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Abstract

We exhibit a new method to find Willmore tori and Willmore-Chen submanifolds in spaces
endowed with pseudo-Riemannian warped product metrics, whose fibres are homogeneous
spaces. The chief points are the invariance of the involved variational problems with respect
to the conformal changes of the metrics on the ambient spaces and the principle of sym-
metric criticality. They allow us to relate the variational problems with that of generalized
elastic curves in the conformal structure of the base space. Among others applications we
get a rational one-parameter family of Willmore tori in the standard anti De Sitter3-space
shaped on an associated family of closed free elastic curves in the once punctured standard
2-sphere. We also obtain rational one-parameter families of Willmore-Chen submanifolds in
standard pseudo-hyperbolic spaces. As an application of a general approach to our method,
we give nice examples of pseudo-Riemannian3-spaces which are foliated with leaves being
non-trivial Willmore tori. More precisely, the leaves of this foliation are Willmore tori which
are conformal to non-zero constant mean curvature flat tori.

1. Introduction

Let N be a compact manifold of dimensionn, which we assume without boundary, otherwise
minor changes can be done to get boundary versions of our results. LetN be the smooth manifold
of immersionsφ of N in a pseudo-Riemannian manifold(M, g̃). The Willmore-Chen functional
Ω is defined onN to be

Ω(φ) =
∫

N
(〈H, H〉 − τe)

n
2 dv,

whereH and τe denote, respectively, the mean curvature vector field and the extrinsic scalar
curvature function ofφ, anddv is the volume element of the induced metric (viaφ) onN (see [14]
and [27]).

The variational problem associated with this functional is known in the literature as the Willmore-
Chen variational problem. It was shown by B.Y. Chen, [13], that this functional is invariant under
conformal changes of the metric̃g of the ambient spaceM . Its critical points are called Willmore-
Chen submanifolds. Whenn = 2, the functional essentially agrees with the well known Willmore
functional and its critical points are the so called Willmore surfaces.

Obvious examples of Willmore surfaces, in spaces of constant curvature, are those withH ≡
0, in particular minimal and maximal surfaces. Articles showing different methods to get examples
of non-minimal Willmore surfaces in standard spheres are well known in the literature (see, for
instance, [4], [10], [15] and [22]). Examples in non-standard 3-spheres are given in [2].
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The first non-trivial examples of Willmore-Chen submanifolds (of course with dimension
greater than two, namely they are of dimension four) were obtained in [9]. In [3], the first author
gave ample families of Willmore tori (either Riemannian or Lorentzian) in pseudo-Riemannian
manifolds with non constant curvature. In particular he obtained nice examples of Riemannian
Willmore tori in some kind of spacetimes close to Robertson-Walker spacetimes.

However two open problems drew our attention. The first one is that no examples of Willmore
surfaces are known in the anti De Sitter space. Also, no examples of nontrivial Willmore-Chen
submanifolds in pseudo-Riemannian spaces (with non zero index) are known in the literature.
These two problems will be solved in this paper. Both are applications of the technique we will
exhibit later.

The plan of the paper can be summarized as follows. After some preliminaries given in the
next section, we will obtain the result of U.Pinkall, [22], but using a direct approach. To do that we
will integrate the Euler-Lagrange equations for Willmore surfaces in spaces of constant curvature,
which were computed in [25].

In three dimensional Lorentzian geometry the anti De Sitter 3-spaceH3
1 behaves, in some

sense, as the 3-sphereS3 does in Riemannian geometry (see, for instance, [1] and [7] to compare
this claim from the point of view of the behaviours of general helices). In particular, two Hopf
maps can be defined fromH3

1 overH2 andH2
1, respectively (see [6] and Section 2 for notation),

the first one having closed fibres. Therefore to find Willmore tori inH3
1 it seems natural to deal

with the class of Hopf tori and look for solutions of the corresponding Euler-Lagrange equations
for the Willmore functional on this class. Two facts should be noted. On one hand, concerning
Hopf tori, we mean surfaces which have a certain degree of symmetry and project, via the Hopf
map, into closed curves in the hyperbolic 2-planeH2. On the other hand, the Euler-Lagrange
equations obtained by Weiner for Riemannian manifolds work also here. However, to integrate
these equations, we can use a direct method or a method based on the nice symmetries of the Hopf
tori to show that there exist no Willmore Hopf tori inH3

1.
In Section 4 we deal with the canonical variation of the standard metric inH3

1 (see [11] for
details) to get a one-parameter family of pseudo-Riemannian submersions over the hyperbolic2-
plane. We use a similar argument to that exposed in [2] to find interesting examples of Willmore
tori in non standard anti De Sitter three spaces (these endowed with metrics of constant scalar
curvature) shaped on certain closed elastic curves in the standard hyperbolic 2-plane.

Section 5 is the main one of the paper. We present a new method to obtain examples of
Willmore-Chen submanifolds in the pseudo-hyperbolic spaceHn

r . We first notice that the metric
onHn

r , obtained as the pseudo-Riemannian product of the standard metric in the once punctured
(n − r)-sphereΣn−r and the negative definite standard one in ther-sphere, is conformal to the
standard metric onHn

r . Then we use the homogeneous structure of ther-sphere to determine the
submanifolds ofHn

r which areSO(r+1)-invariant. Next by using the invariance of the Willmore-
Chen variational problem under conformal changes of the ambient metric and the principle of
symmetric criticality, [21], we are able to reduce the problem of findingSO(r + 1)-symmetric
Willmore-Chen submanifolds inHn

r to that of closed generalized elastic curves inΣn−r. That
means critical points of the functional

Fr(γ) =
∫

γ
(κ2)

r+1
2 ds

(κ being the curvature function ofγ) defined on the smooth manifold of closed curves inΣn−r.
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This method will allow us to give a wide family of Lorentzian Willmore tori in the standard
anti De Sitter 3-space, which come from closed free elastic curves in the once punctured 2-sphere
(see Corollaries 5.5 and 5.6).

We also determine, for any natural numberr and any non-zero rational number, a unique
closed helix inΣ3 which is a critical point ofFr (see Theorem 5.7). Therefore we obtain non
trivial Willmore-Chen submanifolds in the pseudo-hyperbolic spaceH3+r

r (see Theorem 5.9).
In the next section we generalize the above argument to a remarkable and more general context

(see Theorem 6.2). Then we apply it to get some consequences in the last section. We first obtain
Willmore tori in some conformal structures on spaces which topologically are products of three
circles (see Corollary 7.1). Even so, these result is widely extended with the aid of an existence
result for elasticae due to N. Koiso [16] (see Corollary 7.3). We also make use of our method
to give examples of pseudo-Riemannian 3-spaces which admits foliations whose leaves are non-
trivial Willmore tori. These foliations come from the free elasticity of all parallels of certain
surfaces of revolution obtained in [8] (see Corollary 7.2).

2. Setup

LetRn+2
t be the(n+2)-dimensional pseudo-Euclidean space whose metric tensor is given by

〈x, x〉 = −
t∑

i=1

dxi ⊗ dxi +
n+2∑

j=t+1

dxj ⊗ dxj ,

where(x1, . . . , xn+2) is the standard coordinate system. LetMn+1(ρ) beRn+1
s if ρ = 0 or

the (n + 1)-dimensional complete and simply connected space with constant sectional curvature
K = sign(ρ)/ρ2 and indexs if ρ 6= 0. For eachρ 6= 0, a model forMn+1(ρ) is the pseudo-
Euclidean sphereSn+1

s (ρ) if ρ > 0 and the pseudo-Euclidean hyperbolic spaceHn+1
s (ρ) if ρ < 0,

where
Sn+1

s (ρ) = {x ∈ Rn+2
s : 〈x, x〉 = ρ2} (ρ > 0)

and
Hn+1

s (ρ) = {x ∈ Rn+2
s+1 : 〈x, x〉 = −ρ2} (ρ < 0).

Throughout this paper,x : Mn+1(ρ) → Rn+2
t will denote the standard immersion ofMn+1(ρ) in

Rn+2
t . For the sake of brevity we will writeSn+1(ρ) by Sn+1

0 (ρ) andSn+1
s by Sn+1

s (1). A similar
convention for pseudo-hyperbolic spaces will be used.

One of the most classical topics in the calculus of variations was proposed by J. Bernoulli: the
problem of the elastic rod. According to D. Bernouilli’s idealization, all kinds of elastica minimize
total squared curvature among curves of the same length and first order boundary data. Recently,
Bryant-Griffiths, [12], and Langer-Singer, [17, 18], have generalized the notion of elastica to space
forms and studied them from a geometrical point of view. Letγ : I →Mm(ρ) be a closed curve
in Mm(ρ), thenγ is said to be anλ-elastica(or λ-elastic curve) if it is an extremal point of the
functional

Gλ(γ) =
∫ L

0
(〈∇T T,∇T T 〉+ λ)ds,

for someλ, whereds andL stand for the arclength and length ofγ, respectively. The Lagrange
multiplier λ has been included partly because the case of constrained arclength will be useful later.
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It is called afree elasticaif λ = 0; in this case,γ is a critical point ofG(γ) = G0(γ) among closed
curves which are allowed to grow in length. This lack of constraint of length makes existence an
interesting and non trivial question in the calculus of variations.

We can assume, without loss of generality, thatγ is arclength parametrized and let{E1 =
T,E2 = N,E3 = B, . . . , Em} be a Frenet frame alongγ, with curvature functions{κ1 =
κ, κ2 = τ, . . . , κm−1}, satisfying the Frenet equations

∇T T = ε2κN,

∇T N = −ε1κT + ε3τB,
...

...

∇T Em = −εm−1κm−1Em−1,

where, as usual,T = γ′, 〈Ei, Ei〉 = εi, and∇ stands for the Levi-Civita connection onMm(ρ).
Then the Euler-Lagrange equation reduces to the following system of differential equations

2ε2κ
′′ + ε1κ

3 − 2ε3κτ2 + ε1ε2(2c− λ)κ = 0, (2)

2κ′τ + κτ ′ = 0, (3)

κτδ = 0, (4)

whereδ ∈ span{T,N, B}⊥. If γ does not lie in a 2-dimensional totally geodesic submanifold of
Mm(ρ), then the equation (4) implies thatδ = 0 and so the curveγ lies in a 3-dimensional totally
geodesic submanifold ofMm(ρ). Hence we can assume without loss of generality thatn = 2 or
n = 3. On the other hand, from (3) we deduce thatκ2τ = a is constant.

Another interesting topic in the calculus of variations is concerned with the total mean curva-
ture of immersed manifolds. The first result of this subject is due to T.J. Willmore, [28], and since
then a surfaceM in R3, φ : M → R3 being the immersion, is called aWillmore surfaceif it is an
extremal point of the functional

Ω(φ) =
∫

M
α2dA,

whereα anddA stand for the mean curvature function ofM in R3 and the area element ofM , re-
spectively. In [25], Weiner extends this notion to an arbitrary 3-dimensional Riemannian manifold
M̃ : a surfaceM ⊂ M̃ is said to be stationary (or Willmore surface) if it is an extremal point of

Ω(φ) =
∫

M
(〈H, H〉+ R′)dA,

whereR′ is the sectional curvature of̃M alongM andH denotes the mean curvature vector field.
Of special interest is the case wheñM = M3(ρ) is of constant curvatureK. We define the
operatorW over sections of the normal bundle ofM intoM3(ρ) as follows

W : T⊥M → T⊥M, W(ξ) = (∆D + 2〈H, H〉I − Ã)ξ,

whereÃ denotes the Simon operator, [24]. A cross sectionξ will be called a Willmore section if
W(ξ) = 0. Then the operatorW naturally appears provided that one computes the first variation
formula ofΩ. That can be obtained in a similar way to that given by J. L. Weiner (see [25]) in the
definite case. Now Willmore surfaces are nothing but extremal points of the Willmore functional
and they are characterized from the fact that their mean curvature vector fields are Willmore fields.
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More generally, let(Mn, g) be ann-dimensional submanifold of a Riemannian manifold
(M̃, g̃). Then(〈H, H〉 − τe)g is invariant under any conformal change of the ambient metric
g̃, τe standing for the extrinsic scalar curvature with respectg̃, [14]. WhenM̃ = Mm(ρ) and
Mn is compact thenτe = τ − K, τ being the scalar curvature of(Mn, g), andM is said to be
stationary (or aWillmore-Chen submanifold) if it is an extremal point of

Ω(φ) =
∫

M
(〈H, H〉 − τe)

n
2 dV,

dV standing for the volume element onM . The variational problem associated with this functional
Ω is an extrinsic conformal invariant and so are the Willmore-Chen submanifolds.

3. Willmore tori in the 3-sphere

Let π : S3 → S2(1/2) the usual Hopf fibration, which is a Riemannian submersion relative to
canonical metrics on both spheres (we will follow the notation and terminology of [11] and [20]).

For any unit speed curveγ : I ⊂ R → S2(1/2), we can talk about horizontal liftsγ(s) of
γ(s) and obtain unit speed curves inS3. All these curves define the complete liftMγ = π−1(γ)
of γ. This is a flat surface which we will call the Hopf tube overγ. It is easy to see thatMγ can
be parametrized by

Ψ(s, t) = eitγ(s),

Ψ being a mappingI × R → S3 andγ a fixed horizontal lift ofγ.
If γ is a closed curve inS2(1/2) of lengthL enclosing an oriented areaA, then its Hopf tube

Mγ is a flat torus (the Hopf torus overγ) which is isometric toR2/Γ, Γ being the lattice generated
by (0, 2π) and(L, 2A).

Let us consider the manifold of all immersions of a torus inS3. Then the Hopf tori correspond
with those immersions which are invariant under the usualS1-action onS3 in order to getS2(1/2)
as the orbit space. The Willmore functional of the manifold of immersions is invariant for this
S1-action. Then we can use the nice argument of U. Pinkall (see [22]), based on the principle of
symmetric criticality of R. S. Palais, [21], to reduce the problem of finding symmetric Willmore
tori (i.e., Willmore Hopf tori) inS3 to that of finding closed elasticae (with Lagrange multiplier
λ = 4) in S2(1/2). This is the way used by Pinkall, [22], to get infinitely many embedded Hopf
tori which are Willmore tori.

We wish to point out that Pinkall’s result can be also obtained by a straightforward computa-
tion. To do that we will solve the Euler-Lagrange equation for Willmore tori in the3-sphere (see
[25] for details). That equation turns out to be

∆DH = Ã(H)− 2α2H.

H being the mean curvature vector field of the torus inS3, α2 = 〈H, H〉 the squared of the
mean curvature function and∆D the Laplacian relative to the normal connection. All geometric
invariant appearing in (6) can be computed from (5).

The shape operatorA of Mγ is given by

AXs = κXs + Xt, AXt = Xs,

whereκ = κ◦π, κ being the curvature function ofγ in S2(1/2) (see [6] for details).
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We also have that

H =
1
2
(trA)ξ =

1
2
κξ, ∆DH = −1

2
κ′′ξ,

ξ being a unit normal vector field ofMγ in S3 andκ′′ = d2κ(s)
ds2 .

Finally, it is easy to see that̃A(H) = |A|2H, so that

Ã(H) =
1
2
κ(κ2 + 2)ξ.

Now bring (8) and (9) to (6) to get

2κ′′ + κ3 + 4κ = 0.

This is nothing but the Euler-Lagrange equations (2) and (3) for4-closed elastic curves in
S2(1/2) (see also [18, eq.1.2]).

Summing up, we have shown thatMγ is a solution of (6), and therefore a Willmore surface in
S3, if and only ifγ is a solution of (10), and so a4-elastica inS2(1/2).

Remark 3.1 In some sense, the anti De Sitter and De Sitter worlds,H3
1 andS3

1, respectively,
behave as the spherical and hyperbolic space formsS3 andH3, respectively. A nice example
illustrating this fact arises when one studies evolution equations associated with Killing flows in
space forms (either Riemannian or Lorentzian). In particular, curves which evolves under a certain
flow without changing shape, only position. For instance, general helices (see [1] and [7]).

In studying the anti De Sitter3-spaceH3
1, we have found a couple of Hopf mapsπj : H3

1 →
H2

j (−1/2), j = 0, 1, according to the base space is the hyperbolic2-planeH2
0 ≡ H2 or the pseudo-

hyperbolic2-planeH2
1 (see [6] for details). We wish to study the Willmore problem inH3

1 and, in
particular, we are trying to get Willmore surfaces inH3

1 coming from curves inH2
j .

The computations we have made inS3, via the usual Hopf map, hold now and the Euler-
Lagrange equationW(H) = 0 for Mγ,j = π−1

j (γ), reduces to the Euler-Lagrange equation

(−1)j+12κ′′ − κ3 + 4εκ = 0

for (−4)-elastic curves inH2
j , ε being the sign of the surfaceMγ,j .

We wish to point out that fibres ofπ0 are circles, and thusMγ ≡ Mγ,0 is a torus provided
thatγ is closed, whereas fibres ofπ1 are not compact. Therefore, given a closed curveγ in H2,
thenMγ = π−1

0 (γ) is a (Lorentzian) Willmore torus if and only ifγ is a(−4)-elastic curve inH2.
Unfortunately, a recent result of Dan Steinberg in his PhD dissertation, kindly communicated to
us by David A. Singer, shows that there is no closed(−4)-elasticae inH2. As a consequence, one
should conclude that there are no (Lorentzian) Willmore tori in the anti De Sitter3-spaceH3

1.

4. Willmore tori in non-standard anti De Sitter 3-space

Let π : (M, g) → (B, h) be a pseudo-Riemannian submersion. We can define a very inter-
esting deformation of the metricg by changing the relative scales ofB and the fibres (see [11]).
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More precisely, it is defined the canonical variationgt, t > 0, of g by setting

gt|V = t2 g|V ,

gt|H = g|H ,

gt(V,H) = 0,

whereV andH stand for vertical and horizontal distributions, respectively, associated with the
submersion. Thus we obtain a one-parameter family of pseudo-Riemannian submersionsπt :
(M, gt) → (B, h) with the same horizontal distributionH, for all t > 0. Relative to O’Neill
invariantsAt andT t of these pseudo-Riemannian submersions, we will just recall a couple of
properties. First, ifg has totally geodesic fibres (T ≡ 0), the same happens forgt, for all t > 0.
Furthermore,

At
Y U = t2AY U, (11)

for anyY ∈ H andU ∈ V.
Now we consider the canonical variation of the Hopf fibrationπ = π0 : H3

1 → H2(−1/2) to
get a one-parameter family of pseudo-Riemannian submersionsπt : (H3

1, gt) → (H2(−1/2), g0).
Let γ be a unit speed curve immersed inH2(−1/2). SetTγ,t = π−1

t (γ). ThenTγ,t is a Lorentzian
flat surface immersed inH3

1, that will be called the Lorentzian Hopf tube overγ. As the fibres of
πt areH1

1, which topologically are circles, thenTγ,t is a Hopf torus in(H3
1, gt), provided thatγ is a

closed curve. It is obvious that the groupG = S1 naturally acts through isometries on(H3
1, gt), for

all t > 0, getting(H2(−1/2), g0) as the orbit space. The following result, whose proof is omitted,
gives a nice characterization of theG-invariant surfaces in(H3

1, gt).

Proposition 4.1 Let S be an immersed surface into(H3
1, gt). ThenS is G-invariant if and only

if S is a Lorentzian Hopf tubeTγ,t = πt(γ) over a certain curveγ immersed in the hyperbolic
2-plane(H2(−1/2), g0).

Remark 4.2 The canonical variation of a pseudo-Riemannian submersion has been used to get
examples of homogeneous Einstein metrics (see [11] for a nice and complete exposition on the
subject). In dimension three, Einstein metrics correspond with constant sectional curvature met-
rics. Therefore, the standard metricg = g1 is the only Einstein metric that one can find on the anti
De Sitter3-space. However, we can use a well known formula to compute the scalar curvature of
the canonical variation of a pseudo-Riemannian submersion (see [11] again), to find that(H3

1, gt),
t > 0, is a one-parameter family of pseudo-Riemannian manifolds with constant scalar curvature,
and so the nicest metrics on the anti De Sitter3-space after the canonical one.

In the following we will use the principle of symmetric criticality in order to reduce the prob-
lem of finding Lorentzian Willmore tori in(H3

1, gt), t > 0, to that of finding closedλ-elasticae in
(H2(−1/2), g0).

Theorem 4.3 Let πt : (H3
1, gt) → (H2(−1/2), g0), t > 0, be the canonical variation of the

pseudo-Riemannian Hopf fibration. Letγ be a closed immersed curve in(H2(−1/2), g0) and
Tγ,t = π−1

t (γ) its Lorentzian Hopf torus. ThenTγ,t is a Willmore surface in(H3
1, gt) if and only if

γ is an elastica in(H2(−1/2), g0) with Lagrange multiplierλ = −4t2.
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Proof. Let T = S1 × S1 be a compact surface of genus one, i.e.,T is a topological torus.
Consider the smooth manifold of immersions ofT into (H3

1, gt), sayM = {φ : T → (H3
1, gt) :

φ is an immersion}. The Willmore functional onM is

Ω(φ) =
∫

T
(〈H, H〉+ Rt)dv,

H andRt standing for the mean curvature vector field ofT and the sectional curvature of(H3
1, gt),

measured with respect to the tangent plane to(T, φ), respectively. It is clear that, for anyeiθ ∈ S1,
we have thatΩ(φ) = Ω(eiθ · φ). Now let us denote byC the set of critical points ofΩ in M,
i.e., C is the set of genus one Willmore surfaces. LetMG be the submanifold ofM made up by
those immersions ofT which are (G = S1)-invariants and letCG be the set of critical points
of Ω restricted toMG. The principle of symmetric criticality (see [21]) can be used here to
find thatC∩MG = CG. Now from Proposition 4.1 we obtain thatCG = {Tγ,t = π−1

t (γ) :
γ is an immersed closed curve in(H2(−1/2), g0)}. To computeΩ(Tγ,t), i.e., the Willmore func-
tional onCG, we first notice thatα = 1

2κ, κ being the curvature function ofγ in (H2(−1/2), g0).
Now we are going to computeRt. Let X = γ′ be the unit tangent vector field alongγ and
X its horizontal lift (for anyt > 0) to (H3

1, gt). Then, at any point, the tangent plane ofTγ,t

is spanned byX andU , U being a unit (with respect togt) timelike vector field which is tan-
gent to the fibres ofπt. Then the tangent plane ofTγ,t is a mixed (also called “vertizontal”,
see [26]) section ofπt : (H3

1, gt) → (H2(−1/2), g0). As gt has geodesic fibres, we know that
Rt = −gt(At

X
U,At

X
U), At being the O’Neill invariant for the submersiongt, which is known to

be (see [11])
At

X
U = ∇t

X
U,

∇t being the Levi-Civita connection ofgt. Then we have

−1 = gt(U,U) = −t2g(U,U) = −g(tU, tU),

soξ = tU is a unit timelike vector field with regard tog. Now, from [6, p. 3], and bearing in mind
that∇t

X
U is horizontal, we get

gt(∇t
X

U, iX) =
1
2
gt(U, [iX, X])

=
1
2
gt(U,∇iXX −∇XiX)

=
1
2
gt(U,−gt(X,X)ξ − gt(iX, iX)ξ)

=
1
2
gt(U,−2ξ)

= −t2g(U, ξ) = t. (12)

On the other hand,

gt(∇t
X

U,X) =
1
2
{Xgt(U,X) + Ugt(X, X)−Xgt(X, U)

− gt(X, [U,X]) + gt(U, [X, X]) + gt(X, [X, U ])}
= 0. (13)
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From (12) and (13) we deduce that
∇t

X
U = tiX.

Hence,
Rt = −gt(tiX, tiX) = −t2.

Let L be the length ofγ. As the fibres ofgt are circles of radiit, we have

Ω(Tγ,t) =
∫

π−1
t (γ)

(α2 + Rt)dv =
∫ L

0

∫ 2πt

0

(
1
4
κ2 − t2

)
dsdr =

πt

4

∫ L

0
(κ2 − 4t2)ds.

Remark 4.4 The canonical variationgt of the standard metricg1 = g onH3
1 provides an easy and

useful way to get infinitely many Willmore tori in(H3
1, gt). In fact, in working with the pseudo-

Riemannian Hopf fibration, we were not able to produce Lorentzian Hopf Willmore tori intoH3
1

by pulling back elasticae in(H2(−1/2), g0). This is because the Lagrange multiplier we found
is λ = −4, which is not permitted (see Remark 3.1). Now, by applying Theorem 4.3 and results
by Langer and Singer, [18], we give, fort ∈ (0, 1), infinitely many Willmore tori in(H3

1, gt). It
is worth pointing out that, in particular, any curveγ of constant curvatureκ0 in (H2(−1/2), g0)
can be realized as an elastica in(H2(−1/2), g0) with Lagrange multiplierλ = κ0 − 8. Now γ is
closed provided thatκ2

0 > 4, so that takingκ2
0 ∈ (4, 8), Tγ,t = π−1

t (γ) is a Lorentzian Willmore
torus with constant mean curvature in(H3

1, gt), wheret =
√

2− (κ2
0/4).

5. Willmore-Chen submanifolds in the pseudo-hyperbolic space

In this section we are going to introduce a new method to construct critical points of the
Willmore-Chen functional in the pseudo-hyperbolic spaceHn

r = Hn
r (−1). First we will write

Hn
r as a warped product with base space the standard hyperbolic spaceHn−r. Then we will use

the conformal invariance of the Willmore-Chen variational problem to make a conformal change
of the canonical metric ofHn

r . Next we use the principle of symmetric criticality of R. Palais,
[21], to reduce the problem to a variational one for closed curves in the once punctured standard
(n− r)-sphere.

5.1. Hn
r as a warped product

Given0 < r < n, let

Hn−r = {(x0, x) ∈ R × Rn−r : −x2
0 + 〈x, x〉 = −1 andx0 > 0}

the hyperbolic(n− r)-space and

Hn
r = {(ξ, η) ∈ Rr+1 × Rn−r : −〈ξ, ξ〉+ 〈η, η〉 = −1}

the pseudo-hyperbolicn-space. They are hypersurfaces inRn−r+1
1 andRn+1

r+1 , respectively. The
induced metrics on these spaces, from those in the corresponding pseudo-Euclidean spaces, define
standard metricsh0 onHn

r andg0 onHn−r, both with constant curvature−1.

9
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Let Sr be the standard unitr-sphere endowed with its canonical metricdσ2 and consider the
mappingΦ : Hn−r × Sr → Hn

r defined by

Φ((x0, x), u) = (x0u, x).

It is not difficult to see thatΦ defines a diffeomorphism whose inverse isΦ−1(ξ, η) = ((|ξ|, η), ξ/|ξ|).
For any curveβ(t) = ((x0(t), x(t)), u(t)) in Hn−r × Sr we have

∣∣dΦβ(t)(β
′(t))

∣∣2 = −x′0(t)
2 + |x′(t)|2 − x0(t)2|u′(t)|2.

Let f : Hn−r → R be the positive function given byf(x0, x) = x0 and consider the metric
g = g0 − f2dσ2 onHn−r × Sr. The pseudo-Riemannian manifold(Hn−r × Sr, g) is called the
warped productof base(Hn−r, g0) and fibre(Sr,−dσ2) with warping functionf .

It is usually denoted by(Hn−r, g0)×f (Sr,−dσ2) orHn−r×f (−Sr) when the metrics on the
base and fibre are understood (see [11] and [20] for details). Now the formula (14) shows thatΦ
is an isometry betweenHn−r ×f (−Sr) and(Hn

r , h0).
Consider a new metrich onHn

r defined by

h =
1
f2

h0 =
1
f2

g0 − dσ2,

with the obvious meaning by removing the pulling back viaΦ. Thus (Hn
r , h) is the pseudo-

Riemannian product of(Hn−r, 1
f2 g0) and(Sr,−dσ2). Finally it is not difficult to see that(Hn−r, 1

f2 g0)
has constant sectional curvature 1, so that it can be identified, up to isometries, with the once punc-
tured standard(n− r)-sphere(Σn−r, dσ2). Consequently,(Hn

r , h) is nothing but(Σn−r, dσ2) ×
(Sr,−dσ2), up to isometries.

5.2. SO(r + 1)-invariant submanifolds in Hn
r

For any immersed curveγ : [0, L] → Hn−r, we define the semi-Riemannian(r + 1)-
submanifoldΥγ = Φ(γ × Sr). It is clear thatΥγ has indexr and we will refer toΥγ as the
tube overγ. Now letG = SO(r +1) be the group of isometries of(Sr,−dσ2). Obviously,G acts
transitively on(Sr,−dσ2). So we define an action ofG onHn

r as follows

a · (ξ, η) = Φ(a · Φ−1(ξ, η)) = (a(ξ), η),

for anya ∈ G.
This action is realized through isometries of(Hn

r , h0). The following statement characterizes
the tubes over curves inHn−r as symmetric points of the above mentionedG-action.

Proposition 5.1 LetM be an(r + 1)-dimensional submanifold inHn
r . ThenM is G-invariant if

and only ifM is a tubeΥγ over a certain curveγ in Hn−r.

Proof. Let M be aG-invariant submanifold of dimensionr + 1. For anyp ∈ M , write p =
(ξ, η) = Φ((x0, x), u) = (x0u, x), whereu ∈ Sr. Now theG-orbit throughp is given by

[p] = {a · p : a ∈ G} = {(x0a(u), x) : a ∈ G} = (x0Sr, x) ,

where we use thatG acts transitively onSr. This proves thatM is foliated byr-spheres, so that
we can consider the orthogonal distribution to this foliation. Since it is one dimensional, we can
integrate it to get a curveγ(t) = (x0(t), x(t)) in Hn−r with Φ(γ(t) × Sr) = Υγ = M . The
converse is trivial.

10
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5.3. Critical points of F r(γ) =
∫

γ
(κ2)

r+1
2 ds

Now we deal with the functional

Fr(γ) =
∫

γ
(κ2)

r+1
2 ds

defined on the manifold of regular closed curves (or curves satisfying given first order boundary
data) in a given pseudo-Riemannian manifold, wherer stands for any natural number (even though
all computations also hold ifr is a real number). Notice that we write the integrand in that form to
point out that it is an even function of the curvatureκ. AlsoF1 agrees withG, which is the elastic
energy functional for free elasticae.

Letγ : I ⊂ R → Sm be a unit speed curve in the unitm-sphere with curvatures{κ, τ, . . .} and
Frenet frame{T = γ′, ξ2, . . . , ξm}. Given a variationΓ := Γ(s, t) : I × (−ε, ε) → Sm of γ, with
Γ(s, 0) = γ(s), we have the associated variation vector fieldW (s) = ∂Γ

∂t (s, 0) alongγ. We will
use the notation and terminology of [18]. SetV (s, t) = ∂Γ

∂s , W (s, t) = ∂Γ
∂t , v(s, t) = |V (s, t)|,

T (s, t) = 1
vV (s, t), κ(s, t) = |∇T T |2,∇ being the Levi-Civita connection ofSm. The following

lemma in [18] collects some basic facts which we will use to find the Euler-Lagrange equations
relative toFr.

Lemma 5.2 With the above notation, the following assertions hold:

[V, W ] = 0;
∂v

∂t
= 〈∇T W,T 〉v;

[W,T ] = −〈∇T W,T 〉T ;
[[W,T ], T ] = T (〈∇T W,T 〉)T ;

∂κ2

∂t
= 2〈∇2

T W,∇T T 〉 − 4〈∇T W,T 〉κ2 + 2〈R(W,T )T,∇T T 〉,

R being the Riemann curvature tensor ofSm.

To compute∂
∂tFr(γ) = ∂

∂tFr(Γ(s, t)), we use this lemma and a standard argument involving
integration by parts. Then we considerFr defined on a manifold which only contains either
regular closed curves or curves satisfying first order boundary data onSm in order to drop out
obvious boundary terms which appear in the expression of that variation. As a matter of fact,
∂
∂t

∣∣
t=0

Fr(Γ(s, t)) = 0 allows us to get the following Euler equation, which characterizes the
critical points ofFr on the quoted manifolds of curves:

(κ2)(r−1)/2∇3
T T

+2
d
ds

((κ2)(r−1)/2)∇2
T T

+{(κ2)(r−1)/2 +
d2

ds2
((κ2)(r−1)/2) +

2r + 1
r + 1

(κ2)(r+1)/2}∇T T

+
2r + 1
r + 1

d
ds

((κ2)(r+1)/2)T = 0.

From here and the Frenet equations forγ, we find the following characterization of the critical
points ofFr.

11
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Proposition 5.3 Letγ be a regular curve inSm with curvatures{κ, τ, δ, . . .}. Thenγ is a critical
point of

Fr(γ) =
∫

γ
(κ2)(r+1)/2ds

if and only if the following equations hold:

rκ′′ +
r

r + 1
κ3 − κτ2 + κ +

r(r − 1)
κ

(κ′)2 = 0,

(κ2)rτ = 0,
δ = 0.

In particular, γ lies in someS2 or S3 totally geodesic inSm.

From now on we will callr-generalized elasticaeto the critical points ofFr. In particular,
free elasticae are nothing but 1-generalized elasticae.

5.4. A key result

We are going to characterize the tubes in(Hn
r , h0) which are Willmore-Chen submanifolds.

Theorem 5.4 Let γ be a fully immersed closed curve in the hyperbolic spaceHn−r. The tube
Υγ = Φ(γ×Sr) in (Hn

r , h0) is a Willmore-Chen submanifold if and only ifγ is a generalized free
elastica in the once punctured unit sphere(Σn−r, dσ2). In particular,n− r 6 3.

Proof. Given a closed curveγ in Hn−r, let Y be the smooth manifold of all immersions of
γ × Sr in (Hn

r , h0), i.e. Y = {φ : γ × Sr → (Hn
r , h0) : φ is an immersion}. The Willmore-Chen

functional onY writes down as

Ω(φ) =
∫

γ×Sr

(〈H, H〉 − τe)
r+1
2 dv,

H andτe standing for the mean curvature vector field and the extrinsic scalar curvature function of
φ, respectively, anddv being the volume element associated with the induced metric. Denote byφ̃
the immersionφ when it is endowed with the induced structure coming from the metrich = 1

f2 h0.
Since the Willmore-Chen variational problem and, in particular, the Willmore-Chen functional are
invariants under conformal changes of the ambient metric, we have

Ω(φ̃) = Ω(φ).

Let C be the set of critical points ofΩ onY, i.e.,C is the set of Willmore-Chen immersions of
γ × Sr in (Hn

r , h0). Let YG be the submanifold ofY made up byG-invariant immersions andCG

the set of critical points ofΩ when it is restricted toYG. By using again the principle of symmetric
criticality of Palais, [21], we have

C∩YG = CG.

SinceYG in nothing but the set of tubes over closed curves in the hyperbolic spaceHn−r, that is
YG = {Φ(γ × Sr) : γ ⊂ Hn−r}, we can compute the restriction ofΩ to YG to get

Ω(Φ(γ × Sr)) =
1

(r + 1)r+1

∫

γ×Sr

(
κ2

) r+1
2 dv

=
vol(Sr,−dσ2)

(r + 1)r+1

∫

γ

(
κ2

) r+1
2 ds,

12
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whereκ stands for the curvature function ofγ in the once punctured unit sphere(Σn−r, dσ2) =
(Hn−r, 1

f2 g0). Notice that we have used the metrich on Hn
r to take advantage of the pseudo-

Riemannian product structure of(Hn
r , h) = (Σn−r, dσ2) × (Sr,−dσ2). This proves the first part

of the statement.
As for the second one, just combine Proposition 5.3 with the fullness assumption.

5.5. Some examples

In order to give examples of non trivial Willmore-Chen submanifolds in the pseudo-hyperbolic
space(Hn

r , h0), we apply Theorem 5.4. To do that, we start with a fully immersed closed curveγ
in the hyperbolic(n−r)-spaceHn−r, with n−r 6 3, and then we viewHn−r as a once punctured
(n− r)-sphere(Σn−r, dσ2). Therefore, the first case we will consider isn = 3 andr = 1. Then
Theorem 5.4 applied here writes down as follows:

Corollary 5.5 Letγ be an immersed closed curve in the hyperbolic2-plane. The Lorentzian tube
Υγ = Φ(γ×S1) is a Willmore torus in the3-dimensional anti De Sitter space(H3

1, h0) if and only
if γ is a free elastica in the once punctured unit2-sphere(Σ2, dσ2).

The complete classification of closed free elasticae in the standard2-sphere was achieved by
J.L. Langer and D.A. Singer in [18]. That classification can be briefly and geometrically described
as follows: Up to rigid motions in the unit2-sphere, the family of closed free elasticae consists of
a geodesicγ0, say the equator, and an integer two parameter family{γm,n : 0 < m < n, m, n ∈
Z}, whereγm,n means that it closes up aftern periods andm trips around the equatorγ0.

As a consequence we have

Corollary 5.6 There exist infinitely many Lorentzian Willmore tori in the3-dimensional anti De
Sitter space. This family includes{Υγm,n : 0 < m < n, m, n ∈ Z} andΥγ0 .

A second case we will consider isn−r = 3. Then we are looking for critical points ofFr(γ),
i.e., solutions of two first equations in Proposition 5.3 inside the family of helices in the standard
once punctured3-sphere(Σ3, dσ2). (For details about the geometry of helices in the standard
3-sphere we refer to readers to [5]).

Let γ be a helix in(Σ3, dσ2) with curvatureκ and torsionτ . From now on we will assume
thatγ is a not a geodesic; otherwise, it is a trivial solution. Thenγ is anr-generalized free elastica
if and only if

r

r + 1
κ2 − τ2 + 1 = 0. (15)

That means that, in the(κ, τ)-plane of helices in(Σ3, dσ2),Fr has exactly a hyperbola of crit-
ical points. To determine the closed helices which arer-generalized elasticae we use the following
argument series (see [9]). First, take the usual Hopf fibrationΠ : (Σ3, dσ2) → (S2, ds2), where
the base space is chosen to be of radius1/2 in order toΠ be a Riemannian submersion. Letβ be
an arclength parametrized curve with constant curvatureρ ∈ R into (S2, ds2). Let Sβ = Π−1(β)
be the Hopf tube overβ (see [5] or [22] for details). ThenSβ becomes a flat torus with constant
mean curvature in(Σ3, dσ2). Furthermore, it admits an obvious parametrizationΨ(s, t) by means
of fibres (s=constant) and horizontal liftsβ of β (t=constant). Ifγ is a geodesic ofSβ, with slope
` ∈ R (slope measured with respect toΨ), thenγ is a helix in(Σ3, dσ2) whose curvatureκ and
torsionτ are given by

13
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κ =
ρ + 2`

1 + `2

and

τ =
1− ρ`− `2

1 + `2
.

Secondly, the converse also holds. Namely, given any helixγ in (Σ3, dσ2), with curvatureκ
and torsionτ , it can be viewed as a geodesic in a certain Hopf tube of(Σ3, dσ2). Indeed, let us just
considerSβ = Π−1(β), β being a circle into(S2, ds2) with constant curvatureρ = (κ2+τ2−1)/κ
and take now a geodesic inSβ with slope` = (1− τ)/κ.

Thirdly, let L andA be the length ofβ and the enclosed oriented area byβ in (S2, dσ2),
respectively. As U. Pinkall showed, [22],Sβ is isometric toR2/Γ, Γ being the lattice generated by
(L, 2A) and(0, 2π). We notice that, due to the holonomy, the horizontal lifts ofβ are not closed
in (Σ3, dσ2). Now the helixγ lying in Sβ is closed if and only if

` = q
√

ρ2 + 4− ρ

2
,

whereq is a non zero rational number (otherwise,κ = 0 andγ would be a geodesic in(Σ3, dσ2),
and therefore a trivial critical point ofFr), andρ is the curvature ofβ.

Finally, letρ andq be any real number and any non zero rational number, respectively. Then
we use (18) to get the slope, and (16) and (17) to compute the curvatureκ and torsionτ of a closed
helix γ in (Σ3, dσ2). Moreover,γ will be an r-generalized free elastica provided thatκ andτ
satisfy (15). Thereforeρ andq satisfy

(rρ + 2(2r + 1)`− (r + 1)ρ`2)(ρ + 2`) = 0.

Sinceγ was assumed to be non geodesic, we have thatρ+2` 6= 0. So we bring (18) to the equation
rρ + 2(2r + 1)`− (r + 1)ρ`2 = 0 to get

(r + 1)2(q2 − 1
4
)2ρ4

+4(r + 1){(r + 1)q4 − 1
2
(3r + 1)q2 +

1
16

(r + 1)}ρ2

−4q2(2r + 1) = 0. (20)

From here we see that for any non zero rational numberq we have exactly one positive solution
ρ2 of the quoted quadratic equation. That can be summed up in the following:

Theorem 5.7 For any natural numberr, there exists a one parameter family{γq}q∈Q\{0} of
closed helices in(Σ3, dσ2) which arer-generalized free elastica.

Remark 5.8 Fromrρ + 2(2r + 1)`− (r + 1)ρ`2 = 0 we easily see how to getq in terms ofρ. It
suffices to write the quadratic equation

(r + 1)ρ
√

ρ2 + 4q2 − ((r + 1)ρ2 + 2(2r + 1))q +
r + 1

4
ρ
√

ρ2 + 4 = 0.

14
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We already know that for any non zero rational numberq, we have exactly oneρ (up to the
sign). In contrast, the last formula says that eachρ determine exactly two values ofq, unless
ρ2 = (2r + 1)2/(r(r + 1)), which corresponds toq = ±1

2 . Since both values ofq are rational,
that means that the corresponding Hopf tori in(Σ3, dσ2) have transverse foliations by closed free
elastic helices. As a consequence we obtain

Theorem 5.9 Let r be any natural number. For any non zero rational numberq, there exists an
(r+1)-dimensional Willmore-Chen submanifoldΥγ = Φ(γ×Sr) in the pseudo-hyperbolic space
(Hr+3

r , h0), γ being anr-generalized free elastic closed helix in the once punctured unit3-sphere
(Σ3, dσ2) whose slopè is computed as above.

6. A general approach

We are going to extend the argument we have used in the last section to construct Willmore-
Chen submanifolds in the pseudo-hyperbolic space.

Let (M1, g1) and (M2, g2) be two pseudo-Riemannian manifolds of dimensionn1 andn2,
respectively. Given a positive functionf defined onM1 (we can assume inf(f) > 0 if M1 is
not compact), define the warped productM1 ×f (εM2), that is, the product manifoldM1 ×M2

endowed with the metric tensorg = g1 + εf2g2, whereε = ±1, f being the warping function.
We simply writeM = M1 ×f (εM2) when the involved metrics are understood. From now on
(M2, g2) will be a homogeneous space andG its isometry group. This action can be naturally
extended toM by defining

M ×G → M
((m1,m2), a) → (m1,m2) · a = (m1, m2 · a),

for any(m1,m2) ∈ M anda ∈ G. As the action ofG on M is transitive, the orbit of any point
m ∈ M is nothing but[m] = {m1} ×M2. Then a preliminary result states as follows.

Proposition 6.1 LetN be a submanifold ofM of dimensionn2 +1. ThenN is G-invariant if and
only if there exists a curveγ in M1 such thatN = γ ×f (εM2).

Proof. It is easy to see that any submanifoldγ×f (εM2) isG-invariant. Conversely, assume that
N is G-invariant. Then the orbit[p] = {m1}×M2 of anyp = (m1,m2) ∈ N is an2-dimensional
submanifold ofN . This proves thatN is foliated whose leaves are totally umbilic submanifolds
in (M, g) all of them diffeomorphic toM2. In other words, the leaves of this foliation are nothing
but the fibres of the warped product(M, g) alongN . The transverse (orthogonal) distribution,
being of dimension one, can be integrated. Therefore, we can choose a curveγ in M1 such that
the submanifoldN writes down asN = γ ×f (εM2), which concludes the proof.

Now the main result states as follows.

Theorem 6.2 Let (M, g) = (M1, g1) ×f (M2, εg2) be a warped product, where(M2, g2) is a
compact homogeneous space of dimensionn2. Let γ be an immersed closed curve in(M1, g1).
The submanifoldN = γ ×f (εM2) is a Willmore-Chen submanifold in(M, g) if and only if γ
is a n2+1

2 -generalized free elastica in(M1,
1
f2 g1). That means thatγ is a critical point of the

functional

Fn2(γ) =
∫

γ
(κ2)

n2+1
2 ds,
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κ being the curvature function ofγ into (M1,
1
f2 g1).

Proof. Since the Willmore-Chen variational problem is invariant under conformal changes of
the metric of the ambient space, we are allowed to consider a new metricg̃ onM defined by

g̃ =
1
f2

g =
1
f2

g1 + εg2.

Therefore, Willmore-Chen submanifolds in(M, g) and(M, g̃) agree. Moreover, we will profit
by the pseudo-Riemannian product structure of(M, g̃). Let us denote byN the smooth manifold
of (n2 + 1)-dimensional compact submanifolds in(M, g̃). The Willmore-Chen functional onN
writes down

Ω(N) =
∫

N
(〈H, H〉 − τe)

n2+1
2 dv,

H andτe standing for the mean curvature vector field and the extrinsic scalar curvature ofN in
(M, g̃), respectively, anddv is the volume element ofN relative to the induced metric. Now set
NG the submanifold ofN made up by those submanifolds which areG-invariant. By Proposi-
tion 6.1, we already know thatNG = {γ ×f (εM2) : γ is an immersed closed curve inM1}.
Similarly, letC andCG be the set of critical point ofΩ on N (i.e., the set of Willmore-Chen sub-
manifolds) and onNG, respectively. The principle of symmetric criticality of R.S. Palais, [21],
can be applied here, becauseΩ is invariant under the action ofG on (M, g). Observe thatG
acts through isometries, so thatf has no influence. HenceC∩NG = CG. Now we are going to
computeΩ onNG. FirstΩ writes down as

Ω(γ ×f (εM2)) =
∫

γ×M2

(〈H,H〉 − τe)
n2+1

2 ds dv2,

whereds stands for the arclength element ofγ into (M1,
1
f2 g1) anddv2 is the volume element of

(M2, εg2). As (M, g̃) is a pseudo-Riemannian product, it is not difficult to see thatτe vanishes
identically and〈H, H〉 = 1

(n2+1)2
κ2, κ being the curvature function ofγ in (M1,

1
f2 g1). Thus we

obtain

Ω(γ ×f (εM2)) =
vol(M2, εg2)
(n2 + 1)n2+1

∫

γ
(κ2)

n2+1
2 ds,

which finishes the proof.

7. Some applications

7.1. Let g1 be any conformally flat Lorentzian metric on a torusT 2 = S1 × S1. It is known
that(T 2, g1) is complete, which is not guaranteed, in the realm of Lorentzian geometry, from the
compactness ofT 2 (see for instance [23]). Let us denote byg0 the conformal flat metric. There
is a positive function, sayf : T 2 → R, such thatg1 = f2g0. SetM3 = T 2 × S1 endowed with
the pseudo-Riemannian metricg = g1 + εf2dt2, whereε = ±1 anddt2 denotes the canonical
metric on the unit circleS1. The following statement shows the existence of Willmore tori in the
3-dimensional pseudo-Riemannian manifold(M, g), which topologically is the product of three
circles.
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Corollary 7.1 Let M3 = T 2 × S1 endowed with the metricg = g1 + εf2dt2, whereg1 is any
conformally flat Lorentzian metric onT 2 andf the positive function onT 2 giving this conformal
flatness (g0 being flat andg1 = f2g0). ThenΥ = γ×f (εS1) is a Willmore torus in(M3, g) if and
only if γ is a closed free elastica in the Lorentzian flat torus(T 2, g0).

The proof is a straightforward computation from Theorem 6.2. Furthermore, one can construct
closed free elasticae in(T 2, g0) from free elasticae in the Lorentz-Minkowski2-planeL2 (see [6]).
7.2. Let (H3

1, g0) be the standard anti De Sitter3-space. Given any positive functionf : H3
1 → R,

consider the metricgf = f2h0. Let (M, g) be the pseudo-Riemannian product manifoldM =
H3

1 ×M2 endowed with the metricg = gf + f2εg2, (M2, g2) being any compact homogeneous
space. Thenγ × M2 is a Willmore-Chen submanifold in(M, g) if and only if γ is a n2+1

2 -
generalized closed free elastica in(H3

1, g0).
As above, one can findn2+1

2 -generalized closed free elasticae in(H3
1, g0) for any non zero

rational number (see [6] again).
7.3. We will get3-dimensional pseudo-Riemannian manifolds (either Riemannian or Lorentzian)
admitting a foliation whose leaves are non trivial Willmore tori (either Riemannian or Lorentzian).
These foliations will be calledWillmore foliations. Also we will say that the pseudo-Riemannian
manifold isWillmore foliated. To do that we start with an immersed plane curveγ : I ⊂ R → R2

and a pair of positive functionsf1, f2 : I → R. Let M = γ × S1 × S1 endowed with the metric
given byg = ds2+f2

1 dt21+εf2
2 dt22, keeping the above terminology. It is clear thatg is conformal to

the pseudo-Riemannian product metricg̃ defined bỹg = g0 + εdt22 on the manifoldM = N ×S1,
whereg0 = dt2 +(f1

f2
)2dt21 andN = γ×S1. Notice that we have reparametrizedγ by ds

dt = f1(s).
We can now make a suitable choice of bothf1 andf2 alongγ in order to view(N, g0) as a surface
of revolution inR3. On the other hand, the elasticity of parallels in a surface of revolution was yet
discussed in [8]. There it was shown that, besides right cylinders (all whose parallels are geodesics
and therefore trivial free elastic curves), the only surfaces whose parallels are all free elasticae are
the trumpet surfaces (which are free of geodesic parallels, see [8] for details). Then we have:

Corollary 7.2 Let (b, c) be a pair of real numbers, withc > 0. SetI = (−2
c ,

2
c )− {0} and define

γ : I ⊂ R → R2 by

γ(s) =

(
c

4
s2,

c

2

√
1− c2

4
s2 − 1

c
arc cos

c

2
s + b

)
.

Let f1, f2 : I → R2 be two positive functions satisfyingf1

f2
(s) = c

4s2. ThenM = γ × S1 × S1,

endowed with the metricg = ds2 + f2
1 dt21 + εf2

2 dt22, admits a Willmore foliation which is either
Riemannian or Lorentzian, according toε is 1 or −1, respectively.

7.4. The construction we made in 7.1 can be extended as follows. Let(M, g) be any compact
Riemannian manifold andf any positive smooth function onM . Let N = M × S1 endowed with
the metricgf = g + εf2dt2. From Theorem 6.2 and a remarkable result of N.Koiso, [16], we have
the following existence result for Willmore tori.

Corollary 7.3 There exist Willmore tori in(N, gf ) for any positive smooth functionf onM .

Proof. We first apply Theorem 6.2 to(N, gf ). Given a closed curveγ immersed in(M, g), then
γ ×f (εS1) is a Willmore torus in(N, gf ) if and only if γ is an elastica into(M, 1

f2 g). Now the
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existence of these curves in any compact Riemannian manifold is guaranteed by Koiso’s result
[16].

It should be noticed that the elastica in(M, 1
f2 g) could be a closed geodesic. In fact, elasticae

appear as stationary solutions of a parabolic partial differential equation. The existence of such
a solution on the space of closed curves of fixed length is proved in [16]. This solution can be a
geodesic since geodesics are singular, stationary solutions of that equation.
7.5. The last application will show once more how powerful is our method.

Corollary 7.4 For any positive functionf on a genus zero Riemann surfaceM , there exist at least
three conformal minimal (maximal ifε = −1) Willmore tori inM ×f (εS1) which are embedded.

This assertion comes easily from Theorem 6.2 combined with the following new ingredient. A
very classical result of L.Lusternik and L.Schnirelmann, [19], guarantees the existence of at least
three geodesics without self-intersections on any simply connected Riemannian surfaceM . That
means that(M, 1

f2 g) has at least three closed geodesics without self-intersections, which we will

denote byγi, i = 1, 2, 3. ThenNi = γi ×f (εS1), i = 1, 2, 3 are embedded Willmore tori
in M ×f (εS1). Of course they are minimal (maximal ifε = −1) with regard to the pseudo-
Riemannian metric1

f2 g + εdt2.

It should be noticed that this is the best possible result. In fact, just choose(M, 1
f2 g) to be an

ellipsoid. Then it has exactly three embedded closed geodesics. In this case we can obtain exactly
three conformal minimal (maximal) Willmore tori inM ×f (εS1) which are embedded. Actually,
we can obtain infinitely many others immersed Willmore tori.

We also observe that we have essentially covered the whole space of metrics onM . Indeed, a
nice consequence of the Uniformization Theorem for Riemann surfaces ensures the existence of
exactly one conformal structure and therefore only one conformal class of metrics.

Finally, recall that compact minimal (maximal) surfaces are always Willmore surfaces only if
the ambient space has constant sectional curvature.
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