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Abstract

We first show that the geometries of a hypersurface seen either as a lightlike hypersurface
or as a Riemannian one are closely related. Furthermore, the Bernstein theorem for lightlike
hypersurfaces is proved.

1. Introduction

As it is well known, the main difference between the geometry of submanifolds in Riemannian
manifolds and in semi-Riemannian manifolds is that in the latter case the induced metric tensor
field by the semi-Riemannian metric on the ambient space is not necessarily non-degenerate. If
the induced metric tensor field is degenerate the classical theory of Riemannian submanifolds fails
since the normal bundle and the tangent bundle of the submanifold have a non-zero intersection.

The main purpose of the present paper is to show that the geometry of a lightlike (degenerate,
null) hypersurfacél/ in a semi-Euclidean spa@®”*?2 can be investigated by using the geometry
of M as a Riemannian hypersurface in a Euclidean s%&é? In the first section we present
the main tools in studying the geometry of a lightlike hypersurface: the screen distribution and
the lightlike transversal vector bundle (s&& for details). Then, in Section 2, we show that the
canonical lightlike transversal vector bundle of a lightlike immersion is just the normal bundle of a
Riemannian immersion. This enables us, in Section 3, to prove the Bernstein theorem for lightlike
hypersurfaces of Lorentz spaces.

Much of this work was done while the first author was visiting the Department of Mathematics
at Universidad de Murcia. He is very grateful to the differential geometry group for their kind
invitation and hospitality.

2. Preliminaries

Let (]TI, g) be a semi-Riemannian manifold (sé8)[ whereg is a semi-Riemannian metric
of index0 < v < dim(ﬂ). Consider a hypersurfackl of M and denote by the induced
tensor field byg on M. Then we say that/ is alightlike (degenerate, null) hypersurfadaank
g = dim(M) — 1. In order to get another characterization for a lightlike hypersurface we consider

.M+ = Ve € TmM 0 g(Va,Ye) =0, VY, € T, M}

and
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TM* = U T,M*.
zeM
Then itis easy to see thaf is a lightlike hypersurface if and only A/ * is a distribution on\/.
Next we consider acreen distributior’T" M on M, which is a complementary non-degenerate
vector bundle t&'M+ in TM. AsT M+ lies in the tangent bundle, the following theorem has an
important role in studying the geometry of a lightlike hypersurface.

Theorem 2.1 (Bejancu B]) Let (M, ST M) be a lightlike hypersurface qﬂW, g). Then there
exists a unique vector bundie(7' M) of rank 1 overM, such that for any non-zero sectigrof
TM+ on a coordinate neighborhhad ¢ M, there exists a unique sectiovi of t(TM) on U
satisfying
E(N7 5) =1
and
g(N,N) =g(N,W) =0, VW eI(STMy).

By this theorem we may write down the decomposition
TMy = TM & tr(TM),

which enables us to call-(7'M ) thelightlike transversal vector bundief M/ with respect to the
screen distributiosT' M.

Here and in the sequel we denotelby#) the (M )-module of smooth sections of a vector
bundle E over M, F(M) being the algebra of smooth functions 8f. Also by | and® we
denote the orthogonal and non-orthogonal direct sum of two vector bundles.

In order to get an expression f&f, we consider the orthogonal decomposition

TMy = STM L STM™,

whereST M is the orthogonal complementary vector bundl&)/ in TJ\7|M. AsTM*isa
vector subbundle a§7' M+ we take a complementary vector buntef TM* in STM* and a
non-zeroV € I'(V ). Theng(V;§) # 0 onU, otherwiseST M+ would be degenerate at a point
of U. Finally, the vector fieldV from Theorem 2.1 is given by
1 g(V, V)
V=gl Hmg)

The whole study of geometry of the lightlike hypersurfddes based on both the screen dis-

tribution and the lightlike transversal vector bundle. In case the ambient space is a semi-Euclidean

space it is constructed irl] a canonical screen distribution that induces a canonical lightlike
transversal vector bundle. These vector bundles will play an important role in the rest of the paper.

3. The geometry of a lightlike hypersurface inR™ "2 via its geometry
in Rgl+2

It is the purpose of this section to show that the canonical lightlike transversal vector bundle
of a lightlike hypersurfacé/ in R7*2 is just the usual normal bundle 8f as Riemannian hy-
persurface of the Euclidean spd@?”. As a consequence, we derive the interrelations between
the geometric objects induced by the lightlike immersion and the Riemannian immersion.
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Let R7+2 = (R™*2 g..) andR]"™? = (R™*2 5.) be the(m + 2)-dimensional semi-
Euclidean space and Euclidean space, wiggreandg,, stand for the semi-Euclidean metric of
index0 < v < m + 2 and the Euclidean metric given by

m+1

Jen (%, Y) ZﬂflylﬂLny,

and
m+1

=3 oty

A=0
Consider a hypersurfade of R"*2 given by the quation
F(x07 e ’xm—"_l) = 07

whereF is smooth on an open s&t ¢ R™"2 andrank|F},
normal bundle of\/ with respect tgj,, is spanned by

F ] = 1on M. Then the

205"

- m+1

£=V Z:ﬂaz—i_ZF;“aa’

1=0

where, as usuaV  , F' stands for the gradient df with respect tg,, .
Thus M is a lightlike hypersurface if and only & is a null vector field with respect t@,,,.
Hence we may state the following

Theorem 3.1 M is a lightlike hypersurface if and only I is a solution of the partial differential
eguation

v—1 m+1
D (FL)?P =) (Fra)®.
1=0 a=v

In order to obtain both the canonical transversal vector bundle and the canonical screen distri-
bution, we consider alongy/ the vector field

V= ZF’la -,

and note that’ is nowhere tangent td/ since

v—1

Ge (V&) =D (FL)* #0

1=0

on M. Then applying (1) we obtain that the canonical lightlike transversal vector bur(@lé/)
is spanned by

1 v—1 m+1
N =g (Z(F;iﬁ) Z F’A

1=0
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Next we denote by, the unit normal vector field oA/ with respect to the Euclidean metric
Js- Then due to (4) and (5) we deduce

N =¢e(x)No,  e(z) = \}5 (Z_:(F;if)

This enables us to state

Proposition 3.2 The canonical lightlike transversal vector bundle of the lightlike hypersurfdce
in R™*2 is just the normal vector bundle af as Riemannian hypersurface[@@”“.

Taking into account that the canonical screen distribu$i®i/ is complementary orthogonal
to span{N, ¢}, (see 1], [2]) we get that in case > 1, ST M is locally spanned in a coordinate
neighborhood/ C M by

0 0 .
WZ:F:;()%—F;Zw, ZG{l,"‘,V—l},
0 0
Wa:F;‘erl%_FJIJGW’ CZE{I/’-..’m}’

provided thatF’, # 0 andF .., #0onU.

In general,ST' M is not integrable. Indeed, the canonical screen distribution on the lightlike
hypersurface\/ in R defined by

2 + %(xl +a2?)?2 —2® =0

is not integrable (se€?]). However, we shall prove thaf7'M is the orthogonal sum of two
integrable distributions. To this end we consider another coordinate neighbdrtfood) such
thatU NU* # (). ThenST M is spanned of/* by vector fields{ W, W}, constructed as in (7)
and (8) provided one of the partial derivatives from each gfddp} and{ 7. } is non-zero o/ *.
By direct computations we obtaigpan{W;} = span{W;} andspan{W;} = span{W,} on
U NU*. Hence we obtain two complementary distributigiiEN/ ~ and ST M locally spanned
onU by {W;} and{W,}, respectively. Also we note th&7' M/~ andSTM™ are timelike and
spacelike orthogonal vector subbundlesSafA/ with respect to the semi-Euclidean metiig, ,
respectively. Moreover, we prove

Proposition 3.3 Both distributionsST M~ and STM ™ on a lightlike hypersurfacé/ in R™+2
are integrable.

Proof. By using (7) we obtain

“oxt T Qg
Then by direct calculations using again (7) and (9) we deduce that
(Wi, Wil = (Fyogo Fys (Flo) ™ = Flogs) Wi + (Fiogi = Frogo Fri(Fpo) ™) W

which proves thatT'M ~ is integrable. In a similar way it follows th&T M T is integrable too.
In particular, if the ambient space is the Lorentz spage? we haveSTM = STM™* and
from Proposition 3.3 we deduce that
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Corollary 3.4 ([1]) Let M be a lightlike hypersurface of a Lorentz spd&fé“. Then the canon-
ical screen distributior57T'M is integrable.

Due to Proposition 3.2 we shall write down some useful relations between the geometric ob-
jects induced by both the lightlike and Riemannian immersiod/fin R™+2. Let V be the
Levi-Civita connection orR™*2 with respect to both metricg,, andg,. Then taking into ac-
count (6) we obtain that the Gauss and Weingarten equations for the lightlike immergitinof
R™+2 are given by (se€?))

VxY =VxY 4+ B(X,Y)N = VxY +eB(X,Y)N,, VX,Y € T(TM)

and
VxN = —AnX + 7(X)N = —AxX +e7(X)Ny, VX € D(TM),

respectively. Here, as usual, we denotéhy3 and Ay the induced linear connection, the second
fundamental form and the shape operator of the lightlike immersion. The lightlike transversal
1-form 7 is specific to the lightlike immersion. By using (10), (11) and (6) we get

Bo(X,Y)=eB(X,Y), VX,Y eI(TM)

and
ANX = eAn, X, 7(X) = X(loge), VX e T'(TM),

where By and Ay, are the second fundamental form and the shape operator of the Riemannian
immersion of M in R{"*2. Finally, we note that both immersions 8f in R7*2 and inR{"*?

induce the same linear connecti®hon M, namely, the Levi-Civita connection with respect to

the Riemannian metric induced gy on M.

4. The Bernstein theorem for lightlike hypersurfaces of a Lorentz
space

Bernstein's Theorem, which states that the only entire minimal surfadsare planes, is one
of the most striking theorems in global geometry. In a famous paye€heng and Yau proved
that the Bernstein Theorem holds good for maximal spacelike hypersurfaces of a Lorentz space.
It is well known that such a result does not hold for entire timelike surfaces in the Minkowski
3-spaceR?. A few years later T.K. Milnor§] presented a generalization of the Hilbert-Holmgren
theorem and used it to discuss the indefinite Bernstein problem and prove a conformal analog of
Bernstein’s Theorem for timelike surfacesl. In [5] Magid gave one version of a solution to
the indefinite Bernstein problem. Actually he looked at entire timelike surfadg$ which have
zero mean curvature and showed that such a graph over a timelike or spacelike plane is a global
translation surface. It is the purpose of the present section to prove the Bernstein Theorem for
lightlike hypersurfaces with vanishing lightlike mean curvature in Lorentz spaces.

Let M be a hypersurface of the Lorentz sp&;@” given by equation (2). Then according to
Theorem 3.1M is a lightlike hypersurface if and only if

m—+1

(Flo)? = 3 (Flu)®

a=1
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Asrank[F,,---, F!,...] = 1 on M, we deduce thak”, is nowhere zero oi/. Hence we may
state the following

Proposition 4.1 A connected lightlike hypersurfadé ofIRi’f“rl given by (2) is globally expressed
by a Monge equation

1,0 = f(fl'l, e ’.,L,m-i-l),
wheref is a smooth function on a domaih ¢ R™*+! such that

m+1

> (fr)? =1.
a=1

Sinceg,,, becomes now a Lorentz metric, i.e., it has index 1, we shall denote it by, . In
the next proposition we find the iterrelation betweerandg, on M.

Proposition 4.2 Let (M, ST M) be a lightlike hypersurface of the Lorentz spd&”, where
ST M is the canonical screen distribution dif. Supposd V7, -- -, V,,,} is an orthonormal basis
of I'(ST M) with respect tay, . Then{1y, V1,---,V,,} is an orthonormal field of frames o/
with respect tgj,,, where we set

N

Vo = (9:(6,6))"
Proof. By using (3), (8) and (13) we get

) m+1 ) 9
€= gt 2 g

=1

£.

and
0 , 0

el
Wa - fa;erl@ - fzaW7

aec{l,---,m}.
Then by direct calculations we obtain
fng(Wa,f):gL(Wa,f):O, Vae{l,--- 7m}
and
gE(WGAWb) :gL(Wa7Wb)7 vaabe {17 7m}7

which prove the assertion of the proposition.
As B(£,€) = 0 (see B]), we define thdightlike mean curvaturef M by

a, = iB(Va, V),

a=1

where{V1,--- ,V,,} is an orthonormal basis af(ST'M). It is easy to show that, does not
depend on both the screen distribution and the orthonormal basis, By shall denote the mean
curvature of the Riemannian immersion/af in ]R{g””. Then by using (15), (12) and Proposition
4.2 we deduce

“ 1 & 1
a = Bo(Vo, Vo) + > Bo(Va, Va) = 7 > B(Va,Va) = o
a=1

a=1

since from (6) and (13) we have= % Due to (16) we may state the following important result
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Theorem 4.3 Let M be a lightlike hypersurface of the Lorentz spd?ﬁl@”. ThenM has zero
lightlike mean curvature if and only ¥/ is a minimal hypersurface of the Euclidean sp&é@“.
We now examine the partial differential equation

1
AR fla

a ~
a=1 L+ [V P

=0,

whose solutions give all minimal hypersurfaces (13) of the Euclidean ﬁﬁﬁé@.
In 1914 Bernstein proved a theorem that states thatifex 2 the only entire solution of (17)
is linear. For the higher dimensional version of Bernstein’s Theorem we need the following result

Theorem 4.4 (Bompieri-Giusti B]) Let f be aC> solution of the minimal hypersurface equation
(17) inR™*! such thatm partial derivativesf.. are uniformly bounded ilR™*1. Thenf must
be linear.

For spacelike hypersurfaces ]Bt”“ the Bernstein Theorem was proved by Cheng and Yau
[4]. By combining Theorems 4.3 and 4.4, and using (14), we obtain the following result on
Bernstein's Theorem for lightlike hypersurfaces

Theorem 4.5 Let M be a lightlike hypersurface di{”“ given by (13), wher¢g is defined on
R™ L If M has zero lightlike mean curvature thgnmust be linear, and thu/ is a lightlike
hyperplane oR}*2.
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