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Abstract

We show that there exist infinitely many metrics ®hwhich provide a discrete family of
non congruent embedded minimal toriSA. In particular, we obtain a metric which gives

a foliation in the once punctureBlP? whose leaves are pairwise non congruent embedded
minimal tori. This contrasts with the recent solution of a well known conjecture of H.B.
Lawson.

1. Introduction

It is well known that there exist no compact minimal surfaces (not even immersed) in the
Euclidean space. In a recent paper, P. Tomter, [12], has shown that there exist no ®mpact
invariant surfaces, with nonzero genus and constant mean curvature (in particular, minimal tori) in
the classic Heisenberg group.

Three main facts should be pointed out regarding the standard 3-sphere. First, an already clas-
sical result of H.B. Lawson (see [8]) which in turn implies that the only flat, immersed, minimal
torus inS? is the Clifford one. Second, the popular conjecture of Lawson [9] and its recent solution
[1], which states thahe only torus minimally embeddedSh is the Clifford torus Third, a result
of H. Mori [11] which provides a one-parameter family of tori minimaitgmersedof course,
non congruent each other) 4.

The main purpose of this note concerns to study of Lawson-type problefigr@lative to a
class of metrics less symmetric than the standard one. We régasla Lie group and consider
metrics onS? which areS!'-invariant §! is viewed as a subgroup 6f) and givingS? as space
of orbits, (see [6] for lef§!-invariant metrics o1$?). Then, we give a large subclass in this class
of metrics, providing (as many as we wish but in a discrete way) flat embedded minimal tori, non
congruent and'-invariant. We also show the existence of at least one metric in this family which
admits a foliation (with a pair of antipodal singularities) by embedded, flat minimal tori.

We wish to thank to the referee for his valuable comments and suggestions.

2. Flat Hopf tori

LetS?® ¢ C? be the 3-sphere endowed with its standard contact structurg. #f —z is an
outward normal, thef'S® = 7*T'S? @ iN, wherer : S® — S? is the usual Hopf map. Let be
the canonical 1-form connection on this princifatbundle and define of?® the class of metrics
hy = 7 (h)+ (uom)?w*(dt?), h being a Riemannian metric amch positive smooth function both
on S?, which makes orthonormal the above splitting. It is easy to seerth&§?, h,) — (S?, h)
is a Riemannian submersion.
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If ~ is an immersed closed curve§H, thenM, = 7—(v) is an immersed torus i, which
is embedded ify is simple inS?. The universal covering of this torusis : R? — M., given by
U(s,t) = e - 5(s), wherey is a lift of v in S3.

From now orS? by itself will denote the 2-sphere with its standard metric.

A direct computation allows us to find that the Gaussian curvaiuoé the h,,-induced metric
onM, is

=t 2 (s))). @)

u u ds?

If u is chosen to be a constami along~, then)Z, is flat relative to ther,-induced metric.
Therefore, based on the computation of the curvature and the holonamysafe [2], [3] and [5])
we obtain the isometry type aff, .

Proposition 2.1 Lety be an immersed closed curve with lendth> 0 in (S%,h). Let A be the
enclosed area by in S? and letu be a positive smooth function & which is a constant,
along~. Then the corresponding Hopf torud, = 7—1(v) in (S, h,) is isometric to the flat
torusR? /T, I being the lattice generated 9, 2ug) and (L, 2A).

The shape operatot* of M, relative to the orthonormal bas{sl,, %\I/t} has a matrix of

form
u K T
A= ( 7 —£(logu) )’

wherer = ug(v/,~') is the torsion of any horizontal lift of to (S, h,). Then we have

Proposition 2.2 Lety be animmersed curve ¥ and M., its Hopf tube. Then the mean curvature
functionay, of M, in (S3, h,) is given by

wherer is the curvature function of in (S2, k) andh = u2h.

We combine the last proposition with a classical result of L. Lusternik and L. Schnirelmann,
[10], to obtain the following.

Corollary 2.3 For any metrich, on S? there exist, at least, three embedded minimal tori in
(S3, hy,).

3. Main results

If we chooseg(S?, fz) to be an ellipsoid with three different axes, all having approximately the
same length, then it has exactly three closed embedded geodesics. Conséftigntlyhas three
embedded minimal tori. The Lawson conjecture, [9], states that the Clifford torus is the only one
minimally embedded in the standard 3-sph&te This conjecture has been proved to be true in
[1]. The existence of a one-parameter family of immersed minimal tag*jnwhose Gaussian
curvature takes values in a neighborhood of zero, was showed in [11]. It was proved in [4] that
the space of compact embedded minimal surfaces of a fixed genus in a 3-dimensional Riemannian
manifold of positive Ricci curvature is compact. This result is false if we relax the assumption of
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positive Ricci curvature. Indeed, in [7], a sequence of embedded minimal t8fi inS' (with
the standard Riemannian product structure) having no convergent subsequence is given. The same
problem can be considered for the metrigson S>.
We would like to point out that the Ricci curvature of the Riemannian mefris not signed.
In fact, the Ricci curvature on horizontal vectors is given by (see [3])

"X, X)=4-2/Ax]? — (X(Inu))* - XX (Inu).

In spite of Corollary 2.3, we cannot give a negative answer to the above stated Lawson-type
conjecture relative ta.,. In fact, the embedded minimal tori obtained there could be pairwise
congruent in(S?, h,). However, we can construct large classes of Riemannian metri€s on
which admit non congruent embedded minimal tori.

Theorem 3.1 Let G be a crystallographic subgroup of order in SO(3). Let s be a closed
simple curve irS? such thatf(3) N3 = (), for everyf € G. Then there exist infinitely many
metricsh,, onS* such that{M; : f € G} are embedded minimal tori it§?, h,) which are
pairwise non congruent.

Proof. SetG = {f1 = I, fo,..., fm}. Let{uy,...,uy} be pairwise distinct real numbers and
choose a positive smooth funcianon S* such thatu|y, (g = uj, j = 1,...,m. ThenMy (),
equipped with the:,-induced metric, is a flat torus. Furthermore, its isometry typR34gl;,
wherel'; = span{(0, 27u;), (L, 2w A)}, L being the length off and A the area enclosed kyin

S%. Since{u;} are pairwise distinct{ M ()} are also pairwise non congruent. Next we choose
the functionu such thatt(logu) = « along, wherex stands for the curvature function gfin

S? and¢ denotes its unit normal vector field. Said otherwise, we takesuch a way thap is a
geodesic of S, uh), whereh is the standard metric o8¢. Therefore{)M, 4} are minimally
embedded irfS?3, h,,).

The following result should be compared with the above theorem, as well as with the solution
of Lawson’s conjecture [1] and the results contained in [4] and [7].

Theorem 3.2 There exists a metrik, onS? such that(S?, h,,) admits a foliation, with a pair of
singularities, whose leaves are flat embedded minimal tori.

Proof. Let B(po, d) be a small geodesic ball centeredpgt= (0,0, 1) in S? and take a positive
smooth functionu on S? such thatu restricted toWW = S? \ {B(po,d), B(—po,d)} is u(z) =
x? + 23. For anyp € W, let+, be the parallel through and letx, be the curvature of,, in S. It
is clear that. is constant along any paralle}. Furthermore

&p(logu) = kp.

As a consequencéy.,, is a flat torus which is minimal irQS?’, Bu). Finally, notice that can be
chosen to be as small as we wish.
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