timelike surface) on the domain

{(s,t) € I x R:det g(s,t) >0 (respectively, det g(s,t) <0)}.

According to the causal charactersdfand B, there are four possibilities:

(1) ' and B are non-null and linearly independent.

(2) ' is null andB is non-null with(z’, B) # 0.

(3) 2" is non-null andB is null with (2’, B) # 0.

(4) 2’ and B are null with {2/, B) # 0.

Let us first see that, with an appropiate change of the cureases (2) and (3) can be locally
reduced to (1) and (4), respectively. LE(s, t) be in case (2). Reparametrizing the null cusve
and normalizing the ruling® if necessary, we may assume that

(B,B)=¢ =41, and (2/,B)=-1,

so that
g(s,t) = det g(s,t) = e(2t{z’, B') + t*(B', B')) — 1 < 0.

We are looking for a curve(s) = x(s) + t(s)B(s) in the surface with+’,7') = ¢ and such that
v and B are linearly independent. Writing = 2’/ + ¢'B + ¢tB’, the condition(y',+') = ¢ is
equivalent to the following differential equation for ¢(s)

(t")? — 2et’ + g(s,t) = 0.

From (1) the discriminant of (2) is positive and we can locally integrate (2) to oht&asides;’
andB are linearly independent becausé, ') = (B, B) = ¢ and(y/, B) = —1 4 t'e # +¢ due
to (2). This shows thak (s, t) can be reparametrized as in case (1) takirag the directrix curve.
On the other hand, i (s, t) is in case (3), reparametrizing the null cusv@nd normalizing the
rulings B if necessary, we may assume that

(',2'y =e =41, and (z/,B)=—1.

We are now looking for a curve(s) = z(s) + t(s)B(s) in the surface with(y’,~') = 0 and
(v, B) # 0 Writing v/ = 2’ + t'B + tB’, the condition(+’, ') = 0 now becomes

2t = ¢+ 2t(z’, B') + t*(B', B').

Equation (3) can be locally integrated to obtairMoroever,(v/, B) = (2/, B) # 0. Thus, using
the curvey as the directrix X (s, t) can be reparametrized as in case (4).

Since case (1) has been discussedjne will pay attention to the latter one which we aim
to characterize in terms of the Laplacian of its Gauss map. Therefor¥, ket a ruled surface in
L3 parametrized byX (s, ) = z(s) +tB(s), where the directrix(s), as well as the ruling8(s),
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are null. Furthermore, and without loss of generality, we may assem®) = —1. First of all,
we will do a detailed study of this kind of surfaces.
The matrix of the metric od/ writes, with respect to coordinates, ¢), as follows

< 2t(z', B"Y +t*(B',B") -1 )
—1 0 )

In terms of local coordinatgg, . . . , y, ), the Laplaciam\ of a manifold is defined by (sed,[

p. 100])
0
A =
\/g Z Iyi <gg 8%)

whereg = det(g;;) and(g;;) denotes the components of the metric with respe¢y{o. . ., y,).
Then the Laplacian on the surfagé is nothing but

32

a2’

s Y, 'y O It 2, n !
A= 2m—2{<:E,B>+t<B,B>}§—{2t<x,B>+t<B,B>}

Now we will recall the notion of cross product I>. There is a natural orientation i
defined as follows: an ordered bagix,Y, Z} in L3 is positively oriented if déXY Z] > 0,
where[ XY Z] is the matrix withX, Y, Z as row vectors. Now lebt be the volume element on
L3 defined byw(X,Y, Z) = det[XY Z]. Then givenX, Y € L3, the cross produck x Y is the
unique vector i3 such that X x Y, Z) = w(X,Y, Z), forany Z € IL3.

Then the Gauss map can be directly obtained ffomx X; getting

G(s,t) = 2'(s) x B(s) +tB'(s) x B(s).

By puttingC' = 2’ x B, then{z’, B, C} is a frame field along: of L3. In this frame, we easily
see thaB’ x B = —fB, f being the function defined by = (2’, B’ x B). Thus

G(s,t) = —tf(s)B(s) + C(s).
Also, and for later use, we find out that
B' = —(z',BYB - fC
and
= —f2' — (2',2" x B)B.
As for the shape operatétrwe have that

oG

Gt:za

=B xB=-fB=—fX,

and

Gs = oG _ —((2', 2" x B) +tf) Xy — fXs.

5 =

f 0
( tf'+ (&',2" x B) f >

3

So S writes down as
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A straightforward computation yields
AG =2{f' +tf(B',B")}B —2fC.

We now present a very typical example.
Example.Let z(s) be a null curve irl.? with Cartan frame( A, B, C}, i.e., A, B, C are vector
fields alongz in L3 satisfying the following conditions:

(A;A) =(B,B)=0, (A,B)=-1,
<A?C>:<B¢C>:O> <C,C>:1,
and
= A,
C' = —aA-k(s)B,
a being a constant and(s) a function vanishing nowhere. Then the map
X:L2 - L?
(s,t) — x(s)+tB(s)

defines a Lorentz surface in L3 that L.K. Graves §] called aB-scroll. It is not difficult to see
that a unit normal vector field is given by

G(s,t) = —atB(s) + C(s),

: . 0X 0X
and the shape operator writes down, relative to the usual f &lge, , as
S

ot
a 0
5= ( k(s) a > '
Thus theB-scroll has non-diagonalizable shape operator with minimal polynafRial) = (u —

a)?. It has constant mean curvature= a and constant Gaussian curvatfe= o and satisfies
AG = \G, where) = 2a2.

3. Main results

It seems natural to state the following problema B-scroll the only ruled surface ih? with
null rulings satisfying the equatioAG = AG?
Then our major result states as follows.

Theorem 3.1 B-scrolls over null curves are the only ruled surfaced.ihwith null rulings satis-
fying the equatiol\G = AG.

From here and Choi’s result we have got the complete classification of ruled surfaces in the
3-dimensional Lorentz-Minkowski space whose Gauss map satisties: AG.
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Corollary 3.2 A ruled surfacel in L? satisfies the equatioAG = AG if and only if M is one
of the following surfaces:

(1) R?,1L? and the cylinders! x R!, R} x St andH! x RY;

(2) a B-scroll over a null curve.

Proof of the theoremSuppose that the Gauss map\dfsatisfies the equatichG = AG. From
Choi’s result we may suppose that has null rulings, so we only have to study the case (4). We
are going to show that the functigh= (z’, B’ x B) is constant or, equivalently, that the open set
U={sel: f(s)f'(s) # 0} is empty. Otherwise, fos € U, differentiating with respect toin
AG = AG, we have

2f(B',B'YB = —fAB,

where we have used equations (4), (7) and (9). By (5) we obf2linB’) = f2, so that from (10)
we see that-22 is an eigenvalue of, unlessf = 0. Thenf is a constant function, which is a
contradiction that finishes the proof.
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