Lawson-type problems in non-standard 3-spheres

Manuel Barros, Angel Ferrández and Pascual Lucas
Quart. J. Math. Oxford 50 (1999), 385-388

(Partially supported by DGICYT grant PB94-0750 and Fundación Séneca PB/5/FS/97)

Abstract

We show that there exist infinitely many metrics on \mathbb{S}^{3} which provide a discrete family of non congruent embedded minimal tori in \mathbb{S}^{3}. In particular, we obtain a metric which gives a foliation in the once punctured $\mathbb{R} P^{3}$ whose leaves are pairwise non congruent embedded minimal tori. This contrasts with the recent solution of a well known conjecture of H.B. Lawson.

1. Introduction

It is well known that there exist no compact minimal surfaces (not even immersed) in the Euclidean space. In a recent paper, P. Tomter, [12], has shown that there exist no compact \mathbb{S}^{1} invariant surfaces, with nonzero genus and constant mean curvature (in particular, minimal tori) in the classic Heisenberg group.

Three main facts should be pointed out regarding the standard 3-sphere. First, an already classical result of H.B. Lawson (see [8]) which in turn implies that the only flat, immersed, minimal torus in \mathbb{S}^{3} is the Clifford one. Second, the popular conjecture of Lawson [9] and its recent solution [1], which states that the only torus minimally embedded in \mathbb{S}^{3} is the Clifford torus. Third, a result of H. Mori [11] which provides a one-parameter family of tori minimally immersed (of course, non congruent each other) in \mathbb{S}^{3}.

The main purpose of this note concerns to study of Lawson-type problems in \mathbb{S}^{3} relative to a class of metrics less symmetric than the standard one. We regard \mathbb{S}^{3} as a Lie group and consider metrics on \mathbb{S}^{3} which are \mathbb{S}^{1}-invariant $\left(\mathbb{S}^{1}\right.$ is viewed as a subgroup of $\left.\mathbb{S}^{3}\right)$ and giving \mathbb{S}^{2} as space of orbits, (see [6] for left \mathbb{S}^{1}-invariant metrics on \mathbb{S}^{3}). Then, we give a large subclass in this class of metrics, providing (as many as we wish but in a discrete way) flat embedded minimal tori, non congruent and \mathbb{S}^{1}-invariant. We also show the existence of at least one metric in this family which admits a foliation (with a pair of antipodal singularities) by embedded, flat minimal tori.

We wish to thank to the referee for his valuable comments and suggestions.

2. Flat Hopf tori

Let $\mathbb{S}^{3} \subset \mathbb{C}^{2}$ be the 3 -sphere endowed with its standard contact structure. If $N=-z$ is an outward normal, then $T \mathbb{S}^{3} \equiv \pi^{*} T \mathbb{S}^{2} \oplus i N$, where $\pi: \mathbb{S}^{3} \rightarrow \mathbb{S}^{2}$ is the usual Hopf map. Let ω be the canonical 1-form connection on this principal \mathbb{S}^{1}-bundle and define on \mathbb{S}^{3} the class of metrics $\bar{h}_{u}=\pi^{*}(h)+(u \circ \pi)^{2} \omega^{*}\left(d t^{2}\right), h$ being a Riemannian metric and u a positive smooth function both on \mathbb{S}^{2}, which makes orthonormal the above splitting. It is easy to see that $\pi:\left(\mathbb{S}^{3}, \bar{h}_{u}\right) \rightarrow\left(\mathbb{S}^{2}, h\right)$ is a Riemannian submersion.

If γ is an immersed closed curve in \mathbb{S}^{2}, then $M_{\gamma}=\pi^{-1}(\gamma)$ is an immersed torus in \mathbb{S}^{3}, which is embedded if γ is simple in \mathbb{S}^{2}. The universal covering of this torus is $\Psi: \mathbb{R}^{2} \rightarrow M_{\gamma}$, given by $\Psi(s, t)=e^{i t} \cdot \bar{\gamma}(s)$, where $\bar{\gamma}$ is a lift of γ in \mathbb{S}^{3}.

From now on \mathbb{S}^{2} by itself will denote the 2 -sphere with its standard metric.
A direct computation allows us to find that the Gaussian curvature K of the \bar{h}_{u}-induced metric on M_{γ} is

$$
\begin{equation*}
K=-\frac{u_{s s}}{u}=-\frac{1}{u} \frac{d^{2}}{d s^{2}}(u(\gamma(s))) . \tag{1}
\end{equation*}
$$

If u is chosen to be a constant u_{0} along γ, then M_{γ} is flat relative to the \bar{h}_{u}-induced metric. Therefore, based on the computation of the curvature and the holonomy of ω, (see [2], [3] and [5]) we obtain the isometry type of M_{γ}.

Proposition 2.1 Let γ be an immersed closed curve with length $L>0$ in $\left(\mathbb{S}^{2}, h\right)$. Let A be the enclosed area by γ in \mathbb{S}^{2} and let u be a positive smooth function on \mathbb{S}^{2} which is a constant u_{0} along γ. Then the corresponding Hopf torus $M_{\gamma}=\pi^{-1}(\gamma)$ in $\left(\mathbb{S}^{3}, \bar{h}_{u}\right)$ is isometric to the flat torus \mathbb{R}^{2} / Γ, Γ being the lattice generated by $\left(0,2 \pi u_{0}\right)$ and $(L, 2 A)$.

The shape operator A^{u} of M_{γ} relative to the orthonormal basis $\left\{\Psi_{s}, \frac{1}{u} \Psi_{t}\right\}$ has a matrix of form

$$
A^{u}=\left(\begin{array}{cc}
\kappa & \tau \\
\tau & -\xi(\log u)
\end{array}\right)
$$

where $\tau=u g\left(\gamma^{\prime}, \gamma^{\prime}\right)$ is the torsion of any horizontal lift of γ to $\left(\mathbb{S}^{3}, \bar{h}_{u}\right)$. Then we have
Proposition 2.2 Let γ be an immersed curve in \mathbb{S}^{2} and M_{γ} its Hopf tube. Then the mean curvature function α_{u} of M_{γ} in $\left(\mathbb{S}^{3}, \bar{h}_{u}\right)$ is given by

$$
\alpha_{u}=\frac{1}{2} u \tilde{\kappa},
$$

where $\tilde{\kappa}$ is the curvature function of γ in $\left(\mathbb{S}^{2}, \tilde{h}\right)$ and $\tilde{h}=u^{2} h$.
We combine the last proposition with a classical result of L. Lusternik and L. Schnirelmann, [10], to obtain the following.

Corollary 2.3 For any metric \bar{h}_{u} on \mathbb{S}^{3} there exist, at least, three embedded minimal tori in $\left(\mathbb{S}^{3}, \bar{h}_{u}\right)$.

3. Main results

If we choose $\left(\mathbb{S}^{2}, \tilde{h}\right)$ to be an ellipsoid with three different axes, all having approximately the same length, then it has exactly three closed embedded geodesics. Consequently $\left(\mathbb{S}^{3}, \bar{h}_{u}\right)$ has three embedded minimal tori. The Lawson conjecture, [9], states that the Clifford torus is the only one minimally embedded in the standard 3 -sphere \mathbb{S}^{3}. This conjecture has been proved to be true in [1]. The existence of a one-parameter family of immersed minimal tori in \mathbb{S}^{3}, whose Gaussian curvature takes values in a neighborhood of zero, was showed in [11]. It was proved in [4] that the space of compact embedded minimal surfaces of a fixed genus in a 3-dimensional Riemannian manifold of positive Ricci curvature is compact. This result is false if we relax the assumption of
positive Ricci curvature. Indeed, in [7], a sequence of embedded minimal tori in $\mathbb{S}^{2} \times \mathbb{S}^{1}$ (with the standard Riemannian product structure) having no convergent subsequence is given. The same problem can be considered for the metrics \bar{h}_{u} on \mathbb{S}^{3}.

We would like to point out that the Ricci curvature of the Riemannian metric \bar{h}_{u} is not signed. In fact, the Ricci curvature r on horizontal vectors is given by (see [3])

$$
r(X, X)=4-2\left|A_{X}\right|^{2}-(X(\ln u))^{2}-X X(\ln u)
$$

In spite of Corollary 2.3, we cannot give a negative answer to the above stated Lawson-type conjecture relative to \bar{h}_{u}. In fact, the embedded minimal tori obtained there could be pairwise congruent in $\left(\mathbb{S}^{3}, \bar{h}_{u}\right)$. However, we can construct large classes of Riemannian metrics on \mathbb{S}^{3} which admit non congruent embedded minimal tori.

Theorem 3.1 Let G be a crystallographic subgroup of order m in $S O(3)$. Let β be a closed simple curve in \mathbb{S}^{2} such that $f(\beta) \cap \beta=\emptyset$, for every $f \in G$. Then there exist infinitely many metrics \bar{h}_{u} on \mathbb{S}^{3} such that $\left\{M_{f(\beta)}: f \in G\right\}$ are embedded minimal tori in $\left(\mathbb{S}^{3}, \bar{h}_{u}\right)$ which are pairwise non congruent.

Proof. Set $G=\left\{f_{1}=I, f_{2}, \ldots, f_{m}\right\}$. Let $\left\{u_{1}, \ldots, u_{m}\right\}$ be pairwise distinct real numbers and choose a positive smooth funcion u on \mathbb{S}^{2} such that $\left.u\right|_{f_{j}(\beta)}=u_{j}, j=1, \ldots, m$. Then $M_{f_{j}(\beta)}$, equipped with the \bar{h}_{u}-induced metric, is a flat torus. Furthermore, its isometry type is $\mathbb{R}^{2} / \Gamma_{j}$, where $\Gamma_{j}=\operatorname{span}\left\{\left(0,2 \pi u_{j}\right),(L, 2 \pi A)\right\}, L$ being the length of β and A the area enclosed by β in \mathbb{S}^{2}. Since $\left\{u_{j}\right\}$ are pairwise distinct, $\left\{M_{f_{j}(\beta)}\right\}$ are also pairwise non congruent. Next we choose the function u such that $\xi(\log u)=\kappa$ along β, where κ stands for the curvature function of β in \mathbb{S}^{2} and ξ denotes its unit normal vector field. Said otherwise, we take u in such a way that β is a geodesic of $\left(\mathbb{S}^{2}, u^{2} h\right)$, where h is the standard metric on \mathbb{S}^{2}. Therefore $\left\{M_{f_{j}(\beta)}\right\}$ are minimally embedded in $\left(\mathbb{S}^{3}, \bar{h}_{u}\right)$.

The following result should be compared with the above theorem, as well as with the solution of Lawson's conjecture [1] and the results contained in [4] and [7].

Theorem 3.2 There exists a metric \bar{h}_{u} on \mathbb{S}^{3} such that $\left(\mathbb{S}^{3}, \bar{h}_{u}\right)$ admits a foliation, with a pair of singularities, whose leaves are flat embedded minimal tori.

Proof. Let $B\left(p_{0}, \delta\right)$ be a small geodesic ball centered at $p_{0}=(0,0,1)$ in \mathbb{S}^{2} and take a positive smooth function u on \mathbb{S}^{2} such that u restricted to $\mathcal{W}=\mathbb{S}^{2} \backslash\left\{B\left(p_{0}, \delta\right), B\left(-p_{0}, \delta\right)\right\}$ is $u(x)=$ $x_{1}^{2}+x_{2}^{2}$. For any $p \in \mathcal{W}$, let γ_{p} be the parallel through p and let κ_{p} be the curvature of γ_{p} in \mathbb{S}^{2}. It is clear that u is constant along any parallel γ_{p}. Furthermore

$$
\xi_{p}(\log u)=\kappa_{p}
$$

As a consequence, $M_{\gamma_{p}}$ is a flat torus which is minimal in $\left(\mathbb{S}^{3}, \bar{h}_{u}\right)$. Finally, notice that δ can be chosen to be as small as we wish.

Bibliography

[1] F.A. Amaral. Toros Mínimos Mergulhados em \mathbb{S}^{3}. Ph. D. thesis, Rio de Janeiro, 1997.
[2] M. Barros, A. Ferrández, P. Lucas and M. Meroño. Solutions of the Betchov-Da Rios soliton equation in the anti-De Sitter 3-space. En 'New Approaches in Nonlinear Analysis’, ed. Th. M. Rassias, Hadronic Press Inc., Palm Harbor, Florida, pp. 51-71, 1999. ISBN: 1-57485-042-3/pbk.
[3] A. Besse. Einstein manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete. SpringerVerlag, 1987.
[4] H.I. Choi and R. Schoen. The space of minimal embedding of a surface in a threedimensional manifold of positive Ricci curvature. Invent. Math. 81 (1985), 387-394.
[5] W. Greub, S. Halperin and R. Vanstone. Connections, Curvature and Cohomology. Academic Press, 1973.
[6] N. Hitchin. Harmonic Spinors. Adv. in Math. 14 (1974), 1-55.
[7] C.-C. Hsieh and A.N. Wang. Minimal tori in $\mathbb{S}^{2} \times \mathbb{S}^{1}$. Proc. Amer. Math. Soc., 122 (1994), 323-324.
[8] H.B. Lawson. Local rigidity theorems for minimal hypersurfaces. Ann. of Math., 89 (1969), 187-197.
[9] H.B. Lawson. Complete minimal surfaces in \mathbb{S}^{3}. Ann. of Math., 92 (1970), 355-374.
[10] L. Lusternik et L. Schnirelmann. Sur le problème de trois géodésiques fermées sur les surfaces de genre 0. C. R. Acad. Sci. Paris, 189 (1929), 269-271.
[11] H. Mori The first eigenvalues of Laplacian on minimal surfaces in $\mathbb{S} 3$. J. Math. Soc. Japan, 37 (1985), 79-86.
[12] P. Tomter. Constant mean curvature surfaces in the Heisenberg group. Proceedings of Symposia in Pure Mathematics, 54 (1993), Part I, 485-495.

