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1. Introduction

This paper concerns curves and surfaces, into indefinite space forms, whose mean curvature
vector field is in the kernel of certain elliptic differential operators. It has been inspired by the
paper of M. Barros and O.J. Gara3],[where the Riemannian version of this question is solved.
We first consider the Laplacian to study indefinite submanifolds with harmonic mean curvature
vector field in the normal bundle. This problem is closely related to a conjecture of B.-Y. Chen
[5], on Riemannian submanifolds, stated as follows: harmonicity of the mean curvature vector
field implies harmonicity of the immersion. Submanifolds with harmonic mean curvature vec-
tor field were called by Chen biharmonic submanifolds. In the realm of indefinite submanifolds,
counterexamples to that conjecture have been given by the two first authorg]{s8éhjarmonic
submanifolds are a special class of submanifolds for which its mean curvature vector is an eigen-
vector of A, that is,AH = \H for some real constarit. First we describe the family of curves
whose mean curvature vector field is proper for the Laplacian. This problem has been yet solved
for Euclidean curves by M. Barros and O.J. Garaly We have to think of a different Laplacian
if we want to characterize curves others than those of both constant curvature and torsion. Since
H is a normal vector field, it seems natural to consider the Laplacian associated to the connection
in the normal bundle. Then we show that the indefinite Cornu spirals are the only non standard
curves in a semi-Riemannian manifold that are biharmonic in the normal bundle. As for surfaces,
we deal with the semi-Riemannian Hopf cylinders we introducedlinThen we show that the
biharmonicity of them strongly depends on the biharmonicity of the curves to which are associ-
ated. In fact, a non standard Hopf cylinderfi§(—1) is biharmonic in the normal bundle if and
only if it is associated to a Cornu spirallifit(—4). Then we extend the results ig][

The second operator considered is the Jacobi operator, which was introduced by J. Simons
[9] and involves the Laplacian in the normal bundle. A normal vector field is called a Jacobi
field if it belongs to the kernel of the Jacobi operator. This operator appears when one studies
the second variation of the area functional for compact Riemannian minimal submanifolds. It
has been recently used by Barros and Gaghyd classify Hopf cylinders int&®? with Jacobi
mean curvature vector field. I#][we have made, following7], a qualitative description of
elastic curves into indefinite space forms to be used as a tool to find Lorentzian Willmore tori in
H3(—1). Now the Jacobi operator allows us to get a characterization of elastic curves, as well as a
characterization of semi-Riemannian Hopf cylinder&lif{—1), in terms of elasticae ifil2(—4),

s = 0,1. We show that a curve in an indefinite real space form has Jacobi mean curvature vector
field if and only if it is curvature homothetic to a free elastica. As before, this characterization
leads to find Hopf cylinders intl3 (—1) with Jacobi mean curvature vector field.
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We wish to thank to the referee for his many valuable hints and suggestions in order to improve
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2. Curves with harmonic mean curvature vector field

Let v be an arclength parametrized curve isometrically immersed in an indefinite real space
form M) of constant curvature. As usual, the metric od/]’ will be denoted by(,) and the
Riemannian connection by. Assume thaty does not lie in a 2-dimensional totally geodesic
submanifold ofM]'. Letx > 0 andr be the curvature and torsion functionspfand {1 =
v, &, &3} a Frenet frame along. The Frenet equations farcan be partially written as

VrT = ek, (1)
Vrés = —e1kT —e37&3, (2)
Vrés = eatéo+6, (3)

wheres € span{T, &, &3} ande;, i = 1,2, 3, are the causal charactersIgf¢, andés, respectively.
The Laplacian operator alongis given byA = —e; V1 Vr.
Let o be the second fundamental form associategl. tdhen the mean curvature vector field
H is defined by
H = tr(a) = Elo'(T, T) =1V = e1e9ks.

Taking covariant derivative off with respect tdl’, and using the Frenet equations, we obtain
VrH = —e9k>T + 169K €y — £16963KTE3.
The second covariant derivative Bf yields

AH = (3cie9nk )T + (—e2k” + e1k> + esrt?)&s (4)
+ e9e3(2K'T + KT')€3 + £983KTI.

ThenAH = AH, )\ € R, if and only if the following equations hold

k&' =0, %)
eok!" — e1k> — e3kT? + Aeregk = 0. (6)
26" + kT’ =0, (7)
kTd = 0. (8)

From the assumption of, equation (8) implies thai = 0 and so the curve lies in a 3-
dimensional totally geodesic submanifold/df’. Hence we can assume without loss of generality
thatn = 2 orn = 3. On the other hand, from (7) we deduce that is a constant. As a
consequence we have the following result.

Proposition 2.1 Let~ be a unit speed curve in/]}. ThenAH = AH if and only if one of the
following statements holds:

(1) ~ is a geodesic.

(2) v is a small pseudocircle or pseudohyperbola in a 2-dimensional totally geodesic submanifold
of M.

(3) v is a helix in a 3-dimensional totally geodesic submanifold4f.
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Proof. From (5) we can assume thais constant. I = 0 then+ is a geodesic; otherwise, since
x27 is constant them is also constant. Therefore we obtain (2) or (3) according+o0 or r # 0,
respectively. Conversely, it is easy to show that all curves in the proposition satisfy the required
condition for appropriate.

This proposition shows that we must work with a different Laplacian if we want to characterize
curves others than those of constant curvature. Shide a normal vector field, it is natural
to think of the Laplaciam\” associated to the connectidn in the normal bundle, defined by
AD = —61DTDT.

A straightforward computation leads to

APH = (—egr" + e3r1?)€s + e0e3(26'T + k7')E3 + e9e3KT0. 9)
ThenAPH = \H, \ € R, is equivalent to the set of equations (7), (8) and the following
62/6” - 63/%7’2 + e189Ak = 0.

Recall that a curve : I — M is said to be &ornu spiralif its curvaturex is a hon-constant
linear function.

Proposition 2.2 Lety be a unit speed curve i 2. ThenAP H = \H, X € R, if and only if one

of the following statements holds:

(1) A = 0 andk is a linear function. Sey is a geodesic, a pseudocircle, a pseudohyperbola or a
Cornu spiral.

(2)e1 A > 0 andk is given byk(s) = a cos(v/21As) + bsin(y/e1\s).

(3)e1A < 0 andx is given by (s) = aexp(v/—e1As) + bexp(—v/—e1\s).

Proof. Since the torsionr = 0, then AP H = \H if and only if &” + e1A\x = 0. Then it suffices
to integrate that differential equation.
The behaviour of these curvesliff (—1) can be sketched as follows.

R "

Cornu spiral k(s) = cos(s) k(s) = exp(s)

The curves characterized in Proposition 2.2 are quite different in the Lorentziarilavith
respect to the Euclidean plafi€?. In fact, the curvature functior(s) in R? gives the rate of
change of the Euclidean angle between the tangent vector and a fixed vector, whédéas in
gives the corresponding rate of change for the hyperbolic angle. The following pictures show
those differences.
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k(s) = exp(s) in L2 k(s) = exp(s) in R?
To solve then-dimensional case, we can suppose thias in a 3-dimensional totally geodesic
submanifold ofd/”. Then if we take: = k2, (10) can be rewritten as

(u')? + 4(e M — eobu + e9e3a?) = 0,

whereb is a constant. By integrating (11) we obtain the following solutions:

i) If e1\ < 0, thenu is aroot ofAu?+ Bu+C = 0, whereA = 48)\2, B = 16e1\(exp(2v/—e1\s)—
3e9b) andC = (exp(2v/—c1As) — 4egb)? — 16e169e3a2 .

i) If e1\ < 0, thenu is a root of Au? + Bu + C = 0, whereA = 4)\%(1 + tan?(2y/e1)s)),
B = —4g122\b(1 + tan?(2y/e1Xs)) andC = b% + 4e1e9e3a® M tan?(2/21)s).

i) If A =0, thenx andr are given by

a2
k(s) = \/eabs® + 37 (12)

7’(8) _ €2ab

b2s2 + e9e3a?”
The integration of (11) shows that the case- 0 is the most interesting one, so that working
on the equations in (12) we obtain
E9€3 (FL’)2 Egb

K2 2kt g2 (13)

provided thatsr # 0.

Lemma 2.3 Lety be a curve with curvature and torsionr satisfying the equation (13). Then
lies in a hyperquadri«) defined by the equatiofr — pg, z — pg) = e2e3b/a’.
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Proof. Let~ be the curve defined by

€1 5152/{/
7:7+?§2+7253-
TR

&\ T
v =e1 [82 (2> — 63} &3,
TK K

so that taking covariant derivative in (13) we deduce tfiat 0. Hence there exists a poipg
such thaty(s) = po, for anys. Now it is easy to show that(s) € @, for anys.

Then we get

Proposition 2.4 Let~ be a unit speed curve if/]’. Then the curvature and the torsionr of
in M are given by (12) if and only i is a Cornu spiral in a totally umbilical hypersurface of
M.

Proof. Let P be the totally umbilical hypersurface 61, obtained by taking the intersection with
the hyperquadri€) given in the above lemma. Then the shape operéitof P in M) is given
by S = a/+/|b|I. Let p denote the curvature ofin P, thatis,p? = « (VET, VET), wherevV¥
stands for the Levi-Civita connection dhand: denotes the causal characteRfT. The Gauss

formula and (13) lead to

a K

p:

o] K’
showing thap(s) linearly depends os.

Assume now thay : I — P C M is a Cornu spiral. Le®) = {x : (x — po,x — po) = er?},
e = £1, be the hyperquadric such thBt= M’ N Q and putp(s) = as + b. Then we have (13)

along with
/

1 €
p=—-— and eak? = 1p* + —-
r TR r

These equations imply (12).
The following theorem classifies all biharmonic curves in the normal bundle and extends a
result in 2, Theorem 1].

Theorem 2.5 Let~ be a unit speed curve iff;’. Then the mean curvature fieldois harmonic
in the normal bundle if and only if one of the following statements holds:

(1) n = 2 and~ is a geodesic.

(2) n = 2 and+ is a pseudacircle or a pseudohyperbola.

(3)n = 2 and~ is a Cornu spiral.

(4)n = 3 and~ is a Cornu spiral in a totally umbilical surface.

Proof. If v lies in a 2-dimensional totally geodesic submanifold, then it reduces to Proposition 2.2.
Otherwise, we may assume= 3. Moreover, the curvature and the torsiorr are given by (12),
so we apply Proposition 2.4. The converse is clear.

To finish this section, let; : M; — Mi, 1=1,...,m, be isometric immersions and consider
T=Ty XXXyt M =[], M; — T]; M, the product isometric immersion with mean curvature
vector fieldH. Let AP be the Laplacian in the normal bundle associated;tand conside’A”
the corresponding operator for Then we have

AD(glv e 7§m) = (A?gh ceey Aygfm%
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where¢; is a normal vector field tdZ; in M;. As a consequence of Theorem 2.5 we have the
following.

Corollary 2.6 Letw; : I; — M), i = 1,...,m, be unit speed curves in indefinite real space
forms and consider the isometric immersion= ~; x --- X v,,,. ThenH is harmonic in the
normal bundle if and only if, for any index we have eithen; = 2 and~; is a geodesic, a
pseudocircle, a pseudohyperbola or a Cornu spiralppe= 3 and~y; is a Cornu spiral in a totally
umbilical surface of\/3 .

Proof. It reduces to show that H = (H,,..., H,,), H; being the mean curvature vector field
associated te;.

Now we are going to characterize the hypercylinders with harmonic mean curvaturé/field
in the normal bundle, which is an extension 8f Corollary 1].

Corollary 2.7 Lety : I — M.} be a unit speed curve and consider the hypercylinder~ x Id :

I x RY* — M x R*. ThenH is harmonic in the normal bundle if and only if either< 3 and

~ is a geodesic, a pseudocircle, a pseudohyperbola, a Cornu spiral, or a Cornu spiral in a totally
umbilical surface.

3. Curves with Jacobi mean curvature vector field

Lety : I — M} be as in the above section and consider the following functional

L
500 = [ (VrT.90T) + s,
0
wherey, L andds stand for a real constant, the length and the arclength oespectively.

Definition 3.1 Let~ be a unit-speed curve if;’. v is said to be amlastica(or elastic curve) if
it is an extremal point of the functiond!t for somey. It is called afree elasticaf ;= 0.

The Euler-Lagrange equation associated to the variational problem givighiby
IVET + &1 Vr((3ear® — p)T) — 2R(V T, T)T = 0,

where R stands for the curvature tensor, provided thds closed or satisfies given first order
boundary data (seet[7] for details). Since)!]’ is of constant curvature, the Euler-Lagrange
eqguation can be rewritten as follows

2e0k” + e1K> — 2e3K7° 4 £169(2¢ — )k = 0,

along with (7) and (8). From these equations we can assume without loss of generatity-ti2at
orn = 3.
Let P" be a semi-Riemannian submanifold &f and denote by P and91P the tangent

and normal bundles oR,", respectively. Consider the Simon operafor NP — NP defined by

<ﬁ§ ,¢) = tracgS¢ o S;), whereS; is the shape operator associated With.et R* : TP — NP
be the transformation given bg*¢ = >, ¢;(Rg,E;)*, where{E;} is a local orthonormal
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frame, withe; = (F;, E;), and()* denotes normal component. T&cobi operatoiis the second
order differential operator defined by

J:MP - MNP,  JE= (AP — A+ RY)¢.

When P is compact thery arises from the second variation formula. A normal vector field
MNP is said to be dacobi fieldif it belongs to the kernel of .
A straightforward computation yields

AE = (AT + J¢ + 2A¢ — R*€,

where()” denotes tangential component. Sind¢ is of constant curvature thenR* = —mcl,
I being the identity oMt P.
In this section we want to characterize the curyes M’ whose mean curvature vector field
is a Jacobi field. More generally, we are going to classify those curves with mean curvature vector
field proper for the Jacobi operator, that#& = AH, A\ € R. A straightforward computation
leads to
AVH = 61,‘{352.

From here and (9)J H = A\H if and only if the set of equations (7), (8) and
g9k 4 1k — e3k7? 4 £169(c+ Nk = 0,
holds. As before, we can assume without loss of generalityrtiat2 or n = 3. The following

definition is given in 8].

Definition 3.2 Let~(s) andy(s) be two unit speed curves i, with curvature functions and
K, respectivelyy andy arecurvature homothetit there is a constant such thati(s) = ax(s).

Proposition 3.3 Lety : I — M)’ be a unit speed curve. Theilld = \H, for some real constant
A, if and only ifn < 3 and-~ is curvature homothetic to an elastica wiih= v/2.

Proof. Let¥ be a curve with curvaturg(s) = v/2x(s) and torsionr(s) = 7(s). Then~y satisfies
JH = \H if and only if 4 is an elastica. This completes the proof.

As a consequence, we classify the curves/ifi whose mean curvature vector field is a Jacobi
field.

Proposition 3.4 Let~ : I — M be a unit speed curve. Thei{ = 0 if and only ifn < 3 and~y
is curvature homothetic to a free elastica with= /2.

Letz; andx = 1 x --- X x,, be as in Section 2. Lef; be the Jacobi operator in the normal
bundle associated to and consider the corresponding operator for Then we have

J(gh cee )é-m) - (Jlfla .- -aJmfm)a

where¢; is a normal vector field tdZ; in M;. As a consequence of Proposition 3.3 we have the
following.

Corollary 3.5 Lety; : I; — M}, i = 1,...,m, be unit speed curves in indefinite real space
forms and consider the isometric immersios= vy X --- X v,,. ThenH is a Jacobi vector field
if and only ifn; < 3 and~y; is curvature homothetic to a free elasticaid,, for any index.

7
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The hypercylinders with Jacobi mean curvature vector field are characterized as follows. For
Euclidean curves that characterization can be foung]in [

Corollary 3.6 Lety : I — M} be a unit speed curve and consider the hypercylinder~ x Id :
I x R* — M x R}*. ThenH is a Jacobi vector field if and only if < 3 and~ is curvature
homothetic to a free elastica.

4. Hopf cylinders with proper mean curvature vector field

In [4] we have just constructed a new class of submanifoldgin-1), the so-callecsemi-
Riemannian Hopf cylindeyslefined by means of two semi-Riemannian submersigngl; (—1) —
H2(—4), s = 0, 1. Let us recall how those surfaces were defined. First we ideHiify-1) with
an appropriate subset of maR$ — R3. To do that, letP be a 2-dimensional subspacekif and
{z,y} an orthonormal basis d?. We define the following maps:

f:P_>P7 f(x):y,f(y):_l‘,
g:P—P  g(z)=y, g(y) ==z,
h:P— P, h(z) = —y, h(y) = —=,

that will be calledotation, first reflectiorandsecond reflectioon P, respectively. Lefeq, ez, e3, e4}
be the canonical basis B, for which the matrix of the metric is given ly; ;) = diag[—1, —1, 1, 1].
Let P;, i = 2,3, 4, be the 2-dimensional linear space spanneddiye;}, so thatRi = P, @ Pii.
Consider the following maps:

p=fxf:P@&P > P&Py,
J:th:PgEBPgLHP;g@PgL, (1)
L:gxg:P4€BP4J‘—>P4€BP4J‘,

and letl : R} — R3 denote the identity map. It is clear that the $et= span{1,p,0,:} is a
4-dimensional vector space ovRrand the following identities hold:

p2 = _17 op = —L, Lp=7,
po =1, o2=1, 0=y,
pL=—0, oL=—p, ®>=1.

This shows thafF is closed under composition.

Now, lety : F — R4 the isomorphism given by (1) = e1, p(p) = ez, p(0) = e3, p(1) = e4.
Theny becomes an isometry whefi is endowed with the metrig*(go), go being the standard
scalar product ofR3. Throughout this paper, both metrics will be denoted By

Letw = a + bp + co + div be an element ofF, where we writeq for a - 1, a, b, ¢ and
d being real numbers. Then we defile= —a + bp + co + dv and it is easy to show that
(w,w) = ww = ww. In general,(w1,ws) = p1(w1@2), p1 denoting the projection over the
subspace spanned by the identity map. As an immediate consequence wexdeguee—w; wy
and SO<LU1WQ,W1WQ> = — <w1,w1) <WQ, w2>.

Now, we identifyH? (—r?) with the set{w € F : ww = —1/r?}, H?(—r?) with the subset of
H3(—r?) spanned by{1, o, ¢}, andH? (—r?) with the subset ofl3(—r?) spanned by{1, p, o}

8
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Definer, : H3(—1) — H2(—4) by

1_
ms(w) = §ww,

wherew — @ denotes the antiautomorphism®fgiven by
w=a—bp+co+d, or w=a+bp+co—d.,

according to the base manifoldli& (—4) or H2(—4), respectively. It is easy to show thafiw, =
Wy w1, {(w,w) = (w0, ) andr is surjective. Moreovery(e’*w) = mp(w) andm (e w) = 1 (w)
forallw € H}(—1), z € R. As usual, we define’®, § ¢ F, bycosz + sinz 6 if 2 = —1, and
cosh z + sinh 2 # if 2 = 1. That means that the fibers are topologic&llyandH', respectively.

Remark 4.1 Notice thatif in (1) we put = f x f and. = f x f, then we obtain in the Euclidean
spaceR? the standard quaternionic structure, which was already used by U. PinkalB[sée [
describe the usual Hopf fibration 8 (1) overS?(1).

By pulling back viar; a non-null curvey in H2(—4) we get the total horizontal lift ofy,
which is an immersed flat surfacd,, in H3(—1), that will be called thesemi-Riemannian Hopf
cylinder associated tg. Notice that ifs = 0, M, is a Lorentzian surface, whereasit= 1, M,
is Riemannian or Lorentzian, accordingitde spacelike or timelike, respectively.

Let~ : I — H2(—4) be a unit speed curve with Frenet frafiE &} and curvature function
k. Let” be a horizontal lift ofy to H3(—1) with Frenet frame[T, &, &4}, curvaturek = o g
and torsionr = 1. Recall that; is nothing but the unit tangent vector field to the fibers algng
Then the Hopf Cylinded/, can be orthogonally parametrized as

[ cos(2)7(t) +sin(z)&5(t), if s =0,
X(t,2) = { cosh(2)y(t) + Sinh(,zg)gg‘(t), if s=1.

Setting, as usualX; = %—)f andX, = %—f , then{ X}, X.} is an orthonormal frame Ay (¢,.) M,
alongX. A direct computation shows that the shape operéitof A7, in this frame can be written
as

S(Xt) = EXt_EXza
S(X,) = Xy,

wheree = —1if M, is Riemannian and = +1 if M, is Lorentzian.

Notice that a unit normal vector field to/,, into H3(—1) is obtained from the complete hor-
izontal lift of & and it is, of courseg, along each horizontal lift of. As a consequence we
have that)/, is a flat surface and its mean curvature functiors given bya = 5%;?;. Then a
Hopf cylinder inH3(—1) associated to a curvein H2(—4) is isoparametric if and only if is of
constant curvature. So as a consequencé,dfdmma 2.1] we have

Proposition 4.2 Lety : I — H2(—4) be an immersed curve and, : H}(—1) — H2(—4)

the Hopf fibrations. Lefd be the mean curvature vector of the Hopf cylinddr, = 7, 1(v)
associated to the curve ThenAH = \H if and only ify is of constant curvature ifil2(—4).

9
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All Hopf cylinders classified in that proposition are of constant mean curvaturg n-1).
So if we want to obtain Hopf cylinders with non constant mean curvature we must work with the
LaplacianA” associated to the normal connectionwhich is given byAP¢ = — S iei(Dg,Dg,§—
Dy, g,§), where{ E;} is a local orthonormal frame, withy = (E;, E;). As for semi-Riemannian
hypérsurfaceM;}, let N be a unit vector field normal td/]’ and leta denote the mean curva-
ture function with respect t&v. Then a straightforward computation sho&® H = (Aa)N,

where the Laplacian\ is given in(t, z)-coordinates byA = (—1)* {—eg—; + g—;}. Hence the
following result is clear.

Proposition 4.3 Lety : I — H?2(—4) be an immersed curve ang : H3(—1) — H2(—4) the
Hopf fibrations. Letd be the mean curvature vector field of the Hopf cylindéy = 7,1 (v)
associated to the curve ThenAPH = \H if and only if one of the following conditions holds:
(1) A =0andk(t) = at + b.

(2) 6 = (—1)%eA > 0 andk(t) = acos(v0t) + bsin(vV/6t).

(3)0 < 0 andx(t) = aexp(yv/—0t) + bexp(—v/—0t).

Proof. It is a straightforward computation, becaus& H = \H is equivalent to the differential
equations” + (—1)%eAx = 0.

As a special consequence of that result, we obtainkhistin the kernel ofA? if and only if
the curvature functio(¢) is a linear function. So we have proved the following.

Theorem 4.4 Let~y : I — H?2(—4) be an immersed curve and : H3(—1) — H2(—4) the Hopf
fibrations. Then the mean curvature vector figldof the Hopf cylinder)/, is harmonic in the
normal bundle if and only if one of the following statements holds:

(1) v is a geodesic.

(2) v is a pseudocircle or a pseudohyperbola.

(3) v is a Cornu spiral.

That theorem has been yet obtained2hljy using the usual Hopf fibratiof® — S2.

Now we want to get another relation between the Hopf cylindéysand the curves to which
they are associated. To do that, Jle},? and f,, be the normal Laplacian and the mean curvature
vector of the curvey in H2(—4), respectively.

Proposition 4.5 Letr, : H(—1) — H2(—4) and~y : I — H2(—4) be as before. TheAP? H =
AH if and only if AD H., = \H.,.

Proof. Let : I — H?2(—4) be a unit speed curve and supp¢sgey’) = ¢;. ThenA$H7 = \H,
if and only if k" + e; Ak = 0, x being the curvature function of the curyein H2(—4). So the
result follows from Proposition 4.3.
To finish this section we are going to characterize the Hopf cylinders whose mean curvature
vector field is an eigenvector of the Jacobi operator. Before that, we first state a general result.
Let Pg*l be a hypersurface af/]'. Let N denote a unit normal vector field 116,7*1 in M
and leta be the mean curvature with respectfg so the mean curvature vector field can be
written asH = aN. A direct computation shows the following.

Proposition 4.6 Letz : P[]*l — M)} be a hypersurface in an indefinite space form of constant
curvaturec. ThenH is an eigenvector of, that is,JH = \H, for some real numbek, if and
only if Aa = (A +etr(S?%) + (n — 1)c)a, wheres = (N, N) and S stands for the shape operator
associated taVv.

10
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As a consequence we deduce that

Proposition 4.7 Let s : H3(—1) — H2(—4) be the Hopf fibrations ang¢ : I — H2(—4) an
immersed curve. Lel be the mean curvature vector field bf, in H3(—1). ThenJH = \H,
A € R, if and only if the following differential equation holds

K+ (1)K +e(A—4)k} = 0. 2

The differential equation given in this proposition can be solved by standard techniques in
terms of elliptic functions (sed] for more details).
These curves are related to elastic curveH#(—4) in the following sense. Bearing in mind
the differential equation of the elastic curvegi(—4), if v is a curve satisfying (2), then a curve
5 with &(t) = v/2k(t) is an elastica. In particular, if the constanin (2) is equal td), theny is a
free elastica. Hence Proposition 4.7 can be rewritten as follows.

Theorem 4.8 Let g : H3(—1) — H2(—4) be the Hopf fibrations ang : I — H2(—4) an
immersed curve. Lell be the mean curvature vector field of, in H;(—1). ThenJH = \H,
A € R, if and only ify is curvature homothetic to an elastigawith #(t) = v/2x(t). In particular,
H is a Jacobi vector field if and only if is curvature homothetic to a free elastica.

As a consequence of Proposition 4.7 we obtain the following result, whose proof is similar to
that of Proposition 4.5.

Proposition 4.9 Letr, : H$(—1) — H2(—4) andy : I — H?2(—4) be as before. TheAH = \H
if and only if J,H, = AH,, whereJ, and H., stand for the Jacobi operator and the mean
curvature vector ofy.
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