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1. Introduction

This paper concerns curves and surfaces, into indefinite space forms, whose mean curvature
vector field is in the kernel of certain elliptic differential operators. It has been inspired by the
paper of M. Barros and O.J. Garay [2], where the Riemannian version of this question is solved.
We first consider the Laplacian to study indefinite submanifolds with harmonic mean curvature
vector field in the normal bundle. This problem is closely related to a conjecture of B.-Y. Chen
[5], on Riemannian submanifolds, stated as follows: harmonicity of the mean curvature vector
field implies harmonicity of the immersion. Submanifolds with harmonic mean curvature vec-
tor field were called by Chen biharmonic submanifolds. In the realm of indefinite submanifolds,
counterexamples to that conjecture have been given by the two first authors (see [1]). Biharmonic
submanifolds are a special class of submanifolds for which its mean curvature vector is an eigen-
vector of∆, that is,∆H = λH for some real constantλ. First we describe the family of curves
whose mean curvature vector field is proper for the Laplacian. This problem has been yet solved
for Euclidean curves by M. Barros and O.J. Garay [2]. We have to think of a different Laplacian
if we want to characterize curves others than those of both constant curvature and torsion. Since
H is a normal vector field, it seems natural to consider the Laplacian associated to the connection
in the normal bundle. Then we show that the indefinite Cornu spirals are the only non standard
curves in a semi-Riemannian manifold that are biharmonic in the normal bundle. As for surfaces,
we deal with the semi-Riemannian Hopf cylinders we introduced in [4]. Then we show that the
biharmonicity of them strongly depends on the biharmonicity of the curves to which are associ-
ated. In fact, a non standard Hopf cylinder inH3

1(−1) is biharmonic in the normal bundle if and
only if it is associated to a Cornu spiral inH2

s(−4). Then we extend the results in [2].
The second operator considered is the Jacobi operator, which was introduced by J. Simons

[9] and involves the Laplacian in the normal bundle. A normal vector field is called a Jacobi
field if it belongs to the kernel of the Jacobi operator. This operator appears when one studies
the second variation of the area functional for compact Riemannian minimal submanifolds. It
has been recently used by Barros and Garay [3] to classify Hopf cylinders intoS3 with Jacobi
mean curvature vector field. In [4] we have made, following [7], a qualitative description of
elastic curves into indefinite space forms to be used as a tool to find Lorentzian Willmore tori in
H3

1(−1). Now the Jacobi operator allows us to get a characterization of elastic curves, as well as a
characterization of semi-Riemannian Hopf cylinders inH3

1(−1), in terms of elasticae inH2
s(−4),

s = 0, 1. We show that a curve in an indefinite real space form has Jacobi mean curvature vector
field if and only if it is curvature homothetic to a free elastica. As before, this characterization
leads to find Hopf cylinders intoH3

1(−1) with Jacobi mean curvature vector field.
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the manuscript.

2. Curves with harmonic mean curvature vector field

Let γ be an arclength parametrized curve isometrically immersed in an indefinite real space
form Mn

ν of constant curvaturec. As usual, the metric onMn
ν will be denoted by〈,〉 and the

Riemannian connection by∇. Assume thatγ does not lie in a 2-dimensional totally geodesic
submanifold ofMn

ν . Let κ > 0 and τ be the curvature and torsion functions ofγ and{T =
γ′, ξ2, ξ3} a Frenet frame alongγ. The Frenet equations forγ can be partially written as

∇T T = ε2κξ2, (1)

∇T ξ2 = −ε1κT − ε3τξ3, (2)

∇T ξ3 = ε2τξ2 + δ, (3)

whereδ ∈ span{T, ξ2, ξ3}⊥ andεi, i = 1, 2, 3, are the causal characters ofT , ξ2 andξ3,respectively.
The Laplacian operator alongγ is given by∆ = −ε1∇T∇T .

Let σ be the second fundamental form associated toγ. Then the mean curvature vector field
H is defined by

H = tr(σ) = ε1σ(T, T ) = ε1∇T T = ε1ε2κξ2.

Taking covariant derivative ofH with respect toT , and using the Frenet equations, we obtain

∇T H = −ε2κ
2T + ε1ε2κ

′ξ2 − ε1ε2ε3κτξ3.

The second covariant derivative ofH yields

∆H = (3ε1ε2κκ′)T + (−ε2κ
′′ + ε1κ

3 + ε3κτ2)ξ2 (4)

+ ε2ε3(2κ′τ + κτ ′)ξ3 + ε2ε3κτδ.

Then∆H = λH, λ ∈ R, if and only if the following equations hold

κκ′ = 0, (5)

ε2κ
′′ − ε1κ

3 − ε3κτ2 + λε1ε2κ = 0. (6)

2κ′τ + κτ ′ = 0, (7)

κτδ = 0. (8)

From the assumption onγ, equation (8) implies thatδ = 0 and so the curveγ lies in a 3-
dimensional totally geodesic submanifold ofMn

ν . Hence we can assume without loss of generality
that n = 2 or n = 3. On the other hand, from (7) we deduce thatκ2τ is a constant. As a
consequence we have the following result.

Proposition 2.1 Let γ be a unit speed curve inMn
ν . Then∆H = λH if and only if one of the

following statements holds:
(1) γ is a geodesic.
(2) γ is a small pseudocircle or pseudohyperbola in a 2-dimensional totally geodesic submanifold
of Mn

ν .
(3) γ is a helix in a 3-dimensional totally geodesic submanifold ofMn

ν .
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Proof. From (5) we can assume thatκ is constant. Ifκ = 0 thenγ is a geodesic; otherwise, since
κ2τ is constant thenτ is also constant. Therefore we obtain (2) or (3) according toτ = 0 or τ 6= 0,
respectively. Conversely, it is easy to show that all curves in the proposition satisfy the required
condition for appropriateλ.

This proposition shows that we must work with a different Laplacian if we want to characterize
curves others than those of constant curvature. SinceH is a normal vector field, it is natural
to think of the Laplacian∆D associated to the connectionD in the normal bundle, defined by
∆D = −ε1DT DT .

A straightforward computation leads to

∆DH = (−ε2κ
′′ + ε3κτ2)ξ2 + ε2ε3(2κ′τ + κτ ′)ξ3 + ε2ε3κτδ. (9)

Then∆DH = λH, λ ∈ R, is equivalent to the set of equations (7), (8) and the following

ε2κ
′′ − ε3κτ2 + ε1ε2λκ = 0.

Recall that a curveγ : I → M is said to be aCornu spiralif its curvatureκ is a non-constant
linear function.

Proposition 2.2 Letγ be a unit speed curve inM2
ν . Then∆DH = λH, λ ∈ R, if and only if one

of the following statements holds:
(1) λ = 0 andκ is a linear function. Soγ is a geodesic, a pseudocircle, a pseudohyperbola or a
Cornu spiral.
(2) ε1λ > 0 andκ is given byκ(s) = a cos(

√
ε1λs) + b sin(

√
ε1λs).

(3) ε1λ < 0 andκ is given byκ(s) = a exp(
√−ε1λs) + b exp(−√−ε1λs).

Proof. Since the torsionτ = 0, then∆DH = λH if and only if κ′′ + ε1λκ = 0. Then it suffices
to integrate that differential equation.

The behaviour of these curves inH2
1(−1) can be sketched as follows.

Cornu spiral κ(s) = cos(s) κ(s) = exp(s)

The curves characterized in Proposition 2.2 are quite different in the Lorentzian planeL2 with
respect to the Euclidean planeR2. In fact, the curvature functionκ(s) in R2 gives the rate of
change of the Euclidean angle between the tangent vector and a fixed vector, whereas inL2 it
gives the corresponding rate of change for the hyperbolic angle. The following pictures show
those differences.
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Cornu spiral inL2 Cornu spiral inR2

κ(s) = exp(s) in L2 κ(s) = exp(s) in R2

To solve then-dimensional case, we can suppose thatγ lies in a 3-dimensional totally geodesic
submanifold ofMn

ν . Then if we takeu = k2, (10) can be rewritten as

(u′)2 + 4(ε1λu2 − ε2bu + ε2ε3a
2) = 0,

whereb is a constant. By integrating (11) we obtain the following solutions:
i) If ε1λ < 0, thenu is a root ofAu2+Bu+C = 0, whereA = 48λ2, B = 16ε1λ(exp(2

√−ε1λs)−
3ε2b) andC = (exp(2

√−ε1λs)− 4ε2b)2 − 16ε1ε2ε3a
2λ.

ii) If ε1λ < 0, thenu is a root ofAu2 + Bu + C = 0, whereA = 4λ2(1 + tan2(2
√

ε1λs)),
B = −4ε1ε2λb(1 + tan2(2

√
ε1λs)) andC = b2 + 4ε1ε2ε3a

2λ tan2(2
√

ε1λs).
iii) If λ = 0, thenκ andτ are given by

κ(s) =

√
ε2bs2 + ε3

a2

b
, (12)

τ(s) =
ε2ab

b2s2 + ε2ε3a2
.

The integration of (11) shows that the caseλ = 0 is the most interesting one, so that working
on the equations in (12) we obtain

ε2ε3

κ2
+

(κ′)2

τ2κ4
=

ε2b

a2
, (13)

provided thatκτ 6= 0.

Lemma 2.3 Letγ be a curve with curvatureκ and torsionτ satisfying the equation (13). Thenγ
lies in a hyperquadricQ defined by the equation〈x− p0, x− p0〉 = ε2ε3b/a2.
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Proof. Let γ be the curve defined by

γ = γ +
ε1

k
ξ2 +

ε1ε2κ
′

τκ2
ξ3.

Then we get

γ′ = ε1

[
ε2

(
κ′

τκ2

)′
− ε3

τ

κ

]
ξ3,

so that taking covariant derivative in (13) we deduce thatγ′ = 0. Hence there exists a pointp0

such thatγ(s) = p0, for anys. Now it is easy to show thatγ(s) ∈ Q, for anys.

Proposition 2.4 Let γ be a unit speed curve inMn
ν . Then the curvatureκ and the torsionτ of γ

in Mn
ν are given by (12) if and only ifγ is a Cornu spiral in a totally umbilical hypersurface of

Mn
ν .

Proof. Let P be the totally umbilical hypersurface ofMn
ν obtained by taking the intersection with

the hyperquadricQ given in the above lemma. Then the shape operatorS of P in Mn
ν is given

by S = a/
√
|b|I. Let ρ denote the curvature ofγ in P , that is,ρ2 = ι

〈∇P
T T,∇P

T T
〉
, where∇P

stands for the Levi-Civita connection onP andι denotes the causal character of∇P
T T . The Gauss

formula and (13) lead to

ρ =
a√
|b|

κ′

τκ
,

showing thatρ(s) linearly depends ons.
Assume now thatγ : I → P ⊂ Mn

ν is a Cornu spiral. LetQ = {x : 〈x− p0, x− p0〉 = εr2},
ε = ±1, be the hyperquadric such thatP = Mn

ν ∩Q and putρ(s) = as + b. Then we have (13)
along with

ρ =
1
r

κ′

τκ
and ε2κ

2 = ιρ2 +
ε

r2
.

These equations imply (12).
The following theorem classifies all biharmonic curves in the normal bundle and extends a

result in [2, Theorem 1].

Theorem 2.5 Letγ be a unit speed curve inMn
ν . Then the mean curvature field ofγ is harmonic

in the normal bundle if and only if one of the following statements holds:
(1) n = 2 andγ is a geodesic.
(2) n = 2 andγ is a pseudocircle or a pseudohyperbola.
(3) n = 2 andγ is a Cornu spiral.
(4) n = 3 andγ is a Cornu spiral in a totally umbilical surface.

Proof. If γ lies in a 2-dimensional totally geodesic submanifold, then it reduces to Proposition 2.2.
Otherwise, we may assumen = 3. Moreover, the curvatureκ and the torsionτ are given by (12),
so we apply Proposition 2.4. The converse is clear.

To finish this section, letxi : Mi → M̃i, i = 1, . . . , m, be isometric immersions and consider
x = x1×· · ·×xm : M =

∏
i Mi →

∏
i M̃i the product isometric immersion with mean curvature

vector fieldH. Let ∆D
i be the Laplacian in the normal bundle associated toxi and consider∆D

the corresponding operator forx. Then we have

∆D(ξ1, . . . , ξm) = (∆D
1 ξ1, . . . ,∆D

mξm),
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whereξi is a normal vector field toMi in M̃i. As a consequence of Theorem 2.5 we have the
following.

Corollary 2.6 Let γi : Ii → Mni
νi

, i = 1, . . . ,m, be unit speed curves in indefinite real space
forms and consider the isometric immersionx = γ1 × · · · × γm. ThenH is harmonic in the
normal bundle if and only if, for any indexi, we have eitherni = 2 and γi is a geodesic, a
pseudocircle, a pseudohyperbola or a Cornu spiral, orni = 3 andγi is a Cornu spiral in a totally
umbilical surface ofM3

νi
.

Proof. It reduces to show thatmH = (H1, . . . , Hm), Hi being the mean curvature vector field
associated toγi.

Now we are going to characterize the hypercylinders with harmonic mean curvature fieldH
in the normal bundle, which is an extension of [2, Corollary 1].

Corollary 2.7 Letγ : I → Mn
ν be a unit speed curve and consider the hypercylinderx = γ×Id :

I × Rm
t → Mn

ν × Rm
t . ThenH is harmonic in the normal bundle if and only if eithern 6 3 and

γ is a geodesic, a pseudocircle, a pseudohyperbola, a Cornu spiral, or a Cornu spiral in a totally
umbilical surface.

3. Curves with Jacobi mean curvature vector field

Let γ : I → Mn
ν be as in the above section and consider the following functional

Fµ(γ) =
∫ L

0
(〈∇T T,∇T T 〉+ µ)ds,

whereµ, L andds stand for a real constant, the length and the arclength onγ, respectively.

Definition 3.1 Let γ be a unit-speed curve inMn
ν . γ is said to be anelastica(or elastic curve) if

it is an extremal point of the functionalFµ for someµ. It is called afree elasticaif µ = 0.

The Euler-Lagrange equation associated to the variational problem given byFµ is

2∇3
T T + ε1∇T ((3ε2κ

2 − µ)T )− 2R(∇T T, T )T = 0,

whereR stands for the curvature tensor, provided thatγ is closed or satisfies given first order
boundary data (see [4, 7] for details). SinceMn

ν is of constant curvaturec, the Euler-Lagrange
equation can be rewritten as follows

2ε2κ
′′ + ε1κ

3 − 2ε3κτ2 + ε1ε2(2c− µ)κ = 0,

along with (7) and (8). From these equations we can assume without loss of generality thatn = 2
or n = 3.

Let Pm
µ be a semi-Riemannian submanifold ofMn

ν and denote byTP andNP the tangent

and normal bundles onPm
µ , respectively. Consider the Simon operatorÃ : NP → NP defined by

〈Ãξ, ζ〉 = trace(Sξ ◦ Sζ), whereSξ is the shape operator associated withξ. Let R∗ : NP → NP
be the transformation given byR∗ξ =

∑n
i=1 εi(REiξEi)⊥, where{Ei} is a local orthonormal
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frame, withεi = 〈Ei, Ei〉, and()⊥ denotes normal component. TheJacobi operatoris the second
order differential operator defined by

J : NP → NP, Jξ = (∆D − Ã + R∗)ξ.

WhenP is compact thenJ arises from the second variation formula. A normal vector fieldξ ∈
NP is said to be aJacobi fieldif it belongs to the kernel ofJ .

A straightforward computation yields

∆ξ = (∆ξ)T + Jξ + 2Ãξ −R∗ξ,

where()T denotes tangential component. SinceMn
ν is of constant curvaturec, thenR∗ = −mcI,

I being the identity onNP .
In this section we want to characterize the curvesγ in Mn

ν whose mean curvature vector field
is a Jacobi field. More generally, we are going to classify those curves with mean curvature vector
field proper for the Jacobi operator, that is,JH = λH, λ ∈ R. A straightforward computation
leads to

ÃH = ε1κ
3ξ2.

From here and (9),JH = λH if and only if the set of equations (7), (8) and

ε2κ
′′ + ε1κ

3 − ε3κτ2 + ε1ε2(c + λ)κ = 0,

holds. As before, we can assume without loss of generality thatn = 2 or n = 3. The following
definition is given in [3].

Definition 3.2 Let γ(s) andγ̃(s) be two unit speed curves inMn
ν with curvature functionsκ and

κ̃, respectively.γ andγ̃ arecurvature homotheticif there is a constanta such that̃κ(s) = aκ(s).

Proposition 3.3 Letγ : I → Mn
ν be a unit speed curve. ThenJH = λH, for some real constant

λ, if and only ifn 6 3 andγ is curvature homothetic to an elastica witha =
√

2.

Proof. Let γ̃ be a curve with curvaturẽκ(s) =
√

2κ(s) and torsioñτ(s) = τ(s). Thenγ satisfies
JH = λH if and only if γ̃ is an elastica. This completes the proof.

As a consequence, we classify the curves inMn
ν whose mean curvature vector field is a Jacobi

field.

Proposition 3.4 Letγ : I → Mn
ν be a unit speed curve. ThenJH = 0 if and only ifn 6 3 andγ

is curvature homothetic to a free elastica witha =
√

2.

Let xi andx = x1 × · · · × xm be as in Section 2. LetJi be the Jacobi operator in the normal
bundle associated toxi and considerJ the corresponding operator forx. Then we have

J(ξ1, . . . , ξm) = (J1ξ1, . . . , Jmξm),

whereξi is a normal vector field toMi in M̃i. As a consequence of Proposition 3.3 we have the
following.

Corollary 3.5 Let γi : Ii → Mni
νi

, i = 1, . . . ,m, be unit speed curves in indefinite real space
forms and consider the isometric immersionx = γ1 × · · · × γm. ThenH is a Jacobi vector field
if and only ifni 6 3 andγi is curvature homothetic to a free elastica inMni

νi
, for any indexi.
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The hypercylinders with Jacobi mean curvature vector field are characterized as follows. For
Euclidean curves that characterization can be found in [3].

Corollary 3.6 Letγ : I → Mn
ν be a unit speed curve and consider the hypercylinderx = γ×Id :

I × Rm
t → Mn

ν × Rm
t . ThenH is a Jacobi vector field if and only ifn 6 3 andγ is curvature

homothetic to a free elastica.

4. Hopf cylinders with proper mean curvature vector field

In [4] we have just constructed a new class of submanifolds inH3
1(−1), the so-calledsemi-

Riemannian Hopf cylinders, defined by means of two semi-Riemannian submersionsπs : H3
1(−1) →

H2
s(−4), s = 0, 1. Let us recall how those surfaces were defined. First we identifyH3

1(−1) with
an appropriate subset of mapsR4

2 → R4
2. To do that, letP be a 2-dimensional subspace inR4

2 and
{x, y} an orthonormal basis ofP . We define the following maps:

f : P → P, f(x) = y, f(y) = −x,

g : P → P, g(x) = y, g(y) = x,

h : P → P, h(x) = −y, h(y) = −x,

that will be calledrotation, first reflectionandsecond reflectiononP , respectively. Let{e1, e2, e3, e4}
be the canonical basis ofR, for which the matrix of the metric is given by(gij) = diag[−1,−1, 1, 1].
Let Pi, i = 2, 3, 4, be the 2-dimensional linear space spanned by{e1, ei}, so thatR4

2 = Pi⊕P⊥
i .

Consider the following maps:

ρ = f × f : P2⊕P⊥
2 → P2⊕P⊥

2 ,

σ = g × h : P3⊕P⊥
3 → P3⊕P⊥

3 , (1)

ι = g × g : P4⊕P⊥
4 → P4⊕P⊥

4 ,

and let1 : R4
2 → R4

2 denote the identity map. It is clear that the setF = span{1, ρ, σ, ι} is a
4-dimensional vector space overR and the following identities hold:

ρ2 = −1, σρ = −ι, ιρ = σ,
ρσ = ι, σ2 = 1, ισ = ρ,
ρι = −σ, σι = −ρ, ι2 = 1.

This shows thatF is closed under composition.
Now, letϕ : F → R4

2 the isomorphism given byϕ(1) = e1, ϕ(ρ) = e2, ϕ(σ) = e3, ϕ(ι) = e4.
Thenϕ becomes an isometry whenF is endowed with the metricϕ∗(g0), g0 being the standard
scalar product onR4

2. Throughout this paper, both metrics will be denoted by〈, 〉.
Let ω = a + bρ + cσ + dι be an element ofF , where we writea for a · 1, a, b, c and

d being real numbers. Then we defineω = −a + bρ + cσ + dι and it is easy to show that
〈ω, ω〉 = ωω = ωω. In general,〈ω1, ω2〉 = p1(ω1ω2), p1 denoting the projection over the
subspace spanned by the identity map. As an immediate consequence we deduceω1ω2 = −ω2 ω1

and so〈ω1ω2, ω1ω2〉 = −〈ω1, ω1〉 〈ω2, ω2〉.
Now, we identifyH3

1(−r2) with the set{ω ∈ F : ωω = −1/r2},H2(−r2) with the subset of
H3

1(−r2) spanned by{1, σ, ι}, andH2
1(−r2) with the subset ofH3

1(−r2) spanned by{1, ρ, σ}.

8



Angel Ferrández, Pascual Lucas and Miguel Angel Meroño, Biharmonic Hopf cylinders

Defineπs : H3
1(−1) → H2

s(−4) by

πs(ω) =
1
2
ω̃ω,

whereω → ω̃ denotes the antiautomorphism ofF given by

ω̃ = a− bρ + cσ + dι, or ω̃ = a + bρ + cσ − dι,

according to the base manifold isH2(−4) orH2
1(−4), respectively. It is easy to show that̃ω1ω2 =

ω̃2 ω̃1, 〈ω, ω〉 = 〈ω̃, ω̃〉 andπ is surjective. Moreover,π0(eρxω) = π0(ω) andπ1(eιxω) = π1(ω)
for all ω ∈ H3

1(−1), x ∈ R. As usual, we defineeθx, θ ∈ F , by cosx + sinx θ if θ2 = −1, and
coshx + sinhx θ if θ2 = 1. That means that the fibers are topologicallyS1 andH1, respectively.

Remark 4.1 Notice that if in (1) we putσ = f×f andι = f×f , then we obtain in the Euclidean
spaceR4 the standard quaternionic structure, which was already used by U. Pinkall (see [8]) to
describe the usual Hopf fibration ofS3(1) overS2(1).

By pulling back viaπs a non-null curveγ in H2
s(−4) we get the total horizontal lift ofγ,

which is an immersed flat surfaceMγ in H3
1(−1), that will be called thesemi-Riemannian Hopf

cylinder associated toγ. Notice that ifs = 0, Mγ is a Lorentzian surface, whereas ifs = 1, Mγ

is Riemannian or Lorentzian, according toγ be spacelike or timelike, respectively.
Let γ : I → H2

s(−4) be a unit speed curve with Frenet frame{T, ξ2} and curvature function
κ. Let γ̄ be a horizontal lift ofγ toH3

1(−1) with Frenet frame{T̄ , ξ̄2, ξ
∗
3}, curvaturēκ = κ ◦ πs

and torsionτ = 1. Recall thatξ∗3 is nothing but the unit tangent vector field to the fibers alongγ̄.
Then the Hopf CylinderMγ can be orthogonally parametrized as

X(t, z) =
{

cos(z)γ̄(t) + sin(z)ξ∗3(t), if s = 0,
cosh(z)γ̄(t) + sinh(z)ξ∗3(t), if s = 1.

Setting, as usual,Xt = ∂X
∂t andXz = ∂X

∂z , then{Xt, Xz} is an orthonormal frame ofTX(t,z)Mγ

alongX. A direct computation shows that the shape operatorS of Mγ in this frame can be written
as

S(Xt) = κXt − εXz,

S(Xz) = Xt,

whereε = −1 if Mγ is Riemannian andε = +1 if Mγ is Lorentzian.
Notice that a unit normal vector field toMγ intoH3

1(−1) is obtained from the complete hor-
izontal lift of ξ2 and it is, of course,̄ξ2 along each horizontal lift ofγ. As a consequence we
have thatMγ is a flat surface and its mean curvature functionα is given byα = ε1

2 κ̄. Then a
Hopf cylinder inH3

1(−1) associated to a curveγ in H2
s(−4) is isoparametric if and only ifγ is of

constant curvature. So as a consequence of [1, Lemma 2.1] we have

Proposition 4.2 Let γ : I → H2
s(−4) be an immersed curve andπs : H3

1(−1) → H2
s(−4)

the Hopf fibrations. LetH be the mean curvature vector of the Hopf cylinderMγ = π−1
s (γ)

associated to the curveγ. Then∆H = λH if and only ifγ is of constant curvature inH2
s(−4).
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All Hopf cylinders classified in that proposition are of constant mean curvature inH3
1(−1).

So if we want to obtain Hopf cylinders with non constant mean curvature we must work with the
Laplacian∆D associated to the normal connectionD, which is given by∆Dξ = −∑n

i=1 εi(DEiDEiξ−
D∇Ei

Eiξ), where{Ei} is a local orthonormal frame, withεi = 〈Ei, Ei〉. As for semi-Riemannian
hypersurfacesMn

ν , let N be a unit vector field normal toMn
ν and letα denote the mean curva-

ture function with respect toN . Then a straightforward computation shows∆DH = (∆α)N ,

where the Laplacian∆ is given in(t, z)-coordinates by∆ = (−1)s
{
−ε ∂2

∂t2
+ ∂2

∂z2

}
. Hence the

following result is clear.

Proposition 4.3 Let γ : I → H2
s(−4) be an immersed curve andπs : H3

1(−1) → H2
s(−4) the

Hopf fibrations. LetH be the mean curvature vector field of the Hopf cylinderMγ = π−1
s (γ)

associated to the curveγ. Then∆DH = λH if and only if one of the following conditions holds:
(1) λ = 0 andκ(t) = at + b.
(2) θ = (−1)sελ > 0 andκ(t) = a cos(

√
θt) + b sin(

√
θt).

(3) θ < 0 andκ(t) = a exp(
√−θt) + b exp(−√−θt).

Proof. It is a straightforward computation, because∆DH = λH is equivalent to the differential
equationκ′′ + (−1)sελκ = 0.

As a special consequence of that result, we obtain thatH is in the kernel of∆D if and only if
the curvature functionk(t) is a linear function. So we have proved the following.

Theorem 4.4 Letγ : I → H2
s(−4) be an immersed curve andπs : H3

1(−1) → H2
s(−4) the Hopf

fibrations. Then the mean curvature vector fieldH of the Hopf cylinderMγ is harmonic in the
normal bundle if and only if one of the following statements holds:
(1) γ is a geodesic.
(2) γ is a pseudocircle or a pseudohyperbola.
(3) γ is a Cornu spiral.

That theorem has been yet obtained in [2] by using the usual Hopf fibrationS3 → S2.
Now we want to get another relation between the Hopf cylindersMγ and the curvesγ to which

they are associated. To do that, let∆D
γ andHγ be the normal Laplacian and the mean curvature

vector of the curveγ in H2
s(−4), respectively.

Proposition 4.5 Let πs : H3
1(−1) → H2

s(−4) andγ : I → H2
s(−4) be as before. Then∆DH =

λH if and only if∆D
γ Hγ = λHγ .

Proof. Let γ : I → H2
s(−4) be a unit speed curve and suppose〈γ′, γ′〉 = ε1. Then∆D

γ Hγ = λHγ

if and only if κ′′ + ε1λκ = 0, κ being the curvature function of the curveγ in H2
s(−4). So the

result follows from Proposition 4.3.
To finish this section we are going to characterize the Hopf cylinders whose mean curvature

vector field is an eigenvector of the Jacobi operator. Before that, we first state a general result.
Let Pn−1

µ be a hypersurface ofMn
ν . Let N denote a unit normal vector field toPn−1

µ in Mn
ν

and letα be the mean curvature with respect toN , so the mean curvature vector field can be
written asH = αN . A direct computation shows the following.

Proposition 4.6 Let x : Pn−1
µ → Mn

ν be a hypersurface in an indefinite space form of constant
curvaturec. ThenH is an eigenvector ofJ , that is,JH = λH, for some real numberλ, if and
only if ∆α = (λ + εtr(S2) + (n− 1)c)α, whereε = 〈N, N〉 andS stands for the shape operator
associated toN .
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As a consequence we deduce that

Proposition 4.7 Let πs : H3
1(−1) → H2

s(−4) be the Hopf fibrations andγ : I → H2
s(−4) an

immersed curve. LetH be the mean curvature vector field ofMγ in H3
1(−1). ThenJH = λH,

λ ∈ R, if and only if the following differential equation holds

κ′′ + (−1)s{κ3 + ε(λ− 4)κ} = 0. (2)

The differential equation given in this proposition can be solved by standard techniques in
terms of elliptic functions (see [6] for more details).

These curves are related to elastic curves inH2
s(−4) in the following sense. Bearing in mind

the differential equation of the elastic curves inH2
s(−4), if γ is a curve satisfying (2), then a curve

γ̃ with κ̃(t) =
√

2κ(t) is an elastica. In particular, if the constantλ in (2) is equal to0, thenγ̃ is a
free elastica. Hence Proposition 4.7 can be rewritten as follows.

Theorem 4.8 Let πs : H3
1(−1) → H2

s(−4) be the Hopf fibrations andγ : I → H2
s(−4) an

immersed curve. LetH be the mean curvature vector field ofMγ in H3
1(−1). ThenJH = λH,

λ ∈ R, if and only ifγ is curvature homothetic to an elasticãγ with κ̃(t) =
√

2κ(t). In particular,
H is a Jacobi vector field if and only ifγ is curvature homothetic to a free elastica.

As a consequence of Proposition 4.7 we obtain the following result, whose proof is similar to
that of Proposition 4.5.

Proposition 4.9 Letπs : H3
1(−1) → H2

s(−4) andγ : I → H2
s(−4) be as before. ThenJH = λH

if and only if JγHγ = λHγ , whereJγ and Hγ stand for the Jacobi operator and the mean
curvature vector ofγ.
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