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Abstract

In the three-dimensional anti-De Sitter space we study solutions of the Betchov-Da Rios soli-
ton equation and find that they are helices sweeping out aB-scroll. The soliton solutions are
precisely the null geodesics of thatB-scroll. Closed solutions are also given.

1. Introduction

The Betchov-Da Rios equation, otherwise known as the localized induction equation,Xz =
Xt ∧Xtt, is a soliton equation for space curvesX(t, z), best known as a model for the behaviour
of thin vortex tubes in an incompressible, inviscid, three-dimensional fluid. It is also seen as the
global setting of the filament equation in the evolution context (see [7], [15], [16] and [21]). In
[5] we bring that equation to a unit three-sphere and we succeed in getting a two-parameter family
of solutions inS3(1). It was obtained by using Pinkall’s Hopf cylinders as a tool (see [20]). The
solutions are actually helices lying in certain Hopf cylinders of constant mean curvature. We also
gave a rational one-parameter family of closed helices living in a Hopf torus. It is worth pointing
out that no soliton solution living in a Hopf torus can be found. Indeed, we got a congruence
solution, i.e.,X moves without changing shape, only position. This is the reason why in this paper
we undertake to check the Betchov-Da Rios equation (or the filament equation) in a Lorentzian
space form.

In dealing with isometric immersions between Lorentz spaces L. Graves, [13], introduced a
special class of surfaces, the so calledB-scrolls, that played an important role in the classification
of flat surfaces isometrically immersed inH3

1(−1) obtained by M. Dajczer and K. Nomizu, [10].
Those surfaces have also been the key to solve some others interesting classification problems as
well as to check a Chen’s conjecture brought to indefinite space forms (see [2], [3], [4] and [12]).

The aim of this paper is threefold. First, following Pinkall’s idea, [20], we construct the family
of semi-Riemannian Hopf cylinders inH3

1(−1) by means of certain semi-Riemannian submersions
ofH3

1(−1) overH2
s(−1/4), s = 0, 1. Then we show that aB-scroll is a Lorentzian Hopf cylinder.

Some examples are given in the last section. Secondly, in view of the geometric structure of Hopf
cylinders, we check the Betchov-Da Rios soliton equation inH3

1(−1). Indeed, that equation, when
considered as an evolution equation, is nothing but the filament equation, so that we find solutions
lying in B-scrolls. We also give closed solutions. Thirdly, the solitons solutions of the filament
equation inH3

1(−1), living in a B-scroll, are its null geodesics. Therefore, as far as we know, this
is a nice approach to get a physical interpretation of aB-scroll.
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Finally, we ask for Hopf torus which are Willmore surfaces inH3
1(−1). The answer should be

supplied by Hopf torus over closed elasticae inH2(−1/4). Since the Lagrange multiplierλ has to
be−4, no Lorentzian Willmore Hopf torus can be found inH3

1(−1).
Part of results in this paper were advanced in [6].

2. Semi-Riemannian Hopf cylinders andB-scrolls

In order to introduce a Hopf fibrationπs : H3
1(−1) → H2

s(−1/4), s = 0, 1, we need to identify
H3

1(−1) with an appropriate subset of mapsR4
2 → R4

2. To do that, letP be a 2-dimensional
subspace inR4

2 and{x, y} an orthonormal basis ofP . We define the following maps:

f : P → P, f(x) = y, f(y) = −x,

g : P → P, g(x) = y, g(y) = x,

h : P → P, h(x) = −y, h(y) = −x,

that will be calledrotation, first reflectionandsecond reflectiononP , respectively. Let{e1, e2, e3, e4}
be the canonical basis onR4

2, for which the matrix of the metric is given by(gij) = diag[−1,−1, 1, 1].
Let Pi, i = 2, 3, 4, be the 2-dimensional linear space spanned by{e1, ei}, so thatR4

2 = Pi⊕P⊥
i .

Consider the following maps:

ρ = f × f : P2⊕P⊥
2 → P2⊕P⊥

2 ,

σ = g × h : P3⊕P⊥
3 → P3⊕P⊥

3 , (1)

ι = g × g : P4⊕P⊥
4 → P4⊕P⊥

4 ,

and let1 : R4
2 → R4

2 denote the identity map. It is clear that the setF = span{1, ρ, σ, ι} is a
4-dimensional vector space overR and the following identities hold:

ρ2 = −1, σρ = −ι, ιρ = σ,
ρσ = ι, σ2 = 1, ισ = ρ,
ρι = −σ, σι = −ρ, ι2 = 1.

This shows thatF is closed under composition.
Now, letϕ : F → R4

2 the isomorphism given byϕ(1) = e1, ϕ(ρ) = e2, ϕ(σ) = e3, ϕ(ι) = e4.
Thenϕ becomes an isometry whenF is endowed with the metricϕ∗(g0), g0 being the standard
scalar product onR4

2. Throughout this paper, both metrics will be denoted by〈, 〉.
Let ω = a + bρ + cσ + dι be an element ofF , where we writea for a · 1, a, b, c and

d being real numbers. Then we defineω = −a + bρ + cσ + dι and it is easy to show that
〈ω, ω〉 = ωω = ωω. In general,〈ω1, ω2〉 = p1(ω1ω2), p1 denoting the projection over the
subspace spanned by the identity map. As an immediate consequence we deduceω1ω2 = −ω2 ω1

and so〈ω1ω2, ω1ω2〉 = −〈ω1, ω1〉 〈ω2, ω2〉.
Now, we identifyH3

1(−r2) with the set{ω ∈ F : ωω = −r2}, H2(−r2) with the subset of
H3

1(−r2) spanned by{1, σ, ι}, andH2
1(−r2) with the subset ofH3

1(−r2) spanned by{1, ρ, σ}.
Defineπs : H3

1(−1) → H2
s(−1/4) by

πs(ω) =
1
2
ω̃ω,
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whereω → ω̃ denote the antiautomorphism ofF given by

ω̃ = a− bρ + cσ + dι, or ω̃ = a + bρ + cσ − dι,

according to the base manifold beH2(−1/4) or H2
1(−1/4), respectively. It is easy to show

that ω̃1ω2 = ω̃2 ω̃1, 〈ω, ω〉 = 〈ω̃, ω̃〉 and πs is surjective. Moreover,π0(eρxω) = π0(ω)
and π1(eιxω) = π1(ω) for all ω ∈ H3

1(−1), x ∈ R. As usual, we defineeθx, θ ∈ F , by
cos(x) + sin(x)θ if θ2 = −1, andcosh(x) + sinh(x)θ if θ2 = 1. That means that the fibers are
topologicallyS1 andH1, respectively.

Remark 2.1 Notice that if in (1) we putσ = f×f andι = f×f , then we obtain in the Euclidean
spaceR4 the standard quaternionic structure, which was already used by U. Pinkall (see [20]) to
describe the usual Hopf fibrationS3(1) → S2(1).

It is not difficult to see that the above definedπs : H3
1(−1) → H2

s(−1/4), s = 0, 1, are semi-
Riemannian submersions and so we will follow the notation and terminology of [19]. Therefore
givenω ∈ H3

1(−1) one has the splitting ofTwH3
1(−1) into the horizontal subspaceHω and the

vertical lineVω spanned by a vectorVω. Recall thatVω = ker(d(πs)ω) andd(πs)ω restricted to
Hω gives an isometry betweenHω andTπs(ω)H2

s(−1/4).
Let ∇ and∇ be the semi-Riemannian connections ofH3

1(−1) andH2
s(−1/4), respectively,

and denote by overbars the lifts of corresponding objects on the baseH2
s(−1/4). Then, we have

∇XY = ∇XY + (−1)s(〈JX, Y 〉 ◦ πs)V,

∇XV = ∇V X = θX,

∇V V = 0,

whereJ denotes the standard complex structure ofH2
s(−1/4) andθ = ρ whens = 0 or θ = ι

whens = 1.
Let β : I → H2

s(−1/4) be a unit speed curve with Frenet frame{T, ξ2} and curvatureκ.
Consider a horizontal liftβ : I → H3

1(−1) of β with Frenet frame
{
T , ξ∗2 , ξ

∗
3

}
and curvaturesκ∗

andτ∗.
Now, from the Frenet equations, we can deduce thatξ∗2 = ξ2. In particularξ∗2 lies in the

horizontal distribution alongβ and it has the same causal character asξ2. Also it is not difficult to
see thatτ∗ = ±1 andξ∗3 = ±V , that is, the binormalξ∗3 of β coincides with the unit tangent to the
fibers through each point ofβ.

Then, using the terminology in [10], we have proved the following.

Lemma 2.2 (i) The horizontal lifts of unit speed curves inH2(−1/4) are spacelike Frenet curves
in H3

1(−1) with torsion±1.
(ii) The horizontal lifts of unit speed timelike curves inH2

1(−1/4) are timelike Frenet curves in
H3

1(−1) with torsion±1.

By pulling back viaπs a non-null curveβ in H2
s(−1/4) we get the total horizontal lift ofβ,

which is a flat immersed surfaceMβ in H3
1(−1), that will be called thesemi-Riemannian Hopf

cylinder associated toβ. Notice that ifs = 0, Mβ is a Lorentzian surface, whereas ifs = 1, Mβ

is Riemannian or Lorentzian, according toβ be spacelike or timelike, respectively.
In [10] M. Dajczer and K. Nomizu studied certain flat Lorentzian surfaces immersed inH3

1(−1),
the so calledB-scrolls, as an extension of those first introduced by L. Graves [13]. Now we are
going to give a relation between Hopf cylinders andB-scrolls.
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Theorem 2.3 Let M be a Lorentzian surface immersed intoH3
1(−1). ThenM is the semi-

Riemannian Hopf cylinder inH3
1(−1) associated to a unit speed curveβ in H2

s(−1/4) if and
only if M is theB-scroll of any horizontal liftβ of β.

Proof. Let β be a horizontal lift ofβ. ThenMβ can be parametrized asX(t, z) = eθzβ(t), θ being
ρ or ι, according tos be0 or 1, respectively. Thus we find that

X(t, z) =
{

cos(z)β(t) + sin(z)ρβ(t), if s = 0
cosh(z)β(t) + sinh(z)ιβ(t), if s = 1

Observe thatθβ(t) is the unit tangent vector field to the fibers alongβ, which is nothing but the
binormal ofβ. Then ifMβ is Lorentzian, this proves thatMβ is theB-scroll associated toβ. A
similar argument works to prove the converse.

Letβ : I → H2
s(−1/4) be a unit speed curve with Frenet frame{T, ξ2} and curvature function

κ. Let β̄ be a horizontal lift ofβ toH3
1(−1) with Frenet frame{T̄ , ξ̄2, ξ

∗
3} and curvaturēκ = κ◦πs

andτ = 1. Recall thatξ∗3 is nothing but the unit tangent vector field to the fibers alongβ̄. Then
the Hopf cylinderMβ can be orthogonally parametrized as

X(t, z) =
{

cos(z)β(t) + sin(z)ξ∗3(t), if s = 0
cosh(z)β(t) + sinh(z)ξ∗3(t), if s = 1

Setting, as usual,Xt = ∂X
∂t andXz = ∂X

∂z , then{Xt, Xz} is an orthonormal frame ofTX(t,z)Mβ

alongX and a direct computation shows that the shape operatorS of Mβ in this frame can be
written as

S(Xt) = κXt + εXz,

S(Xz) = Xt,

whereε = +1 if Mβ is Riemannian andε = −1 if Mβ is Lorentzian.
Notice that a unit normal vector field toMβ intoH3

1(−1) is obtained from the complete hori-
zontal lift of ξ2 and it is, of course,̄ξ2 along each horizontal lift ofβ. As a consequence we have
thatMβ is a flat surface, as we said before, and its mean curvature functionα is given byα = κ̄/2.

According to the description of curves with constant curvature inH2
s(−1/4) (see, for instance,

[8, p. 178 and ff]) and using the terminology of [1], [3] and [18] we can give the following
description of Hopf cylinders of constant mean curvature.

Proposition 2.4 Letβ be a unit speed curve inH2
s(−1/4) with constant curvatureκ. Then one of

the following statements holds
(1) Mβ is a minimal complex circle (κ = 0).
(2) Mβ is a non-minimal complex circle (0 < κ2 < 4).
(3) Mβ is the Hopf cylinder over the horocycle (s = 0, κ2 = 4) or over the pseudo-horocycle
(s = 1, κ2 = 4).
(4) Mβ is one of the following semi-Riemannian products

(4.1)H1
1(−r2)× S1(r2 − 1) if s = 0 andκ2 > 4,

(4.2)H1(−r2)× S1
1(r

2 − 1) if s = 1 andκ2 > 4.
(5) Mβ is the Riemannian productH1(−r2)×H1(−1 + r2) with r satisfying

1− 2r2

r
√

1− r2
= κ.
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It should be noticed that the above cases (1) through (4) correspond to the Lorentzian character
of Mβ and so, according to Theorem 2.3, it can be considered as the classification ofB-scrolls
with constant mean curvature inH3

1(−1). The remainder case corresponds with the Riemannian
character ofMβ.

3. Lorentzian Hopf tori

We know, from the above section, that Hopf surfaces inH3
1(−1) shaped on closed curves

in H2(−1/4) are Lorentzian flat tori. Now we want to determine the isometry group of these
surfaces.

To do that we first define a connection in the circle bundleπ0 : H3
1(−1) → H2(−1/4) by

attaching to eachω ∈ H3
1(−1) the horizontal 2-planeHω. The Lie algebra ofS1 = U(1) is

identified tou(1) = R and soV is the fundamental vector field1∗ corresponding to1 ∈ u(1). In
particular, the connection formΓ is theu(1)-valued 1-form overH3

1(−1) defined byΓ(Hω) = 0
andΓ(Vω) = 1, for anyω ∈ H3

1(−1).
Let Ω̄ be the curvature 2-form of the connection. It is well known that there exists a uniqueR-

valued 2-formΩ onH2(−1/4) such that̄Ω = π∗0(Ω). The standard volume formdV ofH2(−1/4)
satisfies thatdV (X,JX) = 1, for any unit vector fieldX onH2(−1/4).

Now we use standard computations involving the structure equations of the induced connection
and the formulae in [14, Vol. I, p. 146] to getΩ = −2 dV .

Given a closed embedded curveβ in H2(−1/4), we will show that the isometry type ofMβ

not only depends on the length ofβ, but also on the area enclosed byβ, and only on both of them.
Actually we have the following.

Theorem 3.1 Let β be a closed embedded curve inH2(−1/4) of lengthL enclosing an areaA.
ThenMβ is isometric toL2/Λ, Λ being the lattice in the Lorentzian planeL2 generated by the
vectors(2π, 0) and(2A,L).

Proof. Let β̄ be any horizontal lift ofβ andX : L2 → Mβ ⊂ H3
1(−1) the semi-Riemannian

covering defined byX(z, t) = eizβ̄(t). The lines parallel to thez-axis inL2 are mapped byX
onto the fibres ofπ0, whereas those parallel to thet-axis are mapped onto the horizontal lifts of
β. Of course, these curves are not closed. However, following [14, Vol. II, p. 293], there exists
a fixed numberδ ∈ [−π, π) such thatβ̄(L) = eiδβ̄(0). The group of deck transformations of the
coveringX is then generated by the translations(2π, 0) and(δ, L). To get an explicit computation
of the holonomy numberδ we come back to the circle bundleπ0 : H3

1(−1) → H2(−1/4). The
curvature form measures the non-closedness of the horizontal lifts of closed curves. In our context,
that means that (see again [14, Vol. II, p. 293])

δ = −
∫

C
Ω,

whereC is any 2-chain onH2(−1/4) such that∂C = β. From here andΩ = −2 dV we find that
δ = 2A.

Remark 3.2 It is worth noting that(2A,L) is only constrained by the isoperimetric inequality in
H2(−1/4) (see [22])

L2 > 4πA + 4A2.

5



En ‘New Approaches in Nonlinear Analysis’, ed. Th. M. Rassias, Hadronic Press Inc., Palm Harbor, Florida, pp. 51–71, 1999. ISBN: 1-57485-042-3/pbk

Hence the vector(2A,L) must be spacelike. Observe that the above inequality can be rewritten as
(2A + π)2 − L2 6 π2. Therefore(2A,L) lies in the shaded regionR

−2π −π 0

R

Note that equality holds at the boundary points ofR. They correspond with lattices giving
constant mean curvature Hopf tori, i.e., Hopf tori over geodesic circles inH2(−1/4). Moreover,
for each point inR there exists a unique (up to rigid motions inL2) lattice inL2 producing a Hopf
torus inH3

1(−1). Therefore we have got a sort of rigidity result for constant mean curvature Hopf
tori. This can be viewed as follows: although a Hopf torus coming from an interior point ofR
could be shaped on two non-congruent closed embedded curves inH2(−1/4), this can not occur
for the boundary points ofR.

4. Semi-Riemannian Hopf cylinders and solitons

The Betchov-Da Rios equation, also called localized induction equation in 3-dimensional hy-
drodynamics,

∂Y

∂t
∧∇ ∂

∂t

∂Y

∂t
=

∂Y

∂z

is a soliton equation for space curvesY (t, z), ∇ being the Levi-Civita connection of the space.
This can be rewritten asYz = κB (the “filament equation”), whereκ andB stand for the curvature
and the binormal ofY , respectively. The evolution ofY governed by this equation of motion can
be viewed as an idealization of the motion of a thin vortex cylinder (see [15] and [16] for details).

In view of the geometric structure of semi-Riemannian Hopf cylinders inH3
1(−1), that was

explicitly described in Section 2, it seems natural to seek for parametrizations of them being
congruence solutions of (2). It is a straigthforward computation that, in general, the standard
parametrizationX(t, z) of Mβ is not a solution of (2). From now on,X(t, z), given in Theorem
2.3, will be called the standard covering ofR2 overMβ. Then we set up the following question: let
Diff(R2) be the group of diffeomorphisms ofR2. For anyh ∈ Diff(R2), define the covering map
Y = X ◦ h : R2 → Mβ ⊂ H3

1(−1), whereβ is an arc-length parametrized curve inH2
s(−1/4)
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andMβ its Hopf cylinder inH3
1(−1). We ask for the classification ofh ∈ Diff(R2) in order toY

be a solution of the Betchov-Da Rios equation inH3
1(−1).

In this paper we completely solve this problem. To do that we first recall the Frenet equations
in H3

1(−1) of the lift β̄ of β:

∇T̄ T̄ = (−1)sε1κ̄ξ∗2 ,
∇T̄ ξ̄∗2 = −ε1κ̄T̄ + (−1)sξ∗3 ,
∇T̄ ξ̄∗3 = (−1)sε1ξ

∗
2 .

Let η be a unit normal vector field toMβ in H3
1(-1). Thenη can be written as follows:

η =
{ − sin(z)T̄ (t) + ε1 cos(z)ξ∗2(t), s = 0,
− sinh(z)T̄ (t) + ε1 cosh(z)ξ∗2(t), s = 1.

Let h ∈ Diff(R2) and seth(u, v) = (t(u, v), z(u, v)). Write Y = X ◦ h : R2 → Mβ as
Y (u, v) = X(t(u, v), z(u, v), so thattuzv − tvzu does not vanish anywhere. To see thatY is a
solution of the Betchov-Da Rios soliton equation one only need check thatYu ∧ ∇YuYu = Yv,
where∇ is the semi-Riemannian connection ofH3

1(−1).
The cross product in the tangent spaceTpH3

1(−1), in any pointp ∈ H3
1(−1) ⊂ R4

2 is defined
as follows. InTpH3

1(−1) there is a natural orientation: an ordered basisX, Y, Z in TpH3
1(−1)

is positively oriented if det[pXY Z] > 0, where[pXY Z] is the matrix withp,X, Y, Z ∈ R4
2 as

row vectors. Now letω be the volume element onH3
1(−1) given byω(X, Y, Z) = det[pXY Z].

Then forX,Y ∈ TpH3
1(−1), the cross productX ∧ Y is the unique vector inTpH3

1(−1) such that
〈X ∧ Y, Z〉 = ω(X,Y, Z), for anyZ ∈ TpH3

1(−1) (see [10]).
As for the covariant derivative, a straightforward computation yields

∇YuYu = tuuXt + zuuXz + t2u∇XtXt + tuzu∇XzXt + tuzu∇XtXz.

By using the Frenet equations it is easy to see that

∇XtXt = (−1)sκ̄η,

∇XzXt = (−1)sη,

∇XtXz = (−1)sη.

Then by choosingω(Xt, Xz, η) = 1, we haveXt ∧ Xz = (−1)sε1η, Xz ∧ η = ε1Xt and
Xt ∧ η = (−1)sXz. Thus we find that

Yu ∧∇YuYu = (−1)sε1tuzu(tuκ̄ + 2zu)Xt

+ t2u(tuκ̄ + 2zu)Xz

+ (−1)2ε1(tuzuu − zutuu)η.

ThereforeY (u, v) is a solution of the Betchov-Da Rios equation if and only if the following PDE
system holds:

tv = (−1)sε1tuzu(tuκ̄ + 2zu),
zv = t2u(tuκ̄ + 2zu),
0 = tuzuu − zutuu.

7
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It follows that zu = gtu, for a certain functiong, only depending onv, which measures the
slope of theu-curves. On the other hand, since〈Yu, Yu〉 = ε1t

2
u − (−1)sz2

u = ε, ε being the
causal character of theu-curves, we find thatε = (ε1 − (−1)sg2)t2u. Thentu only depends on
v, so thatt(u, v) = h1(v)u + h2(v), for certain differentiable functionsh1 andh2. In particular,
tuu = 0 = zuu, and so we obtain

∇YuYu = (−1)s(κ̄ + 2g)t2uη.

On the way, the following claim has been proved: theu-curves are geodesics in the semi-Riemannian
Hopf cylinderMβ.

Now the curvature function inH3
1(−1) ρ of these curves is given by

ρ = ε1t
2
u(κ̄ + 2g).

As tuzv − tvzu = εε1t
2
u(κ̄ + 2g) 6= 0, we deduce thatρ does not vanish anywhere. From

the compability conditiontuv = tvu we easily get thatρ(u, v) = f1(v)u + f2(v), for certain
differentiable real functions that only depend onv. Thenf1 vanishes identically and soρu =
κ̄u = 0. Let α be the mean curvature ofMβ in H3

1(−1). Since2α = κ̄, we haveαu = 0, so
thatα is a constant function along the fibers. On the other hand, the linear independence ofYu

andXz shows thatα andκ̄ are actually constant functions onMβ. By using now the remainder
compatibility conditionzuv = zvu, we find thatg, tu andρ are constant functions.

Summarizing, we have proved the following

Theorem 4.1 Letβ be an arc length parametrized curve inH2
s(−1/4) andMβ its Hopf cylinder

in H3
1(−1). For anyh ∈ Diff(R2), takeY = X ◦ h : R2 → Mβ, X being the standard covering

of R2 overMβ. ThenY is a solution of the Betchov-Da Rios soliton equation inH3
1(−1) if and

only if the following statements hold:
(i) β has constant curvature, sayκ, inH2

s(−1/4);
(ii) h(u, v) = (t(u, v), z(u, v)) is given by

t(u, v) = au + (−1)sagρv + c1,

z(u, v) = agu + ε1aρv + c2,

where(ε1 − (−1)sg2)a2 = ε, ε1 being the causal character ofβ, ε the causal character of the
u-curves,g ∈ R − {−κ/2}, ρ = ε1(κ + 2g)a2 is the curvature of theu-curves inH3

1(−1) and
a, c1, c2 are arbitrary constants.

A sharper description of theu-curves solution of the Betchov-Da Rios equation can be given.
Looking at the proof of the above theorem we find that∇YuYu = (−1)sε1ρη and 〈Yv, Yv〉 =
−εε1(−1)sρ2. Therefore the torsion of theu-curves is given byν = 〈∇Yuη, 1

ρYv〉. Then, from
Section 2 we get

ν = −1
ρ
〈SηYu, Yv〉

= −1
ρ
{tutv〈SηXt, Xt〉+ (tuzv + tvzu)〈SηXt, Xz〉+ zuzv〈SηXz, Xz〉}

= − εε1(−1)s

ε1 − (−1)sg2
(g2 + κ̄g + ε1(−1)s),

8
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which is constant. Therefore, the solution we have just found is actually a helix inH3
1(-1), lying

in a Hopf cylinder, whose evolution through the filament flow is made up by helices congruent to
him.

Conversely, given an helixγ of constant curvature functionsρ andν, a straightforward com-
putation yields

g =
−(−1)s(εε1 + ν)

ρ
,

k =
ερ2 + (−1)sεε1(1− ν2)

ρ
.

Thenγ determines a solution of the filament equation inH3
1(-1) lying in the Hopf cylinder. Indeed,

take the Hopf cylinderMβ over a curveβ in H2
s(−1/4) of constant curvatureκ and then au-

geodesic inMβ with slopeg.
Let I = {g ∈ R : ε1 − (−1)sg2 6= 0 and κ + 2g 6= 0} and consider the one parameter

family {Yg = X ◦ hg : g ∈ I} of congruence solutions of the Betchov-Da Rios equation. When
ε1 − (−1)sg2 = 0, Yg parametrizes a null geodesic ofMβ and a straightforward computation
shows that this curve is a singular solution of the Betchov-Da Rios equation. Summing up we
have

Corollary 4.2 Let Mβ be a Lorentzian Hopf cylinder inH3
1(−1) of constant mean curvature.

Then the only soliton solutions of the Betchov-Da Rios equation inH3
1(−1) lying in Mβ are the

null geodesics ofMβ.

From Theorem 3.1 it is easy to find closed solutions. Actually we have

Corollary 4.3 Letβ be a closed curve of constant curvature inH2(−1/4) with lengthL enclosing
an oriented areaA. Then for any rational numberq, the slope

g =
2π

L

(
q +

A

π

)

defines a unique closed helix inH3
1(−1) and therefore a closed solution of the Betchov-Da Rios

equation inH3
1(−1) living in the Hopf torusMβ. Furthermore, the closed solution is either

spacelike, or timelike or null according toq ∈ (q1, q2), q ∈ R−(q1, q2), q ∈ {q1, q2}, respectively,
whereq1 = −A

π − L
2π andq2 = −A

π + L
2π .

5. Looking for Willmore Hopf tori in H3
1(−1)

Let Mn
ν be a semi-Riemannian manifold and consider immersed curvesγ : I → Mn

ν . As
usual, the metric will be denoted by〈,〉 and the Riemannian connection by∇. Let V (t) be the
tangent vector toγ at γ(t) andT (t) the unit tangent vector, so we haveγ′(t) = v(t)T (t), where
v(t) = (ε1 〈V (t), V (t)〉)1/2 is the speed ofγ andε1 = 〈T, T 〉 denotes its causal character. The
curvatureκ(t) of γ is given byκ(t)2 = ε2 〈∇T T,∇T T 〉, ε2 being the causal character of∇T T .

A unit-speed curveγ in Mn
ν is said to be anelastica(or elastic curve) if it is an extremal point

of the functional

Fλ(γ) =
∫ L

0
(〈∇T T,∇T T 〉+ λ)ds =

∫ 1

0
(〈∇T T,∇T T 〉+ λ)vdt,

9



En ‘New Approaches in Nonlinear Analysis’, ed. Th. M. Rassias, Hadronic Press Inc., Palm Harbor, Florida, pp. 51–71, 1999. ISBN: 1-57485-042-3/pbk

for someλ, whereds andL stand for the arclength onγ and the length ofγ, respectively. It is
called afree elasticaif λ = 0.

In order to obtain the variation formula ofFλ, we will keep the notation and computations
in [17, Section 1]. When the curveγ is closed or satisfies given first order boundary data, the
Euler-Lagrange equation associated to our variational problem is

2∇3
T T + ε1∇T ((3ε2κ

2 − λ)T )− 2R(∇T T, T )T = 0.

The Frenet equations forγ can be partially written as

∇T T = ε2κξ2, (3)

∇T ξ2 = −ε1κT − ε3τξ3, (4)

∇T ξ3 = ε2τξ2 + δ, (5)

whereδ ∈ span{T, ξ2, ξ3}⊥, 〈ξi, ξi〉 = εi andτ is the torsion function (the second curvature if
n > 3). Assume now thatMn

ν is of constant curvaturec. Then the Euler-Lagrange equation can
be rewritten as follows

2ε2κ
′′ + ε1κ

3 − 2ε3κτ2 + ε1ε2(2c− λ)κ = 0, (6)

2κ′τ + κτ ′ = 0, (7)

κτδ = 0. (8)

If γ does not lie in a 2-dimensional totally geodesic submanifold ofMn
ν , then the equation (8)

implies thatδ = 0 and so the curveγ lies in a 3-dimensional totally geodesic submanifold ofMn
ν .

Hence we can assume without loss of generality thatn = 2 or n = 3. On the other hand, from (7)
we deduce thatκ2τ = a is constant.

Taking u = κ2 the equation (6) can be solved by standard techniques in terms of elliptic
functions (see [11] for a more detailed discussion on this subject). For instance, a qualitative
description of elasticae in the Lorentz-Minkowski planeL2 is given as follows. In general, the
elasticae inL2 are curves which oscillates around a geodesic, so that the parameterλ, in some
sense, could be viewed as the wavelength. That length increases or decreases according toε1λ
does. In the following we skecht some of these curves.

ε1λ > 0 λ = 0 ε1λ < 0

As for the pseudo-hyperbolic planeH2
1(−1) the behaviour of the elastic curves is essentially

the same as inL2, they also oscillate around geodesics. In particular, we can draw a free elastica
oscillating around the central circle inH2

1(−1).

10
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Free elastica Projection onxy-plane
Let M2

s be a surface in an indefinite 3-spacẽM3
µ of constant curvaturec, and letH denote its

mean curvature vector field. We define the operatorW over sections of the normal bundle ofM2
s

into M̃3
µ as follows

W : NM → NM, W (ξ) = (∆D + 2 〈H, H〉 I − Ã)ξ,

whereÃ denotes the Simon operator, [23]. A cross sectionξ will be called a Willmore section if
W (ξ) = 0. Suppose thatM is compact and consider the Willmore functional (see, for example,
[9], [24] and [25])

W(M) =
∫

M
(〈H, H〉+ c)dv.

Then the operatorW naturally appears provided that one computes the first variation formula for
W. That can be obtained in a similar way to that given by J. L. Weiner (see [24]) in the definite
case. Now Willmore surfaces are nothing but the extremal points of the Willmore functional and
they are characterized from the fact that their mean curvature vector fields are Willmore fields.

Proposition 5.1 Let πs : H3
1(−1) → H2

s(−1/4) andβ : I → H2
s(−1/4) be as before. Then the

Hopf cylinderMβ satisfiesWH = µH, µ ∈ R, if and only ifβ is an elastica inH2
s(−1/4).

Proof. Let α be the mean curvature ofMβ in H3
1(−1). ThenWH = µH if and only if ∆α +

2εα3 − (µ + εtr(S2))α = 0, ε andS being the sign ofMβ and its shape operator, respectively.

By using the usual local coordinates{t, z} we have that∆ = (−1)s+1
{

ε ∂2

∂t2
− ∂2

∂z2

}
. Bearing in

mind thatα = εκ/2 and tr(S2) = κ2 − 2ε we deduceWH = µH if and only if 2(−1)s+1κ′′ −
κ3 + 2ε(2− µ)κ = 0, that is,β is an elastica withλ = −(4 + 2µ).

Observe that the fibers ofπ0 : H3
1(−1) → H2(−1/4) are circles, and so compact whereas the

fibers ofπ1 : H3
1(−1) → H2

1(−1/4) are not compact. Therefore to find compact Hopf surfaces
we have to consider Hopf torus shaped on closed curves inH2(−1/4). In fact, U. Pinkall, [20],
exhibited an infinite series of Willmore tori in the unit 3-sphereS3(1) obtained as Hopf tori, via
the usual Hopf fibration ofS3(1) overS2(1/4), over elasticae inS2(1/4). In his family, Pinkall
shows that the Clifford torus inS3(1) is the only member with constant mean curvature (actually
minimal). That is, it is the unique Willmore-Hopf tori coming from an elastica inS2(1/4) with
constant curvature (actually geodesic). In the anti-De Sitter world, we know from Proposition 5.1
that a Hopf torusMβ is a Willmore surface inH3

1(−1) if and only if β is an elastica inH2(−1/4)
with λ = −4. However we have recently known from D. Singer (private communication) that
cannot be hold. Thusthere is no (Lorentzian) Willmore Hopf torus inH3

1(−1).

11
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6. Some examples

In this section we are going to describe a method to find explicit orthogonal parametrization
of Hopf cylinders inH3

1(−1) ⊂ R4
2 associated to curves inH2

s(−1/4).
For the sake of simplicity our computations will be refered to the fibrationπ0 : H3

1(−1) →
H2(−1/4). It is worth noticing that our method also works for the fibrationπ1 : H3

1(−1) →
H2

1(−1/4), as well as for the usual Hopf fibrationπ : S3 → S2, making suitable changes.
Letω be any point inH3

1(−1) ⊂ R4
2, which is written asω = x1+x2ρ+x3σ+x4ι. Throughout

this section we will identifyω with a point(xi)16i64 in R4. In this senseπ0(ω) = 1
2 ω̃ω is nothing

but (A, 0, B, C) where

A =
1
2

4∑

i=1

x2
i , B = x1x3 + x2x4, C = x1x4 − x2x3.

Now, given a pointp = (A, 0, B,C) in H2(−1/4) it is not difficult to see that the fiberπ−1
0 (p) is

given by

π−1
0 (p) =

{
(D cosα, D sinα,

1
D

(B cosα− C sinα),
1
D

(C cosα + B sinα)) : α ∈ R
}

,

whereD =
√

2A+1√
2

.

Let β : I → H2(−1/4) be a regular curve given byβ(t) = (A(t), 0, B(t), C(t)). A straight-
forward computation shows that all horizontal liftsβ of β toH3

1(−1) are obtained as

β(t) = (D(t) cos α(t), D(t) sin α(t),
1

D(t)
(B(t) cos α(t)− C(t) sin α(t)),

1
D(t)

(C(t) cos α(t) + B(t) sinα(t))),

whereα(t) is given by

α(t) = 2
∫

B(t)C ′(t)− C(t)B′(t)
2A(t) + 1

dt.

Thus an orthogonal parametrizationX(t, z) = ezρβ(t) of the Hopf cylinderMβ associated to
β is written as

X(t, z) = (D(t) cos(α(t) + z), D(t) sin(α(t) + z),
1

D(t)
(B(t) cos(α(t) + z)− C(t) sin(α(t) + z)),

1
D(t)

(C(t) cos(α(t) + z) + B(t) sin(α(t) + z))),

where we have chosen a suitable constant to determineα and fix the lift ofβ.
Now we will apply this method to some special curves inH2(−1/4).

5.1 The Hopf cylinder associated to a horocycle.

12
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In studying curves with constant curvature in the Poincaré half-planeH2(−1/4), it appears
a circle tangent to thex-axis whose curvature satisfiesκ2 = 4. This is the so-called horocycle,
which can be parametrized as follows

β(t) = (t2 +
1
2
, 0, t2, t), t ∈ R.

The lift β of β toH3
1(−1) with α(0) = 0 is obtained by computingD(t) =

√
t2 + 1 andα(t) =

arctan t − t. Thereforecosα(t) = 1√
t2+1

(cos t + t sin t) andsinα(t) = 1√
t2+1

(t cos t − sin t),
and so

β(t) = (cos t + t sin t, t cos t− sin t, t sin t, t cos t).

Hence an orthogonal parametrization ofMβ in H3
1(−1) is given by

X(t, z) = (cos(t− z) + t sin(t− z),− sin(t− z) + t cos(t− z), t sin(t− z), t cos(t− z)).

5.2 The Hopf cylinder associated to a geodesic circle.
We find that geodesic circles inH2(−1/4) have constant curvature satisfyingκ2 > 4. They

are parametrized as

β(t) =

(
a, 0,

√
a2 − 1

4
cos t,

√
a2 − 1

4
sin t

)
, t ∈ R.

To compute the liftβ of β with α(0) = 0 in H3
1(−1) ⊂ R4

2, we haveD(t) =
√

2a+1
2 and

α(t) = 2a−1
2 t. Then

β(t) =

(√
2a + 1

2
cos

(
2a− 1

2
t

)
,

√
2a + 1

2
sin

(
2a− 1

2
t

)
,

√
2a− 1

2
cos

(
2a + 1

2
t

)
,

√
2a− 1

2
sin

(
2a + 1

2
t

))

and the Hopf cylinderMβ can be orthogonally parametrized as

X(t, z) =

(√
2a + 1

2
cos

(
2a− 1

2
t + z

)
,

√
2a + 1

2
sin

(
2a− 1

2
t + z

)
,

√
2a− 1

2
cos

(
2a + 1

2
t + z

)
,

√
2a− 1

2
sin

(
2a + 1

2
t + z

))
.

5.3 The Hopf cylinder associated to some hyperbolic cyclide.
For a non-zero real numberr, let A(t) be a non-constant differentiable function satisfying

A(t) > 2r2 + 1
2 and defineβ(t) in H2(−1/4) ⊂ R4

2 to be

β(t) =

(
A(t), 0, r

√
2A(t) + 1,

√(
A(t) +

1
2

)(
A(t)− 2r2 − 1

2

))
.
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Notice thatβ can be obtained by cutting the hyperboloid

{
(A, 0, B,C) ∈ R4 : −A2 + B2 + C2 = −1

4
, A > 0

}

in R4 with the parabolic cylinderB2 = r2(2A + 1) and in this sense we callβ a hyperbolic
cyclide.

To get an orthogonal parametrization ofMβ in H3
1(−1) ⊂ R4

2 we haveD(t) =
√

2A(t)+1
2 and

α(t) = r
√

2A(t)− 4r2 − 1.ThenMβ can be parametrized by

X(t, z) =

 r
2A(t) + 1

2
cos
�
r
p

2A(t)− (4r2 + 1) + z
�

,r
2A(t) + 1

2
sin
�
r
p

2A(t)− (4r2 + 1) + z
�

,

√
2r cos

�
r
p

2A(t)− (4r2 + 1) + z
�
−
s

A(t)−
�

2r2 +
1

2

�
sin
�
r
p

2A(t)− (4r2 + 1) + z
�

,

√
2r sin

�
r
p

2A(t)− (4r2 + 1) + z
�

+

s
A(t)−

�
2r2 +

1

2

�
cos
�
r
p

2A(t)− (4r2 + 1) + z
�!

.
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