Lawson-type problems in non-standard 3-spheres

Manuel Barros, Angel Ferrández and Pascual Lucas Quart. J. Math. Oxford 50 (1999), 385–388

(Partially supported by DGICYT grant PB94-0750 and Fundación Séneca PB/5/FS/97)

Abstract

We show that there exist infinitely many metrics on \mathbb{S}^3 which provide a discrete family of non congruent embedded minimal tori in \mathbb{S}^3 . In particular, we obtain a metric which gives a foliation in the once punctured $\mathbb{R}P^3$ whose leaves are pairwise non congruent embedded minimal tori. This contrasts with the recent solution of a well known conjecture of H.B. Lawson.

1. Introduction

It is well known that there exist no compact minimal surfaces (not even immersed) in the Euclidean space. In a recent paper, P. Tomter, [12], has shown that there exist no compact S^1 -invariant surfaces, with nonzero genus and constant mean curvature (in particular, minimal tori) in the classic Heisenberg group.

Three main facts should be pointed out regarding the standard 3-sphere. First, an already classical result of H.B. Lawson (see [8]) which in turn implies that the only flat, immersed, minimal torus in \mathbb{S}^3 is the Clifford one. Second, the popular conjecture of Lawson [9] and its recent solution [1], which states that *the only torus minimally embedded in* \mathbb{S}^3 *is the Clifford torus*. Third, a result of H. Mori [11] which provides a one-parameter family of tori minimally *immersed* (of course, non congruent each other) in \mathbb{S}^3 .

The main purpose of this note concerns to study of Lawson-type problems in \mathbb{S}^3 relative to a class of metrics less symmetric than the standard one. We regard \mathbb{S}^3 as a Lie group and consider metrics on \mathbb{S}^3 which are \mathbb{S}^1 -invariant (\mathbb{S}^1 is viewed as a subgroup of \mathbb{S}^3) and giving \mathbb{S}^2 as space of orbits, (see [6] for left \mathbb{S}^1 -invariant metrics on \mathbb{S}^3). Then, we give a large subclass in this class of metrics, providing (as many as we wish but in a discrete way) flat embedded minimal tori, non congruent and \mathbb{S}^1 -invariant. We also show the existence of at least one metric in this family which admits a foliation (with a pair of antipodal singularities) by embedded, flat minimal tori.

We wish to thank to the referee for his valuable comments and suggestions.

2. Flat Hopf tori

Let $\mathbb{S}^3 \subset \mathbb{C}^2$ be the 3-sphere endowed with its standard contact structure. If N = -z is an outward normal, then $T\mathbb{S}^3 \equiv \pi^*T\mathbb{S}^2 \oplus iN$, where $\pi : \mathbb{S}^3 \to \mathbb{S}^2$ is the usual Hopf map. Let ω be the canonical 1-form connection on this principal \mathbb{S}^1 -bundle and define on \mathbb{S}^3 the class of metrics $\bar{h}_u = \pi^*(h) + (u \circ \pi)^2 \omega^*(dt^2)$, h being a Riemannian metric and u a positive smooth function both on \mathbb{S}^2 , which makes orthonormal the above splitting. It is easy to see that $\pi : (\mathbb{S}^3, \bar{h}_u) \to (\mathbb{S}^2, h)$ is a Riemannian submersion.

If γ is an immersed closed curve in \mathbb{S}^2 , then $M_{\gamma} = \pi^{-1}(\gamma)$ is an immersed torus in \mathbb{S}^3 , which is embedded if γ is simple in \mathbb{S}^2 . The universal covering of this torus is $\Psi : \mathbb{R}^2 \to M_{\gamma}$, given by $\Psi(s,t) = e^{it} \cdot \bar{\gamma}(s)$, where $\bar{\gamma}$ is a lift of γ in \mathbb{S}^3 .

From now on \mathbb{S}^2 by itself will denote the 2-sphere with its standard metric.

A direct computation allows us to find that the Gaussian curvature K of the \bar{h}_u -induced metric on M_γ is

$$K = -\frac{u_{ss}}{u} = -\frac{1}{u}\frac{d^2}{ds^2}(u(\gamma(s))).$$
(1)

If u is chosen to be a constant u_0 along γ , then M_{γ} is flat relative to the h_u -induced metric. Therefore, based on the computation of the curvature and the holonomy of ω , (see [2], [3] and [5]) we obtain the isometry type of M_{γ} .

Proposition 2.1 Let γ be an immersed closed curve with length L > 0 in (\mathbb{S}^2, h) . Let A be the enclosed area by γ in \mathbb{S}^2 and let u be a positive smooth function on \mathbb{S}^2 which is a constant u_0 along γ . Then the corresponding Hopf torus $M_{\gamma} = \pi^{-1}(\gamma)$ in $(\mathbb{S}^3, \bar{h}_u)$ is isometric to the flat torus \mathbb{R}^2/Γ , Γ being the lattice generated by $(0, 2\pi u_0)$ and (L, 2A).

The shape operator A^u of M_γ relative to the orthonormal basis $\{\Psi_s, \frac{1}{u}\Psi_t\}$ has a matrix of form

$$A^{u} = \left(\begin{array}{cc} \kappa & \tau \\ \tau & -\xi(\log u) \end{array}\right),$$

where $\tau = ug(\gamma', \gamma')$ is the torsion of any horizontal lift of γ to $(\mathbb{S}^3, \bar{h}_u)$. Then we have

Proposition 2.2 Let γ be an immersed curve in \mathbb{S}^2 and M_{γ} its Hopf tube. Then the mean curvature function α_u of M_{γ} in $(\mathbb{S}^3, \bar{h}_u)$ is given by

$$\alpha_u = \frac{1}{2} u \tilde{\kappa},$$

where $\tilde{\kappa}$ is the curvature function of γ in $(\mathbb{S}^2, \tilde{h})$ and $\tilde{h} = u^2 h$.

We combine the last proposition with a classical result of L. Lusternik and L. Schnirelmann, [10], to obtain the following.

Corollary 2.3 For any metric \bar{h}_u on \mathbb{S}^3 there exist, at least, three embedded minimal tori in $(\mathbb{S}^3, \bar{h}_u)$.

3. Main results

If we choose $(\mathbb{S}^2, \tilde{h})$ to be an ellipsoid with three different axes, all having approximately the same length, then it has exactly three closed embedded geodesics. Consequently $(\mathbb{S}^3, \bar{h}_u)$ has three embedded minimal tori. The Lawson conjecture, [9], states that the Clifford torus is the only one minimally embedded in the standard 3-sphere \mathbb{S}^3 . This conjecture has been proved to be true in [1]. The existence of a one-parameter family of immersed minimal tori in \mathbb{S}^3 , whose Gaussian curvature takes values in a neighborhood of zero, was showed in [11]. It was proved in [4] that the space of compact embedded minimal surfaces of a fixed genus in a 3-dimensional Riemannian manifold of positive Ricci curvature is compact. This result is false if we relax the assumption of

positive Ricci curvature. Indeed, in [7], a sequence of embedded minimal tori in $\mathbb{S}^2 \times \mathbb{S}^1$ (with the standard Riemannian product structure) having no convergent subsequence is given. The same problem can be considered for the metrics \bar{h}_u on \mathbb{S}^3 .

We would like to point out that the Ricci curvature of the Riemannian metric \bar{h}_u is not signed. In fact, the Ricci curvature r on horizontal vectors is given by (see [3])

$$r(X,X) = 4 - 2|A_X|^2 - (X(\ln u))^2 - XX(\ln u).$$

In spite of Corollary 2.3, we cannot give a negative answer to the above stated Lawson-type conjecture relative to \bar{h}_u . In fact, the embedded minimal tori obtained there could be pairwise congruent in $(\mathbb{S}^3, \bar{h}_u)$. However, we can construct large classes of Riemannian metrics on \mathbb{S}^3 which admit non congruent embedded minimal tori.

Theorem 3.1 Let G be a crystallographic subgroup of order m in SO(3). Let β be a closed simple curve in \mathbb{S}^2 such that $f(\beta) \cap \beta = \emptyset$, for every $f \in G$. Then there exist infinitely many metrics \bar{h}_u on \mathbb{S}^3 such that $\{M_{f(\beta)} : f \in G\}$ are embedded minimal tori in $(\mathbb{S}^3, \bar{h}_u)$ which are pairwise non congruent.

Proof. Set $G = \{f_1 = I, f_2, \ldots, f_m\}$. Let $\{u_1, \ldots, u_m\}$ be pairwise distinct real numbers and choose a positive smooth function u on \mathbb{S}^2 such that $u|_{f_j(\beta)} = u_j, j = 1, \ldots, m$. Then $M_{f_j(\beta)}$, equipped with the \bar{h}_u -induced metric, is a flat torus. Furthermore, its isometry type is \mathbb{R}^2/Γ_j , where $\Gamma_j = \operatorname{span}\{(0, 2\pi u_j), (L, 2\pi A)\}$, L being the length of β and A the area enclosed by β in \mathbb{S}^2 . Since $\{u_j\}$ are pairwise distinct, $\{M_{f_j(\beta)}\}$ are also pairwise non congruent. Next we choose the function u such that $\xi(\log u) = \kappa$ along β , where κ stands for the curvature function of β in \mathbb{S}^2 and ξ denotes its unit normal vector field. Said otherwise, we take u in such a way that β is a geodesic of (\mathbb{S}^2, u^2h) , where h is the standard metric on \mathbb{S}^2 . Therefore $\{M_{f_j(\beta)}\}$ are minimally embedded in $(\mathbb{S}^3, \bar{h}_u)$.

The following result should be compared with the above theorem, as well as with the solution of Lawson's conjecture [1] and the results contained in [4] and [7].

Theorem 3.2 There exists a metric \bar{h}_u on \mathbb{S}^3 such that $(\mathbb{S}^3, \bar{h}_u)$ admits a foliation, with a pair of singularities, whose leaves are flat embedded minimal tori.

Proof. Let $B(p_0, \delta)$ be a small geodesic ball centered at $p_0 = (0, 0, 1)$ in \mathbb{S}^2 and take a positive smooth function u on \mathbb{S}^2 such that u restricted to $\mathcal{W} = \mathbb{S}^2 \setminus \{B(p_0, \delta), B(-p_0, \delta)\}$ is $u(x) = x_1^2 + x_2^2$. For any $p \in \mathcal{W}$, let γ_p be the parallel through p and let κ_p be the curvature of γ_p in \mathbb{S}^2 . It is clear that u is constant along any parallel γ_p . Furthermore

$$\xi_p(\log u) = \kappa_p.$$

As a consequence, M_{γ_p} is a flat torus which is minimal in $(\mathbb{S}^3, \bar{h}_u)$. Finally, notice that δ can be chosen to be as small as we wish.

Bibliography

[1] F.A. Amaral. Toros Mínimos Mergulhados em \mathbb{S}^3 . Ph. D. thesis, Rio de Janeiro, 1997.

- [2] M. Barros, A. Ferrández, P. Lucas and M. Meroño. Solutions of the Betchov-Da Rios soliton equation in the anti-De Sitter 3-space. En 'New Approaches in Nonlinear Analysis', ed. Th. M. Rassias, Hadronic Press Inc., Palm Harbor, Florida, pp. 51–71, 1999. ISBN: 1-57485-042-3/pbk.
- [3] A. Besse. Einstein manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag, 1987.
- [4] H.I. Choi and R. Schoen. The space of minimal embedding of a surface in a threedimensional manifold of positive Ricci curvature. *Invent. Math.* **81** (1985), 387–394.
- [5] W. Greub, S. Halperin and R. Vanstone. *Connections, Curvature and Cohomology*. Academic Press, 1973.
- [6] N. Hitchin. Harmonic Spinors. Adv. in Math. 14 (1974), 1-55.
- [7] C.-C. Hsieh and A.N. Wang. Minimal tori in $\mathbb{S}^2 \times \mathbb{S}^1$. *Proc. Amer. Math. Soc.*, **122** (1994), 323–324.
- [8] H.B. Lawson. Local rigidity theorems for minimal hypersurfaces. *Ann. of Math.*, **89** (1969), 187–197.
- [9] H.B. Lawson. Complete minimal surfaces in \mathbb{S}^3 . Ann. of Math., 92 (1970), 355–374.
- [10] L. Lusternik et L. Schnirelmann. Sur le problème de trois géodésiques fermées sur les surfaces de genre 0. C. R. Acad. Sci. Paris, 189 (1929), 269–271.
- [11] H. Mori The first eigenvalues of Laplacian on minimal surfaces in \$3. J. Math. Soc. Japan, 37 (1985), 79–86.
- [12] P. Tomter. Constant mean curvature surfaces in the Heisenberg group. Proceedings of Symposia in Pure Mathematics, 54 (1993), Part I, 485–495.