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Abstract

We exhibit a new method to find Willmore tori and Willmore-Chen submanifolds in spaces
endowed with pseudo-Riemannian warped product metrics, whose fibres are homogeneous
spaces. The chief points are the invariance of the involved variational problems with respect
to the conformal changes of the metrics on the ambient spaces and the principle of sym-
metric criticality. They allow us to relate the variational problems with that of generalized
elastic curves in the conformal structure of the base space. Among others applications we
get a rational one-parameter family of Willmore tori in the standard anti De Sispace
shaped on an associated family of closed free elastic curves in the once punctured standard
2-sphere. We also obtain rational one-parameter families of Willmore-Chen submanifolds in
standard pseudo-hyperbolic spaces. As an application of a general approach to our method,
we give nice examples of pseudo-Riemanriaspaces which are foliated with leaves being
non-trivial Willmore tori. More precisely, the leaves of this foliation are Willmore tori which

are conformal to non-zero constant mean curvature flat tori.

1. Introduction

Let NV be a compact manifold of dimensian which we assume without boundary, otherwise
minor changes can be done to get boundary versions of our resulfs. hesthe smooth manifold
of immersionsp of NV in a pseudo-Riemannian manifold/, ). The Willmore-Chen functional
Q) is defined oriN to be

0(9) = /N (H,H) —7.)%dv,

where H and 7. denote, respectively, the mean curvature vector field and the extrinsic scalar
curvature function op, anddwv is the volume element of the induced metric (yjeon N (see [14]
and [27]).

The variational problem associated with this functional is known in the literature as the Willmore-
Chen variational problem. It was shown by B.Y. Chen, [13], that this functional is invariant under
conformal changes of the metgof the ambient spac®/ . Its critical points are called Willmore-
Chen submanifolds. When = 2, the functional essentially agrees with the well known Willmore
functional and its critical points are the so called Willmore surfaces.

Obvious examples of Willmore surfaces, in spaces of constant curvature, are thoge with
0, in particular minimal and maximal surfaces. Articles showing different methods to get examples
of non-minimal Willmore surfaces in standard spheres are well known in the literature (see, for
instance, [4], [10], [15] and [22]). Examples in non-standard 3-spheres are given in [2].
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The first non-trivial examples of Willmore-Chen submanifolds (of course with dimension
greater than two, namely they are of dimension four) were obtained in [9]. In [3], the first author
gave ample families of Willmore tori (either Riemannian or Lorentzian) in pseudo-Riemannian
manifolds with non constant curvature. In particular he obtained nice examples of Riemannian
Willmore tori in some kind of spacetimes close to Robertson-Walker spacetimes.

However two open problems drew our attention. The first one is that no examples of Willmore
surfaces are known in the anti De Sitter space. Also, no examples of nontrivial Willmore-Chen
submanifolds in pseudo-Riemannian spaces (with non zero index) are known in the literature.
These two problems will be solved in this paper. Both are applications of the technique we will
exhibit later.

The plan of the paper can be summarized as follows. After some preliminaries given in the
next section, we will obtain the result of U.Pinkall, [22], but using a direct approach. To do that we
will integrate the Euler-Lagrange equations for Willmore surfaces in spaces of constant curvature,
which were computed in [25].

In three dimensional Lorentzian geometry the anti De Sitter 3-spcbehaves, in some
sense, as the 3-spheéfédoes in Riemannian geometry (see, for instance, [1] and [7] to compare
this claim from the point of view of the behaviours of general helices). In particular, two Hopf
maps can be defined froffi; over H? andH?, respectively (see [6] and Section 2 for notation),
the first one having closed fibres. Therefore to find Willmore tofilihit seems natural to deal
with the class of Hopf tori and look for solutions of the corresponding Euler-Lagrange equations
for the Willmore functional on this class. Two facts should be noted. On one hand, concerning
Hopf tori, we mean surfaces which have a certain degree of symmetry and project, via the Hopf
map, into closed curves in the hyperbolic 2-pldfit On the other hand, the Euler-Lagrange
equations obtained by Weiner for Riemannian manifolds work also here. However, to integrate
these equations, we can use a direct method or a method based on the nice symmetries of the Hopf
tori to show that there exist no Willmore Hopf tori .

In Section 4 we deal with the canonical variation of the standard metfit}isee [11] for
details) to get a one-parameter family of pseudo-Riemannian submersions over the hygerbolic
plane. We use a similar argument to that exposed in [2] to find interesting examples of Willmore
tori in non standard anti De Sitter three spaces (these endowed with metrics of constant scalar
curvature) shaped on certain closed elastic curves in the standard hyperbolic 2-plane.

Section 5 is the main one of the paper. We present a hew method to obtain examples of
Willmore-Chen submanifolds in the pseudo-hyperbolic s@te We first notice that the metric
on H?, obtained as the pseudo-Riemannian product of the standard metric in the once punctured
(n — r)-sphereX™"" and the negative definite standard one intkephere, is conformal to the
standard metric oftll’. Then we use the homogeneous structure of-tephere to determine the
submanifolds ofl] which areSO(r + 1)-invariant. Next by using the invariance of the Willmore-
Chen variational problem under conformal changes of the ambient metric and the principle of
symmetric criticality, [21], we are able to reduce the problem of findiig(» + 1)-symmetric
Willmore-Chen submanifolds i}’ to that of closed generalized elastic curvesitr”. That
means critical points of the functional

(x being the curvature function ef) defined on the smooth manifold of closed curveEin™.
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This method will allow us to give a wide family of Lorentzian Willmore tori in the standard
anti De Sitter 3-space, which come from closed free elastic curves in the once punctured 2-sphere
(see Corollaries 5.5 and 5.6).

We also determine, for any natural numbeand any non-zero rational number, a unigue
closed helix inX? which is a critical point ofF” (see Theorem 5.7). Therefore we obtain non
trivial Willmore-Chen submanifolds in the pseudo-hyperbolic sga¢e” (see Theorem 5.9).

In the next section we generalize the above argument to a remarkable and more general context
(see Theorem 6.2). Then we apply it to get some consequences in the last section. We first obtain
Willmore tori in some conformal structures on spaces which topologically are products of three
circles (see Corollary 7.1). Even so, these result is widely extended with the aid of an existence
result for elasticae due to N. Koiso [16] (see Corollary 7.3). We also make use of our method
to give examples of pseudo-Riemannian 3-spaces which admits foliations whose leaves are non-
trivial Willmore tori. These foliations come from the free elasticity of all parallels of certain
surfaces of revolution obtained in [8] (see Corollary 7.2).

2. Setup

LetR? be the(n + 2)-dimensional pseudo-Euclidean space whose metric tensor is given by

t n+2
(x,z) = —dei ® dat + Z dr! @ da?,
i=1 j=t+1

where (z!,...,2""?) is the standard coordinate system. Uet"*!(p) be R?*1if p = 0 or
the (n + 1)-dimensional complete and simply connected space with constant sectional curvature
K = sign(p)/p? and indexs if p # 0. For eachp # 0, a model forM"+1(p) is the pseudo-
Euclidean spher8?*1(p) if p > 0 and the pseudo-Euclidean hyperbolic spaie! (p) if p < 0,
where

SitHp) = {z e R (w,2) = p*} (p>0)

and
H ' (p) ={z e R : (w,2) = —p*}  (p<0).

Throughout this papes, : M"™1(p) — R?*2 will denote the standard immersion.6f"+*(p) in
R}2. For the sake of brevity we will writ8"+!(p) by Si (p) andS?+! by SP+1(1). A similar
convention for pseudo-hyperbolic spaces will be used.

One of the most classical topics in the calculus of variations was proposed by J. Bernoulli: the
problem of the elastic rod. According to D. Bernouilli’s idealization, all kinds of elastica minimize
total squared curvature among curves of the same length and first order boundary data. Recently,
Bryant-Griffiths, [12], and Langer-Singer, [17, 18], have generalized the notion of elastica to space
forms and studied them from a geometrical point of view. {.et/ — M™(p) be a closed curve
in M™(p), then~ is said to be an\-elastica(or A-elastic curvg if it is an extremal point of the
functional

L
Gr(7) = /0 V7T, VrT) + N)ds,

for some), whereds and L stand for the arclength and length-afrespectively. The Lagrange
multiplier A has been included partly because the case of constrained arclength will be useful later.

3



J. Geom. Phys. 28 (1998), 45-66

Itis called afree elasticaf A = 0; in this casey is a critical point ofG () = Go(y) among closed
curves which are allowed to grow in length. This lack of constraint of length makes existence an
interesting and non trivial question in the calculus of variations.

We can assume, without loss of generality, thas arclength parametrized and lgE, =
T,E, = N,Es = B,...,E,} be a Frenet frame along, with curvature functiongx,
RyKe =T,...,km—1}, Satisfying the Frenet equations

V1T = e&9kN,
VrN = —egkT +e37B,

VrE, = —em-1bm-1En-1,

where, as usuall = v/, (E;, E;) = ¢;, andV stands for the Levi-Civita connection ovl" (p).
Then the Euler-Lagrange equation reduces to the following system of differential equations

2e9k” + €1k — 2e3K7° 4 £169(2¢ — Ak = 0, 2
2/t + kT’ =0, 3
K78 = 0, )

wheres € span{T, N, B}*. If v does not lie in a 2-dimensional totally geodesic submanifold of
M™(p), then the equation (4) implies thét= 0 and so the curve lies in a 3-dimensional totally
geodesic submanifold 01 (p). Hence we can assume without loss of generality that 2 or

n = 3. On the other hand, from (3) we deduce that = a is constant.

Another interesting topic in the calculus of variations is concerned with the total mean curva-
ture of immersed manifolds. The first result of this subject is due to T.J. Willmore, [28], and since
then a surfacé/ in R3, ¢ : M — R3 being the immersion, is calledilimore surfacef it is an
extremal point of the functional

a¢) = [ a%aa,

wherea andd A stand for the mean curvature function/dfin R3 and the area element o1, re-
spectively. In [25], Weiner extends this notion to an arbitrary 3-dimensional Riemannian manifold
M: asurfaceM C M is said to be stationary (or Willmore surface) if it is an extremal point of

Q(g) = /M<<H, H) + R)dA,

whereR' is the sectional curvature (zlf[ alongM andH denotes the mean curvature vector field.
Of special interest is the case whén = M3(p) is of constant curvatur&’. We define the
operatonV over sections of the normal bundle &f into M?3(p) as follows

W:T M —T+M, W) = (AP + 2(H, H)I — A)¢,

whereA denotes the Simon operator, [24]. A cross sectiovill be called a Willmore section if

W(£) = 0. Then the operatorV naturally appears provided that one computes the first variation
formula of Q2. That can be obtained in a similar way to that given by J. L. Weiner (see [25]) in the
definite case. Now Willmore surfaces are nothing but extremal points of the Willmore functional
and they are characterized from the fact that their mean curvature vector fields are Willmore fields.

4



Manuel Barros, Angel Ferrandez, Pascual Lucas and Miguel Angel Merofio, Willmore tori and Willmore-Chen submanifolds in pseudo-Riemannian spaces

More generally, let M™, g) be ann-dimensional submanifold of a Riemannian manifold
(M,§). Then((H,H) — 7.)g is invariant under any conformal change of the ambient metric
g, 7. standing for the extrinsic scalar curvature with resgedtld]. WhenM = M™(p) and
M™ is compact them. = 7 — K, 7 being the scalar curvature 68/, g), and M is said to be
stationary (or aVillmore-Chen submanifo)df it is an extremal point of

0(p) = /M<<H,H>—Te>3dv,

dV standing for the volume element dii. The variational problem associated with this functional
Q) is an extrinsic conformal invariant and so are the Willmore-Chen submanifolds.

3.  Willmore tori in the 3-sphere

Let 7 : S* — S?(1/2) the usual Hopf fibration, which is a Riemannian submersion relative to
canonical metrics on both spheres (we will follow the notation and terminology of [11] and [20]).
For any unit speed curve : I C R — S%(1/2), we can talk about horizontal lifts(s) of
~v(s) and obtain unit speed curvesSA. All these curves define the complete liff, = 7—1(v)
of 4. This is a flat surface which we will call the Hopf tube overlt is easy to see thal/, can
be parametrized by
U(s,t) = e"3(s),

U being a mappind x R — S3 and¥ a fixed horizontal lift ofy.

If v is a closed curve i62(1/2) of length L enclosing an oriented aref then its Hopf tube
M, is aflat torus (the Hopf torus ove) which is isometric t&R?/T", I" being the lattice generated
by (0,27) and(L,2A).

Let us consider the manifold of allimmersions of a toru§inThen the Hopf tori correspond
with those immersions which are invariant under the uStiaction onS? in order to ge§?(1/2)
as the orbit space. The Willmore functional of the manifold of immersions is invariant for this
S'-action. Then we can use the nice argument of U. Pinkall (see [22]), based on the principle of
symmetric criticality of R. S. Palais, [21], to reduce the problem of finding symmetric Willmore
tori (i.e., Willmore Hopf tori) inS? to that of finding closed elasticae (with Lagrange multiplier
A = 4) in S?(1/2). This is the way used by Pinkall, [22], to get infinitely many embedded Hopf
tori which are Willmore tori.

We wish to point out that Pinkall’s result can be also obtained by a straightforward computa-
tion. To do that we will solve the Euler-Lagrange equation for Willmore tori in¥sphere (see
[25] for details). That equation turns out to be

APH = A(H) — 20°H.

H being the mean curvature vector field of the torusStn o> = (H, H) the squared of the
mean curvature function anti” the Laplacian relative to the normal connection. All geometric
invariant appearing in (6) can be computed from (5).

The shape operatot of A7, is given by

AX, =FXs + X3, AX; = X,

wherer = ko, k being the curvature function ofin S?(1/2) (see [6] for details).
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We also have that

_1 _1— D _717//
H—Q(trA)£—2/<;§, A”H = 57 £,

d2%R(s)
ds?

¢ being a unit normal vector field dff., in S* andr” =
Finally, it is easy to see that(H) = |A|2H, so that

A(H) = %E(EZ +2)e.

Now bring (8) and (9) to (6) to get

2% + 73 + 485 = 0.

This is nothing but the Euler-Lagrange equations (2) and (3)ifcilosed elastic curves in
S?(1/2) (see also [18, eq.1.2]).

Summing up, we have shown thét, is a solution of (6), and therefore a Willmore surface in
S3, if and only ify is a solution of (10), and so 4-elastica inS?(1/2).

Remark 3.1 In some sense, the anti De Sitter and De Sitter wortifs and S?, respectively,
behave as the spherical and hyperbolic space f&mand H?, respectively. A nice example
illustrating this fact arises when one studies evolution equations associated with Killing flows in
space forms (either Riemannian or Lorentzian). In particular, curves which evolves under a certain
flow without changing shape, only position. For instance, general helices (see [1] and [7]).

In studying the anti De Sitte3-spaceH;, we have found a couple of Hopf maps : H} —
H?(—l/Z),j = 0, 1, according to the base space is the hypert®fitaneH32 = H? or the pseudo-
hyperbolic2-planeH? (see [6] for details). We wish to study the Willmore problentifiand, in
particular, we are trying to get Willmore surfacesHs coming from curves irH?.

The computations we have madeSp, via the usual Hopf map, hold now and the Euler-
Lagrange equationV/(H) = 0 for M, ; = 7rj‘1(7), reduces to the Euler-Lagrange equation

(=1)7 12K — k3 4 4er =0

for (—4)-elastic curves iff?, e being the sign of the surfadd’, ;.

We wish to point out that fibres ofy are circles, and thus/, = M, ¢ is a torus provided
that~ is closed, whereas fibres of are not compact. Therefore, given a closed curve H?,
thenM., = 7, (v) is a (Lorentzian) Willmore torus if and onlyif is a(—4)-elastic curve irH?.
Unfortunately, a recent result of Dan Steinberg in his PhD dissertation, kindly communicated to
us by David A. Singer, shows that there is no cloéed)-elasticae ifH?. As a consequence, one
should conclude that there are no (Lorentzian) Willmore tori in the anti De SigpaceH;.

4. Willmore tori in non-standard anti De Sitter 3-space

Letr : (M,g) — (B,h) be a pseudo-Riemannian submersion. We can define a very inter-
esting deformation of the metrigcby changing the relative scales Bfand the fibres (see [11]).
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More precisely, it is defined the canonical variatignt > 0, of g by setting

gth} = gh),

gl = dly,
g(V,H) = 0,

whereV and’H stand for vertical and horizontal distributions, respectively, associated with the
submersion. Thus we obtain a one-parameter family of pseudo-Riemannian submeysions
(M, g:) — (B, h) with the same horizontal distributioH, for all ¢ > 0. Relative to O’Neill
invariants A and 7" of these pseudo-Riemannian submersions, we will just recall a couple of
properties. First, ify has totally geodesic fibre§'(= 0), the same happens fgr, for all ¢ > 0.
Furthermore,

ALU =2 Ay, (11)

foranyY € HandU € V.

Now we consider the canonical variation of the Hopf fibratios 7 : H3 — H?(—1/2) to
get a one-parameter family of pseudo-Riemannian submersjoan@ls, g;) — (H2(—1/2), go)-
Let~ be a unit speed curve immerseddR(—1/2). SetT, ; = m; '(y). ThenZ,, is a Lorentzian
flat surface immersed iH?, that will be called the Lorentzian Hopf tube overAs the fibres of
7 areH}, which topologically are circles, then, ; is a Hopf torus in(H3, g;), provided thaty is a
closed curve. Itis obvious that the groGp= S! naturally acts through isometries (3, g;), for
allt > 0, getting(H?(—1/2), go) as the orbit space. The following result, whose proof is omitted,
gives a nice characterization of theinvariant surfaces ifH?3, g;).

Proposition 4.1 Let S be an immersed surface int8l3, g;). ThenS is G-invariant if and only
if S is a Lorentzian Hopf tubd, ; = m(v) over a certain curvey immersed in the hyperbolic
2-plane(H?(~1/2). go).

Remark 4.2 The canonical variation of a pseudo-Riemannian submersion has been used to get
examples of homogeneous Einstein metrics (see [11] for a nice and complete exposition on the
subject). In dimension three, Einstein metrics correspond with constant sectional curvature met-
rics. Therefore, the standard metgie= g; is the only Einstein metric that one can find on the anti

De Sitter3-space. However, we can use a well known formula to compute the scalar curvature of

the canonical variation of a pseudo-Riemannian submersion (see [11] again), to fifid}had,

t > 0, is a one-parameter family of pseudo-Riemannian manifolds with constant scalar curvature,

and so the nicest metrics on the anti De SiBtapace after the canonical one.

In the following we will use the principle of symmetric criticality in order to reduce the prob-
lem of finding Lorentzian Willmore tori ifH3, g;), t > 0, to that of finding closed-elasticae in

(H*(=1/2), 90).

Theorem 4.3 Letm; : (H3,g:) — (H2(—1/2),90), t > 0, be the canonical variation of the
pseudo-Riemannian Hopf fibration. Letbe a closed immersed curve (fl?(—1/2), go) and
T, = 7; *(7) its Lorentzian Hopf torus. Thef, ; is a Willmore surface irfH3, g;) if and only if
7 is an elastica i(H?(—1/2), go) with Lagrange multipliet\ = —4¢2.
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Proof. LetT = S! x S! be a compact surface of genus one, i®is a topological torus.
Consider the smooth manifold of immersionsofnto (H3, g;), sayM = {¢ : T — (H3, g;) :
¢ is an immersiof. The Willmore functional oV is

0(9) = /T ((H, H) + RY)dv,

H andR! standing for the mean curvature vector fieldoéind the sectional curvature @3, g;),
measured with respect to the tangent plangtap), respectively. It is clear that, for ar§f € S!,
we have thaf2(¢) = Q(e? - ¢). Now let us denote by the set of critical points of2 in M,
i.e., Cis the set of genus one Willmore surfaces. Mt be the submanifold oM made up by
those immersions of” which are (¢ = S')-invariants and le€ be the set of critical points
of Q restricted toMg. The principle of symmetric criticality (see [21]) can be used here to
find thatCN Mg = C¢. Now from Proposition 4.1 we obtain th&, = {7,; = w{l(q/) :
v is an immersed closed curve (fl?(—1/2), go) }. To compute(7, ), i.€., the Willmore func-
tional onC¢;, we first notice that = 3, « being the curvature function efin (H?(—1/2), go).
Now we are going to comput&’. Let X = +' be the unit tangent vector field alongand
X its horizontal lift (for anyt > 0) to (H3, g;). Then, at any point, the tangent planeZf;
is spanned byX andU, U being a unit (with respect tg;) timelike vector field which is tan-
gent to the fibres ofr;. Then the tangent plane @ ; is a mixed (also called “vertizontal”,
see [26]) section ofr; : (H3,g;) — (H2(—1/2),40). As g; has geodesic fibres, we know that
R' = —g(ALU, ALU), A" being the O'Neill invariant for the submersigg which is known to
be (see [11])

ALU = VLU,

V! being the Levi-Civita connection @f. Then we have
—1 =g (U,U) = —t*g(U,U) = —g(tU,tU),

so¢ = tU is a unit timelike vector field with regard g Now, from [6, p. 3], and bearing in mind
thatV%U is horizontal, we get

G(VEU,iX) = S0, 1X, X))
= %gt(U, VZYY — Vle)
= S0l ~(X, X)E — g1 X, X))
= (U, -2)
= —t*g(U,¢) =t. (12)
On the other hand,
W(VEU.X) = (X (U.X) +Ug(X,X) - Xgu(X, )
- gt(y» [U’ Y]) + gt(Uv [yv 7]) + gt(yv [Y7 U])}
_— (13)
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From (12) and (13) we deduce that
VLU = tiX.

Hence,
R = —g(tiX, tiX) = —t2.

Let L be the length ofy. As the fibres ofy; are circles of radit, we have
L 27t 1 it L
UTy4) = / (0® + R')dv = / / <n2 —~ t2> dsdr = / (K2 — 4t2)ds.
L) o Jo 4 4 Jo

t
Remark 4.4 The canonical variatiop; of the standard metrig; = g onH3 provides an easy and
useful way to get infinitely many Willmore tori itH3, g;). In fact, in working with the pseudo-
Riemannian Hopf fibration, we were not able to produce Lorentzian Hopf Willmore toriHito
by pulling back elasticae ifiH?(—1/2), go). This is because the Lagrange multiplier we found
is A = —4, which is not permitted (see Remark 3.1). Now, by applying Theorem 4.3 and results
by Langer and Singer, [18], we give, forc (0, 1), infinitely many Willmore tori in(H3, ;). It
is worth pointing out that, in particular, any curyeof constant curvatureg in (H?(—1/2), go)
can be realized as an elastica#?(—1/2), go) with Lagrange multipliet\ = xo — 8. Now  is
closed provided that? > 4, so that taking:2 € (4,8), 7,.; = 7; *(7) is a Lorentzian Willmore
torus with constant mean curvature(ii, g:), wheret = /2 — (x3/4).

5. Willmore-Chen submanifolds in the pseudo-hyperbolic space

In this section we are going to introduce a new method to construct critical points of the
Willmore-Chen functional in the pseudo-hyperbolic spé&te = H(—1). First we will write
H” as a warped product with base space the standard hyperbolicdpate Then we will use
the conformal invariance of the Willmore-Chen variational problem to make a conformal change
of the canonical metric ofl]’. Next we use the principle of symmetric criticality of R. Palais,
[21], to reduce the problem to a variational one for closed curves in the once punctured standard
(n — r)-sphere.

5.1. H as a warped product

Given0 < r < n, let
H"" = {(x0,2) € R x R"™" : —a + (x,z) = —1 andzy > 0}
the hyperboliqn — r)-space and
Hy = {(&mn) R xR0 —(£,6) + (n,n) = —1}

the pseudo-hyperbolie-space. They are hypersurfacesf@'ﬁ‘ﬁ”rl ande}ﬁ, respectively. The
induced metrics on these spaces, from those in the corresponding pseudo-Euclidean spaces, define

standard metricy onH* andgo on H"~", both with constant curvaturel.
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Let S" be the standard unitsphere endowed with its canonical metfic’> and consider the
mapping® : H"~" x S" — H” defined by

O((xg,x),u) = (xou, x).

Itis not difficult to see thad defines a diffeomorphism whose inverseis! (¢, 1) = ((|¢],7), £/|€])-
For any curves(t) = ((zo(t), z(t)),u(t)) in H*" x S” we have

AP 30y (8'(1))]* = —ab () + |2/ ()2 — o (1) (1)

Let f : H*" — R be the positive function given b§(zo,z) = x¢ and consider the metric
g = go — f2do? onH" " x S". The pseudo-Riemannian manifqH" " x S", g) is called the
warped producbf base(H" ", go) and fibre(S", —do?) with warping functionf.

Itis usually denoted byH" ", go) x 7 (S", —do?) or H"~" x s (—S") when the metrics on the
base and fibre are understood (see [11] and [20] for details). Now the formula (14) sho@s that
is an isometry betweeH" ™" x ; (—S") and(H7}, ho).

Consider a new metrie on H defined by

1 1

h=gho = 300~

do?,

with the obvious meaning by removing the pulling back #a Thus (H}, k) is the pseudo-
Riemannian product g™, f%go) and(S", —do?). Finally itis not difficult to see thaH™ ", #go)

has constant sectional curvature 1, so that it can be identified, up to isometries, with the once punc-
tured standardn — r)-sphereg(¥~"", do?). Consequently(H”, h) is nothing but(X"~", do?) x

(S, —do?), up to isometries.

5.2. SO(r + 1)-invariant submanifolds in H

For any immersed curve : [0,L] — H"™", we define the semi-Riemannidn + 1)-
submanifoldY, = ®(y x S"). Itis clear thatY,, has indexr and we will refer toY,, as the
tube overy. Now letG = SO(r + 1) be the group of isometries (8", —do?). Obviously,G acts
transitively on(S”, —do?). So we define an action ¢f on H” as follows

a-(&n)=2(a (&) = (a€). ),

foranya € G.
This action is realized through isometries(f’, ho). The following statement characterizes
the tubes over curves Ifi"~" as symmetric points of the above mentiord@éction.

Proposition 5.1 Let M be an(r + 1)-dimensional submanifold iH*. ThenM is G-invariant if
and only ifM is a tubeY ., over a certain curvey in H"".

Proof. Let M be aG-invariant submanifold of dimension+ 1. For anyp € M, write p =
(&,m) = ®((zo,x),u) = (zou,x), whereu € S". Now theG-orbit throughp is given by
pl={a-p:a€ G} ={(voalu),x):a€G}= (xS, x),

where we use that acts transitively or§”. This proves thaf/ is foliated byr-spheres, so that

we can consider the orthogonal distribution to this foliation. Since it is one dimensional, we can
integrate it to get a curvg(t) = (zo(t),x(t)) in H*™" with &(y(t) x S") = ¥, = M. The
converse is trivial.

10
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5.3. Critical points of 77 (v) = fw(ﬁ;?)@lds

Now we deal with the functional

defined on the manifold of regular closed curves (or curves satisfying given first order boundary
data) in a given pseudo-Riemannian manifold, whestands for any natural number (even though
all computations also hold if is a real number). Notice that we write the integrand in that form to
point out that it is an even function of the curvatureAlso 7' agrees withg, which is the elastic
energy functional for free elasticae.

Lety: I C R — S™ be aunit speed curve in the unitsphere with curvaturess, 7, . ..} and
Frenet framdT =+, &, ..., &n}. Given avariatiod” := I'(s,t) : I x (—g,e) — S™ of v, with
I'(s,0) = v(s), we have the associated variation vector fidlds) = %(5,0) along~y. We will
use the notation and terminology of [18]. Séts,t) = 9L, W(s,t) = %4, v(s,t) = [V (s, )],
T(s,t) = 1V (s,t), (s, t) = |V T|?, V being the Levi-Civita connection &. The following
lemma in [18] collects some basic facts which we will use to find the Euler-Lagrange equations
relative toF™.

Lemma 5.2 With the above notation, the following assertions hold:

V.w] = 0
ov
[ — TYv:
ot <VTW7 >U7
W, Tl = —(VeW,T)T;
(W, T, T] = T{VeW,T))T;
2
O = AVW.VLT) ~ A(VeW, T} + 2(R(W.T)T, V),
R being the Riemann curvature tensorS3t.
To computeg—tf’"(fy) = %f’“(F(s, t)), we use this lemma and a standard argument involving

integration by parts. Then we considéf defined on a manifold which only contains either
regular closed curves or curves satisfying first order boundary da&"an order to drop out
obvious boundary terms which appear in the expression of that variation. As a matter of fact,
%‘tzo F(I'(s,t)) = 0 allows us to get the following Euler equation, which characterizes the
critical points of 7" on the quoted manifolds of curves:

(HZ)(rfl)/2vi%T
d

+27d$((,<;2)<7"—1>/2)v2TT
d2 2r 41
2 (r=1)/2 | 9 2\(r—1)/2 21 ov(r+1)/2
H{(2)2 4 (D) + 2L 22y
2T’+1d 2(7‘+1)/2 .
r+1 ds((ﬁ) )T =0.

From here and the Frenet equations fowe find the following characterization of the critical
points of 7.

11
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Proposition 5.3 Let~ be a regular curve irs" with curvatures{x, 7, d, .. .}. Theny is a critical
point of

fT(’)/) _ /(,{2)(7‘+1)/2d8
Y

if and only if the following equations hold:

-1
i+ — i3 — kT 4+ rr=1) )(m/)2 = 0,
r+1 K
(e = 0,
) =

In particular, v lies in someS? or S? totally geodesic ir§™.

From now on we will call--generalized elastica® the critical points ofF". In particular,
free elasticae are nothing but 1-generalized elasticae.

5.4. Akey result

We are going to characterize the tubeslif, 1) which are Willmore-Chen submanifolds.

Theorem 5.4 Let v be a fully immersed closed curve in the hyperbolic sgd€e”. The tube
T, =®(yxS")in (H}, ho) is a Willmore-Chen submanifold if and onlyifs a generalized free
elastica in the once punctured unit sphék* ", do?). In particular,n — r < 3.

Proof. Given a closed curve in H* ", let Y be the smooth manifold of all immersions of
v x S"in (H, ho),i.e.Y={p: v xS" — (H hy) : ¢isanimmersioh. The Willmore-Chen
functional onY writes down as

Q(g) = / ) =y
YXS”

H andr, standing for the mean curvature vector field and the extrinsic scalar curvature function of
¢, respectively, andv being the volume element associated with the induced metric. Dengte by
the immersiory when it is endowed with the induced structure coming from the metgic-; hg.

Since the Willmore-Chen variational problem and, in particular, the Willmore-Chen functional are
invariants under conformal changes of the ambient metric, we have

Q(9) = Q(¢)-

Let C be the set of critical points @ onY, i.e., C is the set of Willmore-Chen immersions of
v x S"in (H?, ho). LetYs be the submanifold dj made up byG-invariant immersions an@g
the set of critical points of2 when it is restricted t§ . By using again the principle of symmetric
criticality of Palais, [21], we have
CNYe =Ca.

SinceY in nothing but the set of tubes over closed curves in the hyperbolic §ace that is
Yo ={P(y xS") : v C H* "}, we can compute the restriction Gfto Y to get

QR x8) = e [ )

(7" + 1)r+1

VOI(ST,—dO'Z)/ gy ZEL
- T (K) ’ dS,
(7“ + 1) +1 .

12
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wherex stands for the curvature function ¢fin the once punctured unit spheig" ", do?) =
(H™ ", %go). Notice that we have used the metficon H to take advantage of the pseudo-
Riemannian product structure Gf?, h) = (X"~ ", do?) x (S", —do?). This proves the first part
of the statement.

As for the second one, just combine Proposition 5.3 with the fullness assumption.

5.5. Some examples

In order to give examples of non trivial Willmore-Chen submanifolds in the pseudo-hyperbolic
spaceH, ho), we apply Theorem 5.4. To do that, we start with a fully immersed closed eurve
in the hyperbolign —r)-spaced™ ", withn—r < 3, and then we vie" " as a once punctured
(n — r)-spherg(X"~", do?). Therefore, the first case we will considemis= 3 andr = 1. Then
Theorem 5.4 applied here writes down as follows:

Corollary 5.5 Let~y be animmersed closed curve in the hyperb®lglane. The Lorentzian tube
T, = &(y x St) is a Willmore torus in thé-dimensional anti De Sitter spa¢&l;, ko) if and only
if v is a free elastica in the once punctured Wsphere(X2, do?).

The complete classification of closed free elasticae in the staRdsptere was achieved by
J.L. Langer and D.A. Singer in [18]. That classification can be briefly and geometrically described
as follows: Up to rigid motions in the uritsphere, the family of closed free elasticae consists of
a geodesiey, say the equator, and an integer two parameter fafnily,, : 0 < m < n, m,n €
Z}, wherevy,, , means that it closes up afterperiods andn trips around the equatog.

As a consequence we have

Corollary 5.6 There exist infinitely many Lorentzian Willmore tori in thelimensional anti De
Sitter space. This family includ¢s,,, , : 0 <m <n, m,n € Z} and Y.

A second case we will consideris—r = 3. Then we are looking for critical points &f" (),
i.e., solutions of two first equations in Proposition 5.3 inside the family of helices in the standard
once punctured-sphere(X3, do?). (For details about the geometry of helices in the standard
3-sphere we refer to readers to [5]).

Let v be a helix in(X3, do?) with curvaturex and torsionr. From now on we will assume
that~ is a not a geodesic; otherwise, it is a trivial solution. Thes anr-generalized free elastica

if and only if

K272 4+1=0. (15)

r+1

That means that, in thex, 7)-plane of helices i3, do?), 7" has exactly a hyperbola of crit-
ical points. To determine the closed helices whichrageneralized elasticae we use the following
argument series (see [9]). First, take the usual Hopf fibrdfian(3¥?, do?) — (S?, ds?), where
the base space is chosen to be of radi(isin order toIl be a Riemannian submersion. lebe
an arclength parametrized curve with constant curvaiueR into (S?, ds?). Let S = I171(3)
be the Hopf tube ovep (see [5] or [22] for details). Thefz becomes a flat torus with constant
mean curvature if:3, do?). Furthermore, it admits an obvious parametrizatign, t) by means
of fibres =constant) and horizontal lifts of 3 (t=constant). Ify is a geodesic o3, with slope
¢ € R (slope measured with respect®), then~ is a helix in (X3, do?) whose curvature and
torsionr are given by

13
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_pt+2U
"Tire
and
B 1—pl—1¢?
12

Secondly, the converse also holds. Namely, given any heiix(33, do?), with curvatures
and torsionr, it can be viewed as a geodesic in a certain Hopf tul{&dfdo?). Indeed, let us just
considerS; = I1~1(3), 3 being a circle intdS?, ds?) with constant curvature = (k2 +72—1)/k
and take now a geodesic #y with slopel = (1 — 7)/k.

Thirdly, let L and A be the length of3 and the enclosed oriented area yn (S?, do?),
respectively. As U. Pinkall showed, [22; is isometric tdR? /T, I" being the lattice generated by
(L,2A) and(0, 27). We notice that, due to the holonomy, the horizontal liftg}aire not closed
in (X3, do?). Now the helixy lying in S3 is closed if and only if

_ 2 P
t=qvp*+4-73,
wheregq is a non zero rational number (otherwige= 0 and~y would be a geodesic i3, do?),
and therefore a trivial critical point gf"), andp is the curvature off.
Finally, letp andq be any real number and any non zero rational number, respectively. Then
we use (18) to get the slope, and (16) and (17) to compute the curvauncttorsionr of a closed
helix v in (X3, do?). Moreover,y will be anr-generalized free elastica provided thaand 7
satisfy (15). Thereforp andq satisfy

(rp+2(2r +1)0 — (r + 1)pt?)(p + 2¢) = 0.
Sincey was assumed to be non geodesic, we havesth@? -~ 0. So we bring (18) to the equation
rp+2(2r + 1)0 — (r +1)pf? = 0 to get

(r + 12 — )%

FAr 4+ DA+ 1)g* — 2 (3 + e + R

—4¢*(2r+1) = 0. (20)

From here we see that for any non zero rational numbge have exactly one positive solution
p? of the quoted quadratic equation. That can be summed up in the following:

Theorem 5.7 For any natural number-, there exists a one parameter family, },cq\ 0} Of
closed helices %3, do?) which arer-generalized free elastica.

Remark 5.8 Fromrp + 2(2r + 1)¢ — (r + 1) pf? = 0 we easily see how to getin terms ofp. It
suffices to write the quadratic equation

+1
(r+ 1)pv/p? +4g% — ((r +1)p® + 2(2r +1))q + TTp\/pz +4=0.

14
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We already know that for any non zero rational numépewe have exactly ong (up to the
sign). In contrast, the last formula says that eaalietermine exactly two values qf unless
p? = (2r + 1)%/(r(r + 1)), which corresponds tg = +3. Since both values aof are rational,
that means that the corresponding Hopf tor{i¥, do) have transverse foliations by closed free
elastic helices. As a consequence we obtain

Theorem 5.9 Letr be any natural number. For any non zero rational numbethere exists an
(r+1)-dimensional Willmore-Chen submanifald, = ®(v x S") in the pseudo-hyperbolic space
(H”+3, ho), v being anr-generalized free elastic closed helix in the once puncturediusithere
(23, do?) whose slopé is computed as above.

6. A general approach

We are going to extend the argument we have used in the last section to construct Willmore-
Chen submanifolds in the pseudo-hyperbolic space.

Let (M;,g1) and (Mo, g2) be two pseudo-Riemannian manifolds of dimensignand no,
respectively. Given a positive functiofidefined onM; (we can assume iff) > 0 if M; is
not compact), define the warped produlét x ¢ (M), that is, the product manifold/; x M,
endowed with the metric tensgr= g1 + £f2go, Wheree = +1, f being the warping function.
We simply write M = M; x ¢ (eM3) when the involved metrics are understood. From now on
(Ms,, g2) will be a homogeneous space a@idits isometry group. This action can be naturally
extended taV/ by defining

MxG — M
((m1,m2),a) — (m1,m2)-a=(mi,ms-a),

for any (m;, m2) € M anda € G. As the action of5 on M is transitive, the orbit of any point
m € M is nothing bufm| = {m1} x Ms. Then a preliminary result states as follows.

Proposition 6.1 Let N be a submanifold a#/ of dimensioms, + 1. ThenN is G-invariant if and
only if there exists a curve in A/; such thatV = v x ¢ (eM>).

Proof.  Itis easy to see that any submanifele ; (¢ M>) is G-invariant. Conversely, assume that
N is G-invariant. Then the orbip] = {m} x M; of anyp = (m;, m2) € N is any-dimensional
submanifold ofV. This proves thatV is foliated whose leaves are totally umbilic submanifolds
in (M, g) all of them diffeomorphic tal/2. In other words, the leaves of this foliation are nothing
but the fibres of the warped produgt/, g) along N. The transverse (orthogonal) distribution,
being of dimension one, can be integrated. Therefore, we can choose aydarii¢; such that
the submanifoldV writes down asV = v x s (e M>), which concludes the proof.

Now the main result states as follows.

Theorem 6.2 Let (M, g) = (My,g1) xy (Ma,e92) be a warped product, wher@\ls, g2) is a
compact homogeneous space of dimensignLet~ be an immersed closed curve (i1, g1 ).
The submanifoldV = v x ¢ (eM>) is a Willmore-Chen submanifold i/, g) if and only if vy
is a %“-generalized free elastica i\, f—lzgl). That means thay is a critical point of the

functional
n2+1
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 being the curvature function efinto (M, f—ggl).

Proof.  Since the Willmore-Chen variational problem is invariant under conformal changes of
the metric of the ambient space, we are allowed to consider a new metnid/ defined by

5 1 1
g= PQZ Pgl + €g2.

Therefore, Willmore-Chen submanifolds (/, g) and (M, g) agree. Moreover, we will profit
by the pseudo-Riemannian product structuré/df g). Let us denote b{N the smooth manifold
of (ny 4+ 1)-dimensional compact submanifolds(if/, g). The Willmore-Chen functional ol

writes down
1

Q(N) = /N (HLH) — 7)™ do,

H andr, standing for the mean curvature vector field and the extrinsic scalar curvativerof
(M, g), respectively, andv is the volume element oV relative to the induced metric. Now set
N¢ the submanifold ofN made up by those submanifolds which &envariant. By Proposi-
tion 6.1, we already know that; = {7 xy (¢M3) : ~ isanimmersed closed curve ii/; }.
Similarly, letC andCq be the set of critical point df? on N (i.e., the set of Willmore-Chen sub-
manifolds) and orNg, respectively. The principle of symmetric criticality of R.S. Palais, [21],
can be applied here, becauQds invariant under the action a¥ on (M, g). Observe thatz
acts through isometries, so thahas no influence. Hend@NNg = C». Now we are going to
compute2 onN¢. FirstQ writes down as

0y s (M) = [ ((HH) = 7)™ ds oo
X Ma

whereds stands for the arclength elementpinto (M, %gl) anddwvs is the volume element of
(Ma,eg2). As (M, g) is a pseudo-Riemannian product, it is not difficult to see thatanishes
identically and(H, H) = m#, x being the curvature function ofin (M, 7791). Thus we
obtain

vol(Ma, eg2) / gy n2+1
Q My)) = ——————+ d
(7 Xf (5 2)) (n2 + 1)n2+1 ’y(l‘i ) 2 S,

which finishes the proof.

7. Some applications

7.1. Let g; be any conformally flat Lorentzian metric on a tofli$ = S' x S!. It is known
that (72, g;) is complete, which is not guaranteed, in the realm of Lorentzian geometry, from the
compactness df’? (see for instance [23]). Let us denote fythe conformal flat metric. There
is a positive function, say : 72 — R, such thaty; = f2go. SetM3 = T2 x S! endowed with
the pseudo-Riemannian metgc= ¢, + ¢ f2dt?, wheree = +1 anddt? denotes the canonical
metric on the unit circl&'. The following statement shows the existence of Willmore tori in the
3-dimensional pseudo-Riemannian manif¢ld, ¢g), which topologically is the product of three
circles.
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Corollary 7.1 Let M3 = T? x S' endowed with the metrig = g, + ¢ f?dt?, whereg, is any
conformally flat Lorentzian metric di? and f the positive function o™ giving this conformal
flatness o being flat andy; = f2go). ThenY = v x s (¢S') is a Willmore torus in M3, g) if and

only if v is a closed free elastica in the Lorentzian flat tofdZ, go).

The proof is a straightforward computation from Theorem 6.2. Furthermore, one can construct
closed free elasticae {12, go) from free elasticae in the Lorentz-Minkowskplanel.? (see [6]).
7.2.Let (H3, go) be the standard anti De Sittérspace. Given any positive functigh: H; — R,
consider the metrig; = f?ho. Let (M, g) be the pseudo-Riemannian product manifld =
H3$ x M, endowed with the metrig = g¢ + f?cg2, (Ma, g2) being any compact homogeneous
space. Theny x M is a Willmore-Chen submanifold iG)M, g) if and only if ~ is a"QT“—
generalized closed free elasticaii?, go).

As above, one can fin§22—“—generalized closed free elasticae(ii$, go) for any non zero
rational number (see [6] again).

7.3. We will get 3-dimensional pseudo-Riemannian manifolds (either Riemannian or Lorentzian)
admitting a foliation whose leaves are non trivial Willmore tori (either Riemannian or Lorentzian).
These foliations will be calle@Vvillmore foliations Also we will say that the pseudo-Riemannian
manifold isWillmore foliated To do that we start with an immersed plane cuyvel ¢ R — R?

and a pair of positive functiong, fo : I — R. Let M = v x S! x S! endowed with the metric

given byg = ds?+ f2dt?+¢ f3dt3, keeping the above terminology. Itis clear thag conformal to

the pseudo-Riemannian product megridefined by = go + £dt3 on the manifold/ = N x St,

wheregy = dt® + (%)th% andN = v x S!. Notice that we have reparametrizetly % = f;(s).

We can now make a suitable choice of bgthand f> along~ in order to view( N, go) as a surface

of revolution inR3. On the other hand, the elasticity of parallels in a surface of revolution was yet
discussed in [8]. There it was shown that, besides right cylinders (all whose parallels are geodesics
and therefore trivial free elastic curves), the only surfaces whose parallels are all free elasticae are
the trumpet surfaces (which are free of geodesic parallels, see [8] for details). Then we have:

Corollary 7.2 Let (b, c) be a pair of real numbers, with> 0. Set/ = (-2, 2) — {0} and define
v:ICR — R?by

2
c 45 cC |/ ¢t 5 1 c
= (-5 =-4/1—- —s“ — —arc cos bl.
~(s) (43,2 43 - 23—1—)

Let f1, f2 : I — R? be two positive functions satisfyirfg(s) = ¢s%. ThenM = v x S' x S,
endowed with the metrig = ds® + f2dt3 + ¢ f2dt3, admits a Willmore foliation which is either
Riemannian or Lorentzian, according ¢ds 1 or —1, respectively.

7.4. The construction we made in 7.1 can be extended as follows(Mey) be any compact
Riemannian manifold angl any positive smooth function al/. Let N = M x S' endowed with

the metricgy = g +ef2dt?. From Theorem 6.2 and a remarkable result of N.Koiso, [16], we have
the following existence result for Willmore tori.

Corollary 7.3 There exist Willmore tori i{V, g) for any positive smooth functighon M.

Proof. We first apply Theorem 6.2 tQV, g¢). Given a closed curvg immersed in(), g), then
v x s (eS1) is a Willmore torus in(N, g¢) if and only if v is an elastica int¢ )M, %g). Now the
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existence of these curves in any compact Riemannian manifold is guaranteed by Koiso’s result
[16].

It should be noticed that the elastica(il, %; g) could be a closed geodesic. In fact, elasticae
appear as stationary solutions of a parabolic partial differential equation. The existence of such
a solution on the space of closed curves of fixed length is proved in [16]. This solution can be a
geodesic since geodesics are singular, stationary solutions of that equation.

7.5. The last application will show once more how powerful is our method.

Corollary 7.4 For any positive functiorf on a genus zero Riemann surfaktk there exist at least
three conformal minimal (maximaldf= —1) Willmore tori in M x ; (S') which are embedded.

This assertion comes easily from Theorem 6.2 combined with the following new ingredient. A
very classical result of L.Lusternik and L.Schnirelmann, [19], guarantees the existence of at least
three geodesics without self-intersections on any simply connected Riemannian ddirfadeat

means thaf M, f—gg) has at least three closed geodesics without self-intersections, which we will
denote byy;,i = 1,2,3. ThenN; = ~; xy (eSY),i = 1,2,3 are embedded Willmore tori

in M x (¢S'). Of course they are minimal (maximaldf = —1) with regard to the pseudo-
Riemannian metri%%g + edt?.

It should be noticed that this is the best possible result. In fact, just cNMsﬁ—g) to be an
ellipsoid. Then it has exactly three embedded closed geodesics. In this case we can obtain exactly
three conformal minimal (maximal) Willmore tori it/ x  (¢S') which are embedded. Actually,
we can obtain infinitely many others immersed Willmore tori.

We also observe that we have essentially covered the whole space of metkitslodeed, a
nice consequence of the Uniformization Theorem for Riemann surfaces ensures the existence of
exactly one conformal structure and therefore only one conformal class of metrics.

Finally, recall that compact minimal (maximal) surfaces are always Willmore surfaces only if
the ambient space has constant sectional curvature.
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