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Abstract

We first show that the geometries of a hypersurface seen either as a lightlike hypersurface
or as a Riemannian one are closely related. Furthermore, the Bernstein theorem for lightlike
hypersurfaces is proved.

1. Introduction

As it is well known, the main difference between the geometry of submanifolds in Riemannian
manifolds and in semi-Riemannian manifolds is that in the latter case the induced metric tensor
field by the semi-Riemannian metric on the ambient space is not necessarily non-degenerate. If
the induced metric tensor field is degenerate the classical theory of Riemannian submanifolds fails
since the normal bundle and the tangent bundle of the submanifold have a non-zero intersection.

The main purpose of the present paper is to show that the geometry of a lightlike (degenerate,
null) hypersurfaceM in a semi-Euclidean spaceRm+2

ν can be investigated by using the geometry
of M as a Riemannian hypersurface in a Euclidean spaceRm+2

0 . In the first section we present
the main tools in studying the geometry of a lightlike hypersurface: the screen distribution and
the lightlike transversal vector bundle (see [2] for details). Then, in Section 2, we show that the
canonical lightlike transversal vector bundle of a lightlike immersion is just the normal bundle of a
Riemannian immersion. This enables us, in Section 3, to prove the Bernstein theorem for lightlike
hypersurfaces of Lorentz spaces.

Much of this work was done while the first author was visiting the Department of Mathematics
at Universidad de Murcia. He is very grateful to the differential geometry group for their kind
invitation and hospitality.

2. Preliminaries

Let (M̃, g̃) be a semi-Riemannian manifold (see [7]), whereg̃ is a semi-Riemannian metric
of index 0 < ν < dim(M̃). Consider a hypersurfaceM of M̃ and denote byg the induced
tensor field bỹg on M . Then we say thatM is a lightlike (degenerate, null) hypersurfaceif rank
g = dim(M)−1. In order to get another characterization for a lightlike hypersurface we consider

TxM⊥ = {Vx ∈ TxM̃ : g̃(Vx, Yx) = 0 , ∀Yx ∈ TxM}
and
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TM⊥ =
⋃

x∈M

TxM⊥.

Then it is easy to see thatM is a lightlike hypersurface if and only ifTM⊥ is a distribution onM .
Next we consider ascreen distributionSTM onM , which is a complementary non-degenerate

vector bundle toTM⊥ in TM . As TM⊥ lies in the tangent bundle, the following theorem has an
important role in studying the geometry of a lightlike hypersurface.

Theorem 2.1 (Bejancu [2]) Let (M,STM) be a lightlike hypersurface of(M̃, g̃). Then there
exists a unique vector bundletr(TM) of rank 1 overM , such that for any non-zero sectionξ of
TM⊥ on a coordinate neighborhhodU ⊂ M , there exists a unique sectionN of tr(TM) on U
satisfying

g̃(N, ξ) = 1

and
g̃(N,N) = g̃(N,W ) = 0, ∀W ∈ Γ(STM|U ).

By this theorem we may write down the decomposition

TM̃ |M = TM ⊕ tr(TM),

which enables us to calltr(TM) the lightlike transversal vector bundleof M with respect to the
screen distributionSTM .

Here and in the sequel we denote byΓ(E) theF(M)-module of smooth sections of a vector
bundleE over M , F(M) being the algebra of smooth functions onM . Also by⊥ and⊕ we
denote the orthogonal and non-orthogonal direct sum of two vector bundles.

In order to get an expression forN , we consider the orthogonal decomposition

TM̃ |M = STM ⊥ STM⊥,

whereSTM⊥ is the orthogonal complementary vector bundle toSTM in TM̃ |M . As TM⊥ is a
vector subbundle ofSTM⊥ we take a complementary vector bundleV of TM⊥ in STM⊥ and a
non-zeroV ∈ Γ(V|U ). Theng̃(V, ξ) 6= 0 onU , otherwiseSTM⊥ would be degenerate at a point
of U . Finally, the vector fieldN from Theorem 2.1 is given by

N =
1

g̃(V, ξ)

{
V − g̃(V, V )

2g̃(V, ξ)
ξ

}
.

The whole study of geometry of the lightlike hypersurfaceM is based on both the screen dis-
tribution and the lightlike transversal vector bundle. In case the ambient space is a semi-Euclidean
space it is constructed in [1] a canonical screen distribution that induces a canonical lightlike
transversal vector bundle. These vector bundles will play an important role in the rest of the paper.

3. The geometry of a lightlike hypersurface inRm+2
ν via its geometry

in Rm+2
0

It is the purpose of this section to show that the canonical lightlike transversal vector bundle
of a lightlike hypersurfaceM in Rm+2

ν is just the usual normal bundle ofM as Riemannian hy-
persurface of the Euclidean spaceRm+2

0 . As a consequence, we derive the interrelations between
the geometric objects induced by the lightlike immersion and the Riemannian immersion.
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Let Rm+2
ν = (Rm+2, g̃SE) andRm+2

0 = (Rm+2, g̃E) be the(m + 2)-dimensional semi-
Euclidean space and Euclidean space, whereg̃SE and g̃E stand for the semi-Euclidean metric of
index0 < ν < m + 2 and the Euclidean metric given by

g̃SE(x, y) = −
ν−1∑

i=0

xiyi +
m+1∑
a=ν

xaya,

and

g̃E(x, y) =
m+1∑

A=0

xAyA.

Consider a hypersurfaceM of Rm+2 given by the quation

F (xo, · · · , xm+1) = 0,

whereF is smooth on an open setΩ ⊂ Rm+2 andrank[F ′
xo , · · · , F ′

xm+1 ] = 1 on M . Then the
normal bundle ofM with respect tõgSE is spanned by

ξ = ∇̃SEF = −
ν−1∑

i=0

F ′
xi

∂

∂xi
+

m+1∑
a=ν

F ′
xa

∂

∂xa
,

where, as usual,∇SEF stands for the gradient ofF with respect tõgSE .
ThusM is a lightlike hypersurface if and only ifξ is a null vector field with respect tõgSE .

Hence we may state the following

Theorem 3.1 M is a lightlike hypersurface if and only ifF is a solution of the partial differential
equation

ν−1∑

i=0

(F ′
xi)2 =

m+1∑
a=ν

(F ′
xa)2.

In order to obtain both the canonical transversal vector bundle and the canonical screen distri-
bution, we consider alongM the vector field

V =
ν−1∑

i=0

F ′
xi

∂

∂xi
,

and note thatV is nowhere tangent toM since

g̃SE(V, ξ) =
ν−1∑

i=0

(F ′
xi)2 6= 0

onM . Then applying (1) we obtain that the canonical lightlike transversal vector bundletr(TM)
is spanned by

N =
1
2

(
ν−1∑

i=0

(F ′
xi)2

)−1 m+1∑

A=0

F ′
xA

∂

∂xA
.
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Next we denote byN0 the unit normal vector field onM with respect to the Euclidean metric
g̃E . Then due to (4) and (5) we deduce

N = ε(x)N0, ε(x) =
1√
2

(
ν−1∑

i=0

(F ′
xi)2

)− 1
2

.

This enables us to state

Proposition 3.2 The canonical lightlike transversal vector bundle of the lightlike hypersurfaceM
in Rm+2

ν is just the normal vector bundle ofM as Riemannian hypersurface ofRm+2
0 .

Taking into account that the canonical screen distributionSTM is complementary orthogonal
to span{N, ξ}, (see [1], [2]) we get that in caseν > 1, STM is locally spanned in a coordinate
neighborhoodU ⊂ M by

Wi = F ′
x0

∂

∂xi
− F ′

xi

∂

∂x0
, i ∈ {1, · · · , ν − 1},

Wa = F ′
xm+1

∂

∂xa
− F ′

xa

∂

∂xm+1
, a ∈ {ν, · · · ,m},

provided thatF ′
x0 6= 0 andF ′

xm+1 6= 0 onU .
In general,STM is not integrable. Indeed, the canonical screen distribution on the lightlike

hypersurfaceM in R4
2 defined by

x0 +
1
2
(x1 + x2)2 − x3 = 0

is not integrable (see [2]). However, we shall prove thatSTM is the orthogonal sum of two
integrable distributions. To this end we consider another coordinate neighborhoodU∗ ⊂ M such
thatU ∩U∗ 6= ∅. ThenSTM is spanned onU∗ by vector fields{W ∗

i , W ∗
a }, constructed as in (7)

and (8) provided one of the partial derivatives from each group{F ′
xi} and{F ′

xa} is non-zero onU∗.
By direct computations we obtainspan{W ∗

i } = span{Wi} andspan{W ∗
a } = span{Wa} on

U ∩U∗. Hence we obtain two complementary distributionsSTM− andSTM+ locally spanned
on U by {Wi} and{Wa}, respectively. Also we note thatSTM− andSTM+ are timelike and
spacelike orthogonal vector subbundles ofSTM with respect to the semi-Euclidean metricg̃SE ,
respectively. Moreover, we prove

Proposition 3.3 Both distributionsSTM− andSTM+ on a lightlike hypersurfaceM in Rm+2
ν

are integrable.

Proof. By using (7) we obtain

F ′
xjWi − F ′

xiWj = F ′
x0

(
F ′

xj

∂

∂xi
− F ′

xi

∂

∂xj

)
.

Then by direct calculations using again (7) and (9) we deduce that

[Wi,Wj ] =
(
F ′′

x0x0F
′
xj (F ′

x0)−1 − F ′′
x0xj

)
Wi +

(
F ′′

x0xi − F ′′
x0x0F

′
xi(F ′

x0)−1
)
Wj ,

which proves thatSTM− is integrable. In a similar way it follows thatSTM+ is integrable too.
In particular, if the ambient space is the Lorentz spaceRm+2

1 we haveSTM = STM+ and
from Proposition 3.3 we deduce that
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Corollary 3.4 ([1]) LetM be a lightlike hypersurface of a Lorentz spaceRm+2
1 . Then the canon-

ical screen distributionSTM is integrable.

Due to Proposition 3.2 we shall write down some useful relations between the geometric ob-
jects induced by both the lightlike and Riemannian immersion ofM in Rm+2. Let ∇̃ be the
Levi-Civita connection onRm+2 with respect to both metrics̃gSE and g̃E . Then taking into ac-
count (6) we obtain that the Gauss and Weingarten equations for the lightlike immersion ofM in
Rm+2

ν are given by (see [2])

∇̃XY = ∇XY + B(X, Y )N = ∇XY + εB(X,Y )N0, ∀X, Y ∈ Γ(TM)

and
∇̃XN = −ANX + τ(X)N = −ANX + ετ(X)N0, ∀X ∈ Γ(TM),

respectively. Here, as usual, we denote by∇, B andAN the induced linear connection, the second
fundamental form and the shape operator of the lightlike immersion. The lightlike transversal
1-form τ is specific to the lightlike immersion. By using (10), (11) and (6) we get

B0(X,Y ) = εB(X, Y ), ∀X, Y ∈ Γ(TM)

and
ANX = εAN0X, τ(X) = X(logε), ∀X ∈ Γ(TM),

whereB0 andAN0 are the second fundamental form and the shape operator of the Riemannian
immersion ofM in Rm+2

0 . Finally, we note that both immersions ofM in Rm+2
ν and inRm+2

0

induce the same linear connection∇ on M , namely, the Levi-Civita connection with respect to
the Riemannian metric induced bỹgE onM .

4. The Bernstein theorem for lightlike hypersurfaces of a Lorentz
space

Bernstein’s Theorem, which states that the only entire minimal surfaces inR3 are planes, is one
of the most striking theorems in global geometry. In a famous paper [4], Cheng and Yau proved
that the Bernstein Theorem holds good for maximal spacelike hypersurfaces of a Lorentz space.
It is well known that such a result does not hold for entire timelike surfaces in the Minkowski
3-spaceR3

1. A few years later T.K. Milnor [6] presented a generalization of the Hilbert-Holmgren
theorem and used it to discuss the indefinite Bernstein problem and prove a conformal analog of
Bernstein’s Theorem for timelike surfaces inR3

1. In [5] Magid gave one version of a solution to
the indefinite Bernstein problem. Actually he looked at entire timelike surfaces inR3

1 which have
zero mean curvature and showed that such a graph over a timelike or spacelike plane is a global
translation surface. It is the purpose of the present section to prove the Bernstein Theorem for
lightlike hypersurfaces with vanishing lightlike mean curvature in Lorentz spaces.

Let M be a hypersurface of the Lorentz spaceRm+2
1 given by equation (2). Then according to

Theorem 3.1M is a lightlike hypersurface if and only if

(F ′
x0)2 =

m+1∑

a=1

(F ′
xa)2.
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As rank[F ′
x0 , · · · , F ′

xm+1 ] = 1 onM , we deduce thatF ′
x0 is nowhere zero onM . Hence we may

state the following

Proposition 4.1 A connected lightlike hypersurfaceM ofRm+1
1 given by (2) is globally expressed

by a Monge equation
x0 = f(x1, · · · , xm+1),

wheref is a smooth function on a domainΩ ⊂ Rm+1 such that

m+1∑

a=1

(f ′xa)2 = 1.

Sinceg̃SE becomes now a Lorentz metric, i.e., it has indexν = 1, we shall denote it bỹgL . In
the next proposition we find the iterrelation betweeng̃L andg̃E onM .

Proposition 4.2 Let (M, STM) be a lightlike hypersurface of the Lorentz spaceRm+2
1 , where

STM is the canonical screen distribution onM . Suppose{V1, · · · , Vm} is an orthonormal basis
of Γ(STM) with respect tõgL . Then{V0, V1, · · · , Vm} is an orthonormal field of frames onM
with respect tõgE , where we set

V0 = (g̃E(ξ, ξ))−
1
2 ξ .

Proof. By using (3), (8) and (13) we get

ξ =
∂

∂x0
+

m+1∑

a=1

f ′xa

∂

∂xa
,

and

Wa = f ′xm+1

∂

∂xa
− f ′xa

∂

∂xm+1
, a ∈ {1, · · · , m}.

Then by direct calculations we obtain

g̃E(Wa, ξ) = g̃L(Wa, ξ) = 0, ∀a ∈ {1, · · · , m}
and

g̃E(Wa, Wb) = g̃L(Wa,Wb), ∀a, b ∈ {1, · · · ,m},
which prove the assertion of the proposition.

As B(ξ, ξ) = 0 (see [2]), we define thelightlike mean curvatureof M by

αL =
m∑

a=1

B(Va, Va),

where{V1, · · · , Vm} is an orthonormal basis ofΓ(STM). It is easy to show thatαL does not
depend on both the screen distribution and the orthonormal basis. ByαE we shall denote the mean
curvature of the Riemannian immersion ofM in Rm+2

0 . Then by using (15), (12) and Proposition
4.2 we deduce

αE = B0(V0, V0) +
m∑

a=1

B0(Va, Va) =
1√
2

m∑

a=1

B(Va, Va) =
1√
2
αL ,

since from (6) and (13) we haveε = 1√
2
. Due to (16) we may state the following important result

6



Aurel Bejancu, Angel Ferrández and Pascual Lucas, A new viewpoint on geometry of a lightlike hypersurface in a semi-Euclidean space

Theorem 4.3 Let M be a lightlike hypersurface of the Lorentz spaceRm+2
1 . ThenM has zero

lightlike mean curvature if and only ifM is a minimal hypersurface of the Euclidean spaceRm+2
0 .

We now examine the partial differential equation

m+1∑

a=1

∂

∂xa


 f ′xa√

1 + ||∇̃Ef ||2


 = 0,

whose solutions give all minimal hypersurfaces (13) of the Euclidean spaceRm+2
0 .

In 1914 Bernstein proved a theorem that states that form = 2 the only entire solution of (17)
is linear. For the higher dimensional version of Bernstein’s Theorem we need the following result

Theorem 4.4 (Bompieri-Giusti [3]) Letf be aC∞ solution of the minimal hypersurface equation
(17) inRm+1 such thatm partial derivativesf ′xa are uniformly bounded inRm+1. Thenf must
be linear.

For spacelike hypersurfaces ofRm+2
1 the Bernstein Theorem was proved by Cheng and Yau

[4]. By combining Theorems 4.3 and 4.4, and using (14), we obtain the following result on
Bernstein’s Theorem for lightlike hypersurfaces

Theorem 4.5 Let M be a lightlike hypersurface ofRm+2
1 given by (13), wheref is defined on

Rm+1. If M has zero lightlike mean curvature thenf must be linear, and thusM is a lightlike
hyperplane ofRm+2

1 .
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