Solutions of the Betchov-Da Rios soliton equation in the
anti-De Sitter 3-space

Manuel Barros, Angel Feandez, Pascual Lucas and Miguel Angel M&yo
En ‘New Approaches in Nonlinear Analysis’, ed. Th. M. Rassias, Hadronic Press
Inc., Palm Harbor, Florida, pp. 51-71, 1999. ISBN: 1-57485-042-3/pbk

(Partially supported by DGICYT grant PB94-0750 and Fundia&neca PIB95-34)

Abstract

In the three-dimensional anti-De Sitter space we study solutions of the Betchov-Da Rios soli-
ton equation and find that they are helices sweeping dgxsaroll. The soliton solutions are
precisely the null geodesics of th&tscroll. Closed solutions are also given.

1. Introduction

The Betchov-Da Rios equation, otherwise known as the localized induction equ#tica,
X A Xy, is a soliton equation for space curvgst, z), best known as a model for the behaviour
of thin vortex tubes in an incompressible, inviscid, three-dimensional fluid. It is also seen as the
global setting of the filament equation in the evolution context (3eq15], [16] and [21]). In
[5] we bring that equation to a unit three-sphere and we succeed in getting a two-parameter family
of solutions inS3(1). It was obtained by using Pinkall’s Hopf cylinders as a tool (28] The
solutions are actually helices lying in certain Hopf cylinders of constant mean curvature. We also
gave a rational one-parameter family of closed helices living in a Hopf torus. It is worth pointing
out that no soliton solution living in a Hopf torus can be found. Indeed, we got a congruence
solution, i.e.,.X moves without changing shape, only position. This is the reason why in this paper
we undertake to check the Betchov-Da Rios equation (or the filament equation) in a Lorentzian
space form.

In dealing with isometric immersions between Lorentz spaces L. Gral/@s,iftroduced a
special class of surfaces, the so calledcrolls, that played an important role in the classification
of flat surfaces isometrically immersedTi (—1) obtained by M. Dajczer and K. Nomizul. Q.
Those surfaces have also been the key to solve some others interesting classification problems as
well as to check a Chen’s conjecture brought to indefinite space forms2{sg€g][[4] and [12]).

The aim of this paper is threefold. First, following Pinkall's ide2(][ we construct the family
of semi-Riemannian Hopf cylinders i} (—1) by means of certain semi-Riemannian submersions
of H}(—1) overH2(—1/4), s = 0, 1. Then we show that &-scroll is a Lorentzian Hopf cylinder.
Some examples are given in the last section. Secondly, in view of the geometric structure of Hopf
cylinders, we check the Betchov-Da Rios soliton equatidﬁﬁ(%l). Indeed, that equation, when
considered as an evolution equation, is nothing but the filament equation, so that we find solutions
lying in B-scrolls. We also give closed solutions. Thirdly, the solitons solutions of the filament
equation inH3(—1), living in a B-scroll, are its null geodesics. Therefore, as far as we know, this
is a nice approach to get a physical interpretation Bfscroll.
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Finally, we ask for Hopf torus which are Willmore surfacedlif(—1). The answer should be
supplied by Hopf torus over closed elastica@lit{—1/4). Since the Lagrange multiplierhas to
be —4, no Lorentzian Willmore Hopf torus can be foundHi (—1).

Part of results in this paper were advancedin [

2. Semi-Riemannian Hopf cylinders andB-scrolls

In order to introduce a Hopf fibration, : H(—1) — H2(—1/4), s = 0, 1, we need to identify
H3(—1) with an appropriate subset of mag§ — R3i. To do that, letP be a 2-dimensional
subspace ifR3 and{x,y} an orthonormal basis d?. We define the following maps:

f:P_>P7 f(x):yaf(y):_xa
g:P—P  g(x)=y,
h:P— P, h(z) = —y, h(y) = —x,

that will be calledotation, first reflectiorandsecond reflectioon P, respectively. Lefey, ez, e3, e4}
be the canonical basis @, for which the matrix of the metric is given ldy;;) = diag[—1, —1,1,1].
Let P;, i = 2, 3,4, be the 2-dimensional linear space spanneddyye;}, so thaﬁR‘Q1 = P, @Pf.
Consider the following maps:

p=fxf:P®P;F — Py® Py,
o:gxh:Pg@P;an@P;, (1)
L=gxg:Pi® P — P,o P},

and letl : R} — R denote the identity map. It is clear that the $et= span{1,p,0,¢} is a
4-dimensional vector space ovRrand the following identities hold:

P :_17 op=—t p=0,
PO =1, o2 =1, Lo = p,
pL=—0, oL=—p, 12=1.

This shows thaf* is closed under composition.

Now, lety : F — R the isomorphism given by (1) = e1, p(p) = ez, p(0) = e3, o(1) = e4.
Theny becomes an isometry whefi is endowed with the metrig*(go), go being the standard
scalar product ofRj. Throughout this paper, both metrics will be denoted dy

Letw = a + bp + co + di. be an element ofF, where we writea for a - 1, a, b, ¢ and
d being real numbers. Then we defile= —a + bp + co + dv and it is easy to show that
(w,w) = ww = ww. In general,(w1,ws) = p1(w1w2), p1 denoting the projection over the
subspace spanned by the identity map. As an immediate consequence wergl@guee—w; wy
and so{wiws, wiwe) = — (w1, w1) (wa, wa).

Now, we identifyH3(—r2) with the set{w € F : ww = —r?}, H?(—r?) with the subset of
H3(—r?) spanned by{1, o, ¢}, andH? (—r2) with the subset ofl}(—r?) spanned by{1, p, o }.

Definer, : H3(—1) — H2(—1/4) by
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wherew — @ denote the antiautomorphism &fgiven by
w=a—bp+co+d, or w=a+bp+co—d,

according to the base manifold & (—1/4) or H?(—1/4), respectively. It is easy to show
that yws = W W1, (w,w) = (©,®) and 7, is surjective. Moreoverm(e”*w) = mo(w)
and m (e®w) = m(w) for all w € H(—1), = € R. As usual, we define’®, § ¢ F, by
cos(z) + sin(x)@ if #? = —1, andcosh(x) + sinh(x)@ if #?> = 1. That means that the fibers are
topologicallyS' andH!, respectively.

Remark 2.1 Notice thatifin (1) we put = f x f and. = f x f, then we obtain in the Euclidean
spaceR? the standard quaternionic structure, which was already used by U. PinkalR(Gpto[
describe the usual Hopf fibratid?(1) — S?(1).

It is not difficult to see that the above defined: H3(—1) — H2(—1/4), s = 0, 1, are semi-
Riemannian submersions and so we will follow the notation and terminologi©pf Therefore
givenw € H3(—1) one has the splitting of,,H3(—1) into the horizontal subspadé,, and the
vertical line),, spanned by a vectdr,,. Recall thaty,, = ker(d(rs).) andd(ws),, restricted to
H., gives an isometry betweé,, and T (. Hz(—1/4).

Let V and V be the semi-Riemannian connectionsif(—1) andH2(—1/4), respectively,
and denote by overbars the lifts of corresponding objects on theHzdsel /4). Then, we have

Y = VxV 4+ (—1)*(JX,Y)om,)V,
-V = VX =0X,
VvV o= o0,

where.J denotes the standard complex structur@idf—1/4) andd = p whens = 0orf = .
whens = 1.

Let 3 : I — H2(—1/4) be a unit speed curve with Frenet fra{ig, &} and curvatures.
Consider a horizontal lif6 : I — H(—1) of 8 with Frenet frame{T, £5, &5} and curvatures*
andr*.

Now, from the Frenet equations, we can deduce at &,. In particular; lies in the
horizontal distribution along and it has the same causal charactehaglso it is not difficult to
see that* = 1 and¢; = £V, that is, the binormag of 3 coincides with the unit tangent to the
fibers through each point ¢f.

Then, using the terminology il{], we have proved the following.

Lemma 2.2 (i) The horizontal lifts of unit speed curveshiit(—1/4) are spacelike Frenet curves
in 3 (—1) with torsion=+1.

(i) The horizontal lifts of unit speed timelike curvesH#(—1/4) are timelike Frenet curves in
H3(—1) with torsion=+1.

By pulling back viar; a non-null curves in H2(—1/4) we get the total horizontal lift o8,
which is a flat immersed surface/ in H3(—1), that will be called thesemi-Riemannian Hopf
cylinder associated t@. Notice that ifs = 0, Mg is a Lorentzian surface, whereasit= 1, Mg
is Riemannian or Lorentzian, accordingdde spacelike or timelike, respectively.

In [10] M. Dajczer and K. Nomizu studied certain flat Lorentzian surfaces immerdé(in1),
the so calledB-scrolls, as an extension of those first introduced by L. Gral/@s Now we are
going to give a relation between Hopf cylinders abscrolls.

3
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Theorem 2.3 Let M be a Lorentzian surface immersed il (—1). Then M is the semi-
Riemannian Hopf cylinder ifif7(—1) associated to a unit speed cungein HZ(—1/4) if and
only if M is the B-scroll of any horizontal lift3 of 5.

Proof. Let 3 be a horizontal lift of3. Then)M; can be parametrized a§(t, 2) = e%?/3(t), 0 being
p or ¢, according tos be0 or 1, respectively. Thus we find that

X(t,2) ={ cos(2)f(t) +sin(2)pf(t),  ifs=0

cosh(2)B(t) + sinh(2)3(t), ifs=1

Observe thab3(t) is the unit tangent vector field to the fibers alghgwhich is nothing but the
binormal of 3. Then if M is Lorentzian, this proves that/; is the B-scroll associated t@. A
similar argument works to prove the converse.

Lets : I — H2(—1/4) be a unit speed curve with Frenet frafig &} and curvature function
k. Let3 be a horizontal lift of3 to H3 (—1) with Frenet framg T, &, &5} and curvaturé = ko
andr = 1. Recall that¢} is nothing but the unit tangent vector field to the fibers alénd@hen
the Hopf cylinder)M 3 can be orthogonally parametrized as

X@&):{‘Dﬂ@5@)+ﬂnkkyﬂ, if s =0

cosh(z)B(t) + sinh(z)&5(t), ifs=1

Setting, as usuall; = %X andX, = %X, then{X,, X} is an orthonormal frame dFy; .y M
along X and a direct computation shows that the shape opegatufr M in this frame can be
written as

S(Xt) = kX;+eX,,
S(X,) = Xy,

wheres = +1 if Mg is Riemannian and = —1 if M is Lorentzian.

Notice that a unit normal vector field t/5 into H?(—1) is obtained from the complete hori-
zontal lift of & and it is, of courset, along each horizontal lift of. As a consequence we have
that M is a flat surface, as we said before, and its mean curvature funciggiven bya = /2.

According to the description of curves with constant curvatuiéin-1/4) (see, for instance,
[8, p. 178 and ff]) and using the terminology df][ [3] and [18] we can give the following
description of Hopf cylinders of constant mean curvature.

Proposition 2.4 Let 3 be a unit speed curve ifi2(—1/4) with constant curvature. Then one of
the following statements holds
(1) Mg is a minimal complex circles(= 0).
(2) Mg is a non-minimal complex circlé (< x* < 4).
(3) My is the Hopf cylinder over the horocycle & 0, k* = 4) or over the pseudo-horocycle
(s =1, K% =4).
(4) Mg is one of the following semi-Riemannian products
(4.1)H}(—r?) x SY(r2 — 1) if s = 0 andx? > 4,
(4.2)H'(—r?) x S}(r? — 1)if s = 1 andk? > 4.
(5) M is the Riemannian produéi' (—r?) x H*(—1 + r?) with r satisfying

1—2r?
721%
rv1—r2
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It should be noticed that the above cases (1) through (4) correspond to the Lorentzian character
of M3 and so, according to Theorem 2.3, it can be considered as the classificafisacoblls
with constant mean curvature i (—1). The remainder case corresponds with the Riemannian
character of\/.

3. Lorentzian Hopf tori

We know, from the above section, that Hopf surfaceﬁ&lﬁ{—l) shaped on closed curves
in H?(—1/4) are Lorentzian flat tori. Now we want to determine the isometry group of these
surfaces.

To do that we first define a connection in the circle bundje: H3(—1) — H2(—1/4
attaching to eachy € H3(—1) the horizontal 2-planét,,. The Lie algebra oS! = #/(
identified tou(1) = R and soV is the fundamental vector fielth corresponding td € (1
particular, the connection fori is thew(1)-valued 1-form oveil$(—1) defined byl'(H,,) =
andT'(V,) = 1, for anyw € H$(—1).

Let Q2 be the curvature 2-form of the connection. It is well known that there exists a uRique
valued 2-fornmt2 onH?(—1/4) such thaf) = 7;;(Q). The standard volume fora¥/ of H?(—1/4)
satisfies thatlV' (X, JX) = 1, for any unit vector field\ onH?(—1/4).

Now we use standard computations involving the structure equations of the induced connection
and the formulae in14, Vol. |, p. 146] to get2 = —2 dV'.

Given a closed embedded curgén H?(—1/4), we will show that the isometry type difl3
not only depends on the length ©f but also on the area enclosed/®yand only on both of them.
Actually we have the following.

) by
1)
). |

Theorem 3.1 Let 3 be a closed embedded curveHir(—1/4) of length L enclosing an areal.
ThenMg is isometric tol.2/A, A being the lattice in the Lorentzian plari¢? generated by the
vectors(27,0) and (24, L).

Proof. Let 3 be any horizontal lift of3 and X : L? — Mg C H3(—1) the semi-Riemannian
covering defined byX (z,t) = ¢*3(t). The lines parallel to the-axis inIL? are mapped by

onto the fibres ofry, whereas those parallel to theaxis are mapped onto the horizontal lifts of

8. Of course, these curves are not closed. However, followidg\ol. II, p. 293], there exists

a fixed numbeb € [—, ) such that3(L) = ¢ 3(0). The group of deck transformations of the
coveringX is then generated by the translatig@s, 0) and(d, L). To get an explicit computation

of the holonomy numbeF we come back to the circle bundig : H3(—1) — H?(—1/4). The
curvature form measures the non-closedness of the horizontal lifts of closed curves. In our context,
that means that (see agaid| Vol. 11, p. 293])

_/97
C

whereC is any 2-chain offl?(—1/4) such thabC = 3. From here anf) = —2 dV we find that
§ =2A.

Remark 3.2 It is worth noting that2A, L) is only constrained by the isoperimetric inequality in

H?(—-1/4) (see p2)
L? > ArA + 4 A2
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Hence the vectof2A, L) must be spacelike. Observe that the above inequality can be rewritten as
(2A + )% — L? < 72, Therefore(24, L) lies in the shaded regioR

Y1
I~

o N
—

Note that equality holds at the boundary pointsif They correspond with lattices giving
constant mean curvature Hopf tori, i.e., Hopf tori over geodesic circl&®{n-1/4). Moreover,
for each point inR there exists a unique (up to rigid motiondli) lattice inl.? producing a Hopf
torus inH3(—1). Therefore we have got a sort of rigidity result for constant mean curvature Hopf
tori. This can be viewed as follows: although a Hopf torus coming from an interior poiRt of
could be shaped on two non-congruent closed embedded curt#s-inl /4), this can not occur
for the boundary points dR.

4. Semi-Riemannian Hopf cylinders and solitons

The Betchov-Da Rios equation, also called localized induction equation in 3-dimensional hy-

drodynamics,

N

ot " V& T s
is a soliton equation for space curvEst, »), V being the Levi-Civita connection of the space.
This can be rewritten a8, = B (the “filament equation”), where and B stand for the curvature
and the binormal of’, respectively. The evolution &f governed by this equation of motion can
be viewed as an idealization of the motion of a thin vortex cylinder ($8eaind [16] for details).

In view of the geometric structure of semi-Riemannian Hopf cylindefdjn-1), that was
explicitly described in Section 2, it seems natural to seek for parametrizations of them being
congruence solutions of (2). It is a straigthforward computation that, in general, the standard
parametrizationX (¢, z) of Mg is not a solution of (2). From now oiX (¢, z), given in Theorem
2.3, will be called the standard coveringlot overMg. Then we set up the following question: let
Diff (R?) be the group of diffeomorphisms &°. For anyh € Diff(R?), define the covering map
Y = Xoh:R? — Mg C H}(—1), whereg is an arc-length parametrized curveH(—1/4)

6
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and M its Hopf cylinder inHS (—1). We ask for the classification &f € Diff (R?) in order toY’
be a solution of the Betchov-Da Rios equatiortify —1).

In this paper we completely solve this problem. To do that we first recall the Frenet equations
in H3(—1) of the lift 3 of 3:

ViT = (—1)%a1Rés,
Vi& = —erl +(-1)%€,
Vg = (=1)ag.

Letn be a unit normal vector field td/; in H;(-1). Thenn can be written as follows:

y = { — sin(z)Tgt) + g1 cos(2)&5 (1), s =0,
—sinh(2)T'(t) 4+ €1 cosh(2)&5 (), s=1.

Let . € Diff(R?) and seth(u,v) = (t(u,v),z(u,v)). WriteY = X oh : R* — Mjy as
Y(u,v) = X(t(u,v), z(u,v), so thatt, z, — t,z, does not vanish anywhere. To see thais a
solution of the Betchov-Da Rios soliton equation one only need checkthatVy, Y, = Y.,
whereV is the semi-Riemannian connectionliéf (—1).

The cross product in the tangent spdgel; (—1), in any pointp € H3(—1) C R} is defined
as follows. InT,H3(—1) there is a natural orientation: an ordered basj&’, Z in T,H3(—1)
is positively oriented if dépXY Z] > 0, where[pXY Z] is the matrix withp, X, Y, Z € R} as
row vectors. Now lets be the volume element dffi; (—1) given byw(X,Y, Z) = det[pXY Z].
Then forX,Y € T,H3(—1), the cross producX AY is the unique vector iff},H3(—1) such that
(X NY,Z)=w(X,Y,Z),foranyZ € T,H3}(—1) (see L0)).

As for the covariant derivative, a straightforward computation yields

quYu = tyuXt + ZuuXs + t%ﬁXtXt + tuzquZXt + tuzquth.

By using the Frenet equations it is easy to see that

vXtXt - (_1)5’%777
szXt = (_1)5777
ﬁXt‘XZ = (_1)877'

Then by choosingu(Xy, X,,n) = 1, we haveX; A X, = (—1)%1n, X, An = X and
X An=(—1)*X,. Thus we find that
YuAVy, Yy = (=1)°eituzy(tui + 224) Xy
+ 2 (LR + 220) X,
+ (_1)251(tuzuu - Zutuu)n-

ThereforeY (u, v) is a solution of the Betchov-Da Rios equation if and only if the following PDE
system holds:

ty, = (=1)°c1tyzu(tur + 22y),
Zy = tA(tyR+22,),
0 = tuzuu — Zulun-
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It follows that z, = gt,, for a certain functiory, only depending o, which measures the
slope of theu-curves. On the other hand, sin€g,,Y,) = e1t2 — (—1)*22 = ¢, ¢ being the
causal character of the-curves, we find that = (¢; — (—1)°¢?)t2. Thent,, only depends on
v, so thatt(u, v) = hi(v)u + ha(v), for certain differentiable functions; andhs. In particular,
tuw = 0 = 244, and so we obtain

Vv, Yy = (=1)*(R + 29)t2n.

On the way, the following claim has been proved: theurves are geodesics in the semi-Riemannian
Hopf cylinderMg.
Now the curvature function ifil3(—1) p of these curves is given by

p = ety (R + 29).

As t,z, — tyz, = ec1t2(k + 2g) # 0, we deduce thap does not vanish anywhere. From
the compability conditiort,,, = t,,, we easily get thap(u,v) = fi(v)u + f2(v), for certain
differentiable real functions that only depend on Then f; vanishes identically and so, =
ku = 0. Leta be the mean curvature dfl3 in H{’(—l). Since2a = &k, we haveq,, = 0, so
that « is a constant function along the fibers. On the other hand, the linear independeérce of
and X, shows thaty and~ are actually constant functions ddg. By using now the remainder
compatibility conditionz,,, = z,,,, we find thatg, ¢, andp are constant functions.

Summarizing, we have proved the following

Theorem 4.1 Let 3 be an arc length parametrized curveliff (—1/4) and M its Hopf cylinder
in H3(—1). For anyh € Diff(R?), takeY = X o h : R — Mjp, X being the standard covering
of R? over My. ThenY is a solution of the Betchov-Da Rios soliton equatiortlif(—1) if and
only if the following statements hold:

(i) 8 has constant curvature, say in H2(—1/4);

(i) A(u,v) = (t(u,v), z(u,v)) is given by

t(u,v) = au+ (—1)%agpv+c1,

z(u,v) = agu+ejapv + ca,

where(e; — (—1)%¢%)a® = ¢, £ being the causal character @f, ¢ the causal character of the
u-curves,g € R — {—x/2}, p = e1(k + 2g)a? is the curvature of the--curves inH3(—1) and
a, c1, ¢ are arbitrary constants.

A sharper description of the-curves solution of the Betchov-Da Rios equation can be given.
Looking at the proof of the above theorem we find tRgt,Y,, = (—1)%c1pn and (Y,,Y,) =
—ee1(—1)%p?. Therefore the torsion of the-curves is given by = (Vy, 7, %Yv>. Then, from
Section 2 we get

1
v = ——(SYu,Yy)
p

1
= —; {tute (SnXe, Xi) + (tuzo + tozu) (Sp Xy, X2) + 2020 (Sp X2, X2) }

- —m(g2+7€g+61(—1)5),
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which is constant. Therefore, the solution we have just found is actually a heflix(i1), lying
in a Hopf cylinder, whose evolution through the filament flow is made up by helices congruent to
him.
Conversely, given an helix of constant curvature functionsandv, a straightforward com-
putation yields
—(=1)%(ee1 +v)
g = )
P
ep? + (—1)%ee1 (1 — v?)
; :

Theny determines a solution of the filament equatiofif(-1) lying in the Hopf cylinder. Indeed,
take the Hopf cylindefM; over a curves in H2(—1/4) of constant curvature and then au-
geodesic inM 3 with slopeg.

Let] = {g € R:¢e; —(—1)°¢? # 0 and s + 29 # 0} and consider the one parameter
family {Y, = X o h, : g € I} of congruence solutions of the Betchov-Da Rios equation. When
g1 — (=1)%¢g? = 0, Y, parametrizes a null geodesic dfz and a straightforward computation
shows that this curve is a singular solution of the Betchov-Da Rios equation. Summing up we
have

k =

Corollary 4.2 Let My be a Lorentzian Hopf cylinder ifil3(—1) of constant mean curvature.
Then the only soliton solutions of the Betchov-Da Rios equatidfif{n-1) lying in Mg are the
null geodesics oM.

From Theorem 3.1 it is easy to find closed solutions. Actually we have

Corollary 4.3 Letg3 be a closed curve of constant curvaturéiia(—1/4) with lengthL enclosing
an oriented aread. Then for any rational numbey, the slope

(A
g_L 4 T

defines a unique closed helixIifiy (—1) and therefore a closed solution of the Betchov-Da Rios
equation inH3(—1) living in the Hopf torusMz. Furthermore, the closed solution is either
spacelike, or timelike or null according to€ (q1,42), ¢ € R—(q1,92), ¢ € {q1, g2}, respectively,
whereq; = -4 — L andg, = -4 + L.

s 21

5. Looking for Willmore Hopf tori in  H3(—1)

Let M be a semi-Riemannian manifold and consider immersed curve$ — M. As
usual, the metric will be denoted Hy) and the Riemannian connection By Let V' (¢) be the
tangent vector tey at+(¢) and7'(¢) the unit tangent vector, so we hay&t) = v(t)T'(t), where
v(t) = (e1 (V(t),V(t)))"/? is the speed of ande; = (T, T) denotes its causal character. The
curvaturex(t) of v is given byr(t)? = g9 (V1 T, V1 T), €2 being the causal characterof- 7.

A unit-speed curve in M) is said to be aelastica(or elastic curvgif it is an extremal point
of the functional

L 1
A = S = 7L, VT vat,
5 (7)_/0 (Vo T, Vo) + A)d /0 (V4T, V4 T) + Nt

9
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for some)\, whereds and L stand for the arclength on and the length ofy, respectively. It is
called afree elasticaf A = 0.

In order to obtain the variation formula g, we will keep the notation and computations
in [17, Section 1]. When the curve is closed or satisfies given first order boundary data, the
Euler-Lagrange equation associated to our variational problem is

VAT + &1V7((3e26* — N\)T) — 2R(VT,T)T = 0.

The Frenet equations farcan be patrtially written as

VTT = 82/@52, (3)
V& = —ekT —e3783, 4)
Vrés = eaméo+6, (%)

wheres € span{T, &, &}, (&, &) = &; andr is the torsion function (the second curvature if
n > 3). Assume now thad/} is of constant curvature Then the Euler-Lagrange equation can
be rewritten as follows

2e9k” + e1K3 — 2e3k7% + e162(2¢ — Nk =0, (6)
2k'T + k7' =0, (7)
k1o = 0. (8)

If v does not lie in a 2-dimensional totally geodesic submanifold/jf, then the equation (8)
implies thatd = 0 and so the curve lies in a 3-dimensional totally geodesic submanifoldgf.
Hence we can assume without loss of generalitythat2 or n = 3. On the other hand, from (7)
we deduce that?T = a is constant.

Takingu = x? the equation (6) can be solved by standard techniques in terms of elliptic
functions (see11] for a more detailed discussion on this subject). For instance, a qualitative
description of elasticae in the Lorentz-Minkowski plab&is given as follows. In general, the
elasticae inL? are curves which oscillates around a geodesic, so that the paramétesome
sense, could be viewed as the wavelength. That length increases or decreases accerding to
does. In the following we skecht some of these curves.

e1A>0 A=0 e1A <0

As for the pseudo-hyperbolic plafi& (—1) the behaviour of the elastic curves is essentially
the same as ifi.2, they also oscillate around geodesics. In particular, we can draw a free elastica
oscillating around the central circle i? (—1).

10
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Free elastica ~ Projection oncy-plane
Let MS2 be a surface in an indefinite 3-spale§§ of constant curvature, and letH denote its

mean curvature vector field. We define the oper&toover sections of the normal bundle bf?
into M as follows

WM — MM,  W(E) = (AP +2(H, H) I — A)¢,

where A denotes the Simon operato?3. A cross sectiorf will be called a Willmore section if
W (&) = 0. Suppose that/ is compact and consider the Willmore functional (see, for example,

(9], [24] and [29])
W(M) = /M((H, H) + ¢)dv.

Then the operato” naturally appears provided that one computes the first variation formula for
W. That can be obtained in a similar way to that given by J. L. Weiner @8®ip the definite
case. Now Willmore surfaces are nothing but the extremal points of the Willmore functional and
they are characterized from the fact that their mean curvature vector fields are Willmore fields.

Proposition 5.1 Letw, : H3(—1) — H2(—1/4) and3 : I — H2(—1/4) be as before. Then the
Hopf cylinderMj satisfiesSV H = pH, u € R, if and only if 3 is an elastica inHZ2(—1/4).

Proof. Let a be the mean curvature @f/5 in H(—1). ThenWH = pH if and only if Aa +
2ea3 — (p + tr(S?))a = 0, € and S being the sign of\/; and its shape operator, respectively.

By using the usual local coordinatés z} we have that\ = (—1)s+! {sg—; — 86722}. Bearing in

mind thata = ex/2 and t(S?) = x? — 2¢ we deducéV H = pH if and only if 2(—1)5T1x" —
K3+ 2¢(2 — p)k = 0, that is, 3 is an elastica with = —(4 + 2u).

Observe that the fibers af, : H3(—1) — H?(—1/4) are circles, and so compact whereas the
fibers ofry : Hj(—1) — H2(—1/4) are not compact. Therefore to find compact Hopf surfaces
we have to consider Hopf torus shaped on closed curvBgn-1/4). In fact, U. Pinkall, 0],
exhibited an infinite series of Willmore tori in the unit 3-sph&f¢1) obtained as Hopf tori, via
the usual Hopf fibration of3(1) overS?(1/4), over elasticae i$%(1/4). In his family, Pinkall
shows that the Clifford torus i§(1) is the only member with constant mean curvature (actually
minimal). That is, it is the unique Willmore-Hopf tori coming from an elastic&%1/4) with
constant curvature (actually geodesic). In the anti-De Sitter world, we know from Proposition 5.1
that a Hopf torus\/; is a Willmore surface il (—1) if and only if 3 is an elastica iff[?(—1/4)
with A\ = —4. However we have recently known from D. Singer (private communication) that
cannot be hold. Thuthere is no (Lorentzian) Willmore Hopf torus i (—1).

11
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6. Some examples

In this section we are going to describe a method to find explicit orthogonal parametrization
of Hopf cylinders inH$ (—1) C R associated to curves ifi2(—1/4).

For the sake of simplicity our computations will be refered to the fibratipn H3(—1) —
H?(—1/4). It is worth noticing that our method also works for the fibration : H$(—1) —
H2(—1/4), as well as for the usual Hopf fibration: S* — S?, making suitable changes.

Letw be any point i3 (—1) C R4, which is written asy = 1 +z2p+x30 +74¢. Throughout
this section we will identifyv with a point(xz;)1<i<4 in R%. In this sensery(w) = %&?w is nothing
but(A,0, B,C) where

1
A== E x2 B = x123 + 2014, C =x124 — 2973.

Now, given a poinp = (4,0, B, C) in H?(—1/4) it is not difficult to see that the fiber; ! (p) is
given by

1

1
T (p) = {(Dcosoz,Dsina, —(Bcosa — Csina), 5(

D Ccosa+Bsina)):a€R},

whereD = Y22
Let3: I — H?(—1/4) be a regular curve given by(t) = (A(t),0, B(t), C(t)). A straight-
forward computation shows that all horizontal liftof 3 to H$(—1) are obtained as

1
IOk
1

W(C(t) cosa(t) + B(t)sina(t))),

B(t) = (D(t)cosal(t), D(t)sinal(t), B(t)cosa(t) — C(t) sina(t)),

wherea(t) is given by

_, [ BMOC(#) - C#)B'()
a(t)—2/ Y OES dt.

Thus an orthogonal parametrizatiaf(t, z) = e**3(t) of the Hopf cylinder)M associated to
0 is written as

X(t,z) = (D(t)cos(a(t) + z), D(t) sin(a(t) + z),
1 .
m(B(t) cos(a(t) + z) — C(t) sin(a(t) + 2)),
1 .
m(C’(t) cos(a(t) + z) + B(t) sin(a(t) + 2))),
where we have chosen a suitable constant to determarel fix the lift of 3.

Now we will apply this method to some special curvedli(—1/4).
5.1 The Hopf cylinder associated to a horocycle.

12
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In studying curves with constant curvature in the Poiadaalf-planeH?(—1/4), it appears
a circle tangent to the-axis whose curvature satisfigd = 4. This is the so-called horocycle,
which can be parametrized as follows

1
B(t) = (2 + 5,0,152,75), teR.

The lift 3 of 3 to H(—1) with a(0) = 0 is obtained by computind () = v/#2 + 1 anda(t) =

arctant — t. Thereforecos a(t) = t21+1 (cost + tsint) andsin a(t) 1
and so

m(tcost — sint),

B(t) = (cost +tsint,tcost — sint, tsint, tcost).

Hence an orthogonal parametrizationidf; in H3(—1) is given by

X(t,z) = (cos(t — z) + tsin(t — z), —sin(t — z) + tcos(t — z), tsin(t — z),t cos(t — z)).

5.2 The Hopf cylinder associated to a geodesic circle.
We find that geodesic circles ifi?(—1/4) have constant curvature satisfyirg > 4. They
are parametrized as

1 1
B(t) = (a,O,\/aQ—4cost,\/a2—4sint>, teR.

To compute the iff3 of 5 with a(0) = 0 in H3(—1) c R4, we haveD(t) = \/@ and
a(t) = 221t Then

— 2 1 2a — 1 2 1 2a — 1
B(t) = \/ @t cos [ 2 t) 4/ @t sin [ 22 t),
2 2 2 2
2a — 1 20 +1 20 — 1 | 2a +1
cos t),4/ sin t
2 2 2 2
and the Hopf cylinden/z can be orthogonally parametrized as
2 1 2a — 1 2 1 2a — 1
X(t,z) = < a2—i— cos<a2 t+z>,\/ a2—|— sin< a2 t+z>,
2a — 1 2 1 [2a — 1 2 1
@ cos @t t+z|, a sin ot t+z .
2 2 2 2

5.3 The Hopf cylinder associated to some hyperbolic cyclide.
For a non-zero real number let A(t) be a non-constant differentiable function satisfying
A(t) > 2r? + 1 and defined(t) in H*(—1/4) C R} to be
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Notice that3 can be obtained by cutting the hyperboloid

{(A,O,B,C) eR4:—A2+Bz+02:—i,A>o}

in R* with the parabolic cylinde’3? = r%(2A + 1) and in this sense we call a hyperbolic
cyclide.

To get an orthogonal parametrization/af; in H;(—1) C R3 we haveD(t) = \/% and

a(t) = r\/2A(t) — 4r2 — 1.ThenMjg can be parametrized by

(\/ 24(t (r —(4r2+1)+ z) ,

sm (r 2A(t) — (4r2 +1) + z ,

T

V2r cos (r 2A(t) — (4r2 4+ 1) + z \/A 2r2 + = sm ( 2A(t) — (4r2 4+ 1) + z) ,
V2r sin (r 2A(t) — (4r2 +1) + z + \/A 2r2 + cos ( 2A(t) — (4r2 +1) + z)) .
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