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Abstract

The purpose of this paper is to find out explicit solutions of the Betchov-Da Rios soliton
equation in 3-dimensional Lorentzian space forms. We start with non null curves and obtain
solutions living in certain flat ruled surfacesli¥ andH?, as well as inR? andS?. Next

we take a null curve and have got solutions lying in the associ@tsdrolls intolL3, S? and

H3. It shoul be pointed out that we extend previous results already obtained and, as far as
we know, this is the first time that solutions in the De Sitter 3-space appear in the literature.
Soliton solutions are characterized as null geodesiés-gerolls.

1. Introduction

Physical systems such as vortex filaments in perfect fluids, one-dimensional classical contin-
uum Heisenberg chains and elastic strings can be thought of as one-dimensional extended objects,
the support of which, their centerline, may be mathematically modeled by a generally twisted
space curve C R3. Regardless of the physical properties that actually characterize the dynamics
of such systems, for the moment let us take into consideration the pure kynematics of curves as
an idealization of the general evolution of these systems. Let us identify the thin filament with
the vortex liney, smooth and free from self-intersections. The velocity induced by the vortex
line ~ at an external point was obtained by Da Rios by means of the so-called localized induction
aproximation (LIA). By using the Biot-Savart integral to express that velocity and ignoring finite
contributions, Da Rios found out that the asymptotic velocity contribution is given along binormal
direction, sayv = B, k being the curvature of the vortex axis. Hence, under LIA (neglecting
long-distance effects and self-interaction), vortex filaments move simply in the binormal direction
with speed proportional to the curvature (see [5], [6] and [7] for more details)

The intrinsic equations governing vortex motion were also derived by Da Rios. They are given
in terms of time derivatives of curvature and torsiomofLet v(s, ¢) be time variations ofy(s),

s being the arc length parameter. Uet, 7,7 = T, N, B} be the Frenet-Serret apparatus along

~. Let us write the velocity a% =4 =vpT +vyN + vgB, wherevp, vy andvpg are regular
functions ofs andt¢. The intrinsic equations are given in termsuqf, < and+, where overdots

and primes denote partial derivatives with respecat &md s, respectively. The first one writes
down asvy, = kuy Which gives a necessary and sufficient condition for inextensibility ahd

can be regarded as a congruence condition for material points of the curve. Actually, that means
simply that~ is arc-length parametrized. Under LA = vy = 0 andvp = &, so that the two
remainder equations are reduced to the so-called Betchov-Da Rios equationskt’ — 2x/7

and7 = (k”/k — 7%) + kr'. These equations prescribe (up to rigid motion) the evolution of
the vortex filament in an infinite domain & for given initial conditionsx(s,0) and (s, 0).
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Otherwise, under LIA, the motion of a thin vortex is governed by the simple equation (also called
the Betchov-Da Rios equation)

0y = 0y Oy

ot " Vit = s
V being the Levi-Civita connection of the space. It is worth noting that, under LIA, total length,
total squared curvature and total torsion are conserved quantities in time (see also [7]).

In [1] and [2] we have found solutions of the Betchov-Da Rios in the Riemannian 3-sphere and
in the 3-dimensional anti De Sitter space. In the first case, by using the Hopf fibration, we have got
a nice geometric characterization of those solutions: they are heli€&saimd geodesics of Hopf
cylinders inS3. In the second one, we have also obtained that solutions are the geodeBics of
scrolls intoH3. Closed solutions are found in any case. To point out the chief difference between
Riemannian and pseudo-Riemannian situations, we have to mention that soliton solutions appear
in H3 and they are characterized as null geodesids-strolls intolH.

The purpose of this paper is to state and find out solutions of the Betchov-Da Rios soliton
eqguation in 3-dimensional Lorentzian space forms. Actually, we give explicit examples of surfaces
in L3, as well as in the De Sitté3? and anti De Sittefl; worlds, where the solutions are lying.

To do that we start with non null curves and get solutions living in certain flat ruled surfaces in
L3 andH3, as well as irR? andS3?. In a second step, we take a null curve and find out solutions
lying in the associated-scrolls intol.?, S$ andH3. Several interesting facts should be pointed
out. First, we extend the results already obtained in [1] and [2]. Secondly, as far as we know, this
is the first time that solutions in the De Sitter 3-space appear in the literature.

2. Setup

Let M3(c) be a 3-dimensional pseudo-Riemannian space form of curvaamd indexs =
0,1. As usual,M3(c) is either the pseudo-Euclidean sp&ck or the pseudo-sphesg (c) C R,
or the pseudo-hyperbolic spaig(c) C R2, ,, according ta- = 0, ¢ > 0 or ¢ < 0, respectively.
For the sake of simplicity, and provided that we need explicitly mention neither curvahoe
indexv, we will simply write down)/ instead ofA/3(c).

Leta : I € R — M be an immersed curve and lgtbe a vector field along: in M. Let us
consider the ruled surfadd,, in M, generated by andV, defined by

X:Ix(-a,a) — M
(S7t> - X(S,t) = eXpa(S)(tv<S))'
For each fixed, the curvey,(t), defined byt — ~4(t) = X (s, ), is the geodesic af/ uniquely

determined by the initial conditiong (0) = «(s) and~.(0) = V(s). Let{X,, X;} be the frame
defined by

0
Xs0) =X (51) = (omagehviofa’(s) + V'(5)

and
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V’(s) being the covariant derivative alongof V (s). Observe that, @t= 0, X;(s,0) = o/(s) and
X:(s,0) = V(s), so thatX (s, t) will define a regular pseudo-Riemannian surface intavhen-
evera/(s) andV (s) are linearly independent and the pldie= span{c’, V'} is non degenerate
in M. According to the causal character«fandV, there are four possibilities:

(1) o andV are non-null and linearly independent.

(2) ¢ is null andV is non-null with(a/, V') # 0.

(3) @ is non-null andV is null with (o/, V) # 0.

(4) o/ andV are null with(a/, V') # 0.

It is easy to see that, with an appropriate change of the eaureases (2) and (3) reduce to (1)
and (4), respectively.

Now we are going to do a detailed study of this kind of surfaces. To compute the metric
induced onlM,,, we apply the Gauss lemma to see that

(X, Xy = (o +tV' V) =(d,V),
<Xt7Xt> = <V’ V> =E&v,

whereey € {—1,0,1}. Note that, for each fixed, the vector fieldX; is a Jacobi vector field
along s (t) with initial conditions X(0) = o/(s) and X.(0) = V’(s). As M is a space of
constant curvature, we can writg, (s, t) = f(¢)Ts(t)+g(t)Qs(t), Ts(t) andQs(t) being parallel
translation vector fields alongs(¢) of vectorsa/(s) andV'(s), respectively. Furthermore, the
differentiable functiong andg satisfy the following differential equations

f"+evef =0, f(0) =1, f'(0) =0,
g"+eveg=0, g(0)=0, 4(0)=1

Observe that, under above conditions, the functipasidg must satisfy the following system of
ordinary differential equations

f/ = —¢&ydayg,

/

g = I
fF+eveg = 1.

Then we have

(Xo, Xs) = [T Ts) + 2f9(Ts, Qs) + 9°(Qs, Qs)
= A ) +2fg(d, V) + g2V V).
Hence the matrixG;;) of the induced metric o/, states as follows

( FAHd ) +2fg(a!, V') + g2V, V) (@, V) >
(o, V) % ’

Assume now that we have choosen an orientationVon Then a volume element is deter-
mined onM by the conditionv(X,Y, Z) = (—1)¥, for any positively oriented orthonormal frame
{X,Y, Z}. Therefore, for any coupl& andY of tangent vectors td/, the vector produck A Y
is the unique tangent vector fd such that X A Y, Z) = w(X,Y, Z), for any tangent vectar.

3
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It is well known that vector product of parallel vector fields is again a parallel vector field, so that
a vector field¢ normal toM,, in M can be given in terms oX; A X; and therefore we can write

E(s,1) = X A Xy = F(O)P:(8) + g(H)Qs(8),

whereP,(t) andQ,(t) are parallel translation vector fields alongt) of (o/ A V)(s) and (V' A
V)(s), respectively. Bearing in mind tha A Y, X AY) = (—1)”((X, X)(Y,Y) — (X,Y)?),
we see thaté, §) = (—1)"det(Gyj).

Whena(s) is a non null curve, if we take the vector field orthogonal ton’ then the metric

(Gi;) writes down as
G11 0
0 v )

The unit normal vector field is given by = e¢, where the functiore is obtained frome? =
£a/G11. The shape operatdtis easily computed from

<SXS7XS> - _€<X57€s> = 6<XSS7§>7
<SX$7Xt> - _6<X875t> = 6<X8t7§>7
(SXp, Xi) = —e(Xi, &) = e(Xu, &) =0,

and the curvature of the surface is given by
K=o (52) xa ot
11
As X, = fTs + gQs, we have thai\; = f'T, + ¢'Q, and therefore

(Xo,6) = ff,d AV + fg (& AV, VY + flgld VI AV + 2 (V! V AV
= (f9 = flgw(,V,V")
= (' AV, V).
Thus

WAV ) 2 1)

K=c— (1) (< G

3. Solutions in flat ruled surfaces

Leta : I — M be an immersed unit speed curvelih. Let {T, N, B} be the Frenet frame
alonga. The Frenet equations relative to this frame write down as follows

VTT = EQKZN,
WTN = —51/€T— €3TB,
ﬁTB = EQTN,

wheree; = (T',T),e5 = (N, N) andes = (B, B) stand for the causal charactersigf N and B,
respectivelyx andr being the curvature and torsion functionsoof
Consider the surfac&/,, into M parametrized by

X(5,t) = expo(s) (EB(5)).

4
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Then we have

X8(87t) = (dexpa(s))tB(s)(T(S)+€27—(8)tN(5))7
Xi(s,t) = (dexpys))ip(s)(B(s))-

Since X is a Jacobi vector field along the geodegi¢t), we can writeX,(s,t) = f(t)Ts(t) +
ea7(s)g(t)Ns(t), Ts(t) (resp. Ns(t)) being the parallel translation @f(s) (resp. N(s)) along
vs(t) and the functiong andg are determined as above.

Assume now thad/,, is flat. From (1) this is equivalent t&*(s) = (—1)”c. The unit normal
vector field toM,, can be written as

n(s,t) = f(E)Ns(t) — exr(s)g(t)Ts(t).

For later use we have thaf; A X; = e9n, X An = —e3X; and Xy A n = 1X,. On the other
hand, it is quite easy to get
Vx,Xs = eann,

E]

Vx,Xi = earn,
Vx,Xs = earn,

Vi, X, = 0.

It is a straightforward computation that, in general, the standard parametriZation) of
M, is not a solution of the Betchov-da Rios equation. In view of the geometric structure of ruled
surfaces, that was explicitly described in Section 2, it seems natural to seek for parametrizations of
them being congruence solutions of Betchov-da Rios equation. A special case appeadsisvhen
a curve of constant curvature in this case, it suffices to writ€ (s, t) = X (s, ct), c = —e9e3k,
to find out thatY” is a solution of this equation. In the main result of this section we will show that
all solutions can be essentially found in this way.

Let h €Diff (R?) and writeh(u,v) = (s(u,v),t(u,v)), S0 thats,t, — s,t, does not vanish
anywhere. NowY (u,v) = X (s(u,v),t(u,v)) is a solution of the Betchov-Da Rios equation if
and only ifY,, A Vy, Y, = Y, and(Y,,Y,) = ¢, € being the causal character of thecurves. In
particular,(Y,, Y,) = 0. We putY,, = s, X + t,X; andY, = s, X + t,X;. A straightforward
computation allows us to get

ﬁYu}/u = SyuXs + tuuXt + 25utquth + SgﬁXsXs
= SuuXs + tuu Xt + 2275yt + Iisi)ﬁ.

We find that
Yy AVy,Y, = eleg(nsitu + 27‘3ut3)X3 — 6263(/@53 + 27‘Situ)Xt + e2(Sutun — Suutu)n-

ThereforeY (u, v) is a solution of the Betchov-Da Rios equation if and only if the following system
of partial differential equations holds:

Sy = e1698uty(KSy + 27ty),
ty, = —525353(5% + 27ty,),
0 = sutuu — Suutu.



J. Geom. Phys. 31 (1999), 217228

It follows thatt,, = bs,, for a certain functiord, only depending om, which measures the slope
of the u-curves { constant). On the other hand, singg,, Y,) = 152 + e3t2 = ¢, we find that

e = (e1 + e3b?)s2. Thens, only depends om, so thats(u,v) = hi(v)u + ha(v), for certain
differentiable functiong; andh.. In particular,s,, = t,, = 0, and so we obtain

ﬁyuyu = 6283(% + 2b7’)?7.

On the way, the following claim has been proved: theurves are geodesics in the surfddg.
The curvature function of these curvesiifiis given by

plu,v) = (K + 2b7)s2.

In particular it does not vanish anywhere.

Now we use the compatibility condition,, = s, to getp(u,v) = f1(v)u+ f2(v), for certain
functionsf; and f> defined on the whole real line. Consequenflyvanishes identically, because
p does not vanish and is defined on the whole plane. This showgthat 0 and from (2) we
deduce thak is constant. Now we use the other compatibility condition, namgly= ¢, to
deduce that, s,, andp are all constant. Consequently, we have proved the following

Theorem 3.1 Leta(s) be an arclength parametrized curve M with torsion7? = (—1)"c and
M, the flat ruled surface parametrized BY(s, t). For anyh €Diff(R?) we considel” = X oh :
R? — M,. ThenY is a solution of the Betchov-Da Rios soliton equatiodirif and only if

(1) a has constant curvature, say in M and

(2) h(u,v) = (s(u,v),t(u,v)) is given by

s(u,v) = au -+ ejeqabpy + ¢y,

t(u,v) = abu— ezezapv + ca,

wherea?(e1 + e3b?) = ¢ = +1,b € R\ {—k/27}, p = a®(k + 2b7) is the curvature of the
u-curves inM and(cy, c2) is any couple of constants.

Next we are going to show that any solution obtained in this theorem is actually a hélix in
whose evolution is made up by helices which are congruent to him. In order to clarify this fact, we
only need to compute the torsion of thecurves. Notice that the unit normal to those curves and
n (the unitary normal td/,, in M) agree, and the unit binormal ($/p)Y,. Therefore the torsion
6 of theu-curves is
eaT — e1kb — e17bH?

€1 + £3b2

— 1
0 = (Vy,n, ;Yv> =cey

The converse holds too. Given a hefixn A with curvaturep and torsiory, it can be regarded
as a solution of the filament equation living in a certain flat ruled surfacg/,,. Indeed, just
consider the ruled surfacel,, over a curven in M with constant curvature = (¢/p){e1p* +
£30% — e3(—1)"c} and torsionr? = (—1)"c, and then take a geodesic M, with slopeb =
(1/p)(ee3T — £1€26).

We wish to point out that this theorem allows us to give explicit examples of solutions of the
Betchov-Da Rios equation in the Riemannian space f@&/mandS?, as well as in the Lorentzian
space formd.? andH (see [2]).

Now, we exhibit some examples.
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Example 3.2 (Solution lying in the Hopf lifting of a horocycle)
Leta : R — H be the curve il C Rj defined by

a(s) = (coss + ssins, scos s — sin s, $sin s, $ €os s)

It should be noticed that this curve projects down, via the usual Hopf maps, in a horocycle of the
hyperbolic plane ([2]). It is not difficult to see that the unit binormal of this curve is timelike and
itis given by

B(s) = (sins — scoss,cos s + ssins, —scos s, ssin s)

Moreover, the curvature and torsion®@fare computed to be = 2 andr? = 1. The B-scroll M,
can be parametrized by

X(s,t) = (cos(s +t) + ssin(s +t), —sin(s +t) + scos(s + t), ssin(s + t), scos(s + t))

As a consequence of Theorem 3.1, the solutions of the Betchov-Da Rios equdiigrying in
the above ruled surface are givenByu, v) = X (s(u,v), t(u,v)), wheres(u,v) = a(u + bpv)
andt(u, v) = a(bu + pv) with a?(1 — b%) = £1 andp = 2a(1 £ b) # 0.

Example 3.3 (Solution lying in the Hopf lifting of a geodesic circle)
Leta : R — H? be the curve il C R3 defined by
p

= (pcos gs —psin gs sin 23 cos(—s
Oé(S)—(p (p )7 p (p )7q (q )7q (q ))

wherep = /2 andg = /21, andr a real number withr? — 1 > 0. It should be noticed

that this curve projects down, via the usual Hopf maps, in a geodesic circle of the hyperbolic plane
([2]). Itis not difficult to see that the unit binormal of this curve is timelike and it is given by

B(S) = (pSin(%S),pCOS(%S), —q Cos(ss)a QSiH(gs))

Moreover, the curvature and torsion @fare computed to satisfy’ = 16r2 and72 = 1. The

T 4r?-1
B-scroll M,, may be parametrized as

X(s,t)=(p cos(gs +1), —psin(gs +1), qsin(gs +1), qcos(gs +1))
p p q q

Now we use Theorem 3.1 to see that the solutions of the Betchov-Da Rios equéfipwhich lie
in the above ruled surface are given¥oyu, v) = X (s(u,v), t(u,v)), wheres(u,v) = a(u+bpv)

andt(u,v) = a(bu + pv) with a?(1 — b?) = £1 andp = a2(\/ﬁ72"771 +2b) # 0.

Observe that when; + e3b®> = 0, Y (u,v) parametrizes a null geodesic &f,, into L3 and
H3(c). A straightforward computation shows that this curve is a singular solution of the Betchov-
Da Rios equation. So we have the following

Corollary 3.4 Let M, be a flat Lorentzian ruled surface info* or H3(c) wherea is of constant
curvature. Then the only soliton solutions of the Betchov-Da Rios equatibh am H (c) lying
in M, are the null geodesics dff,,.
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4. Solutions in B-scrolls over null curves

Leta : I — M be an immersed null curve ifd (v = 1) with associated Cartan frame
{A =, B,C} ie, (A A) =0, (B,B) =0, (A,B) = —1, (C,C) = 1, (4,C) = 0 and
(B, C) = 0, satisfying the equations

ViA = kC,
VB AC,
Vil = MNA+EkB,

k = k(s) # 0 being a function along the curves) and\ a constant.
Let M,, be the surface i/ parametrized by

X(S7 t) - expa(s) (tB(S))
This surface is called B-scroll over the null curve: (see [3]). As above we have

Xs(s,t) = (dexpy(s))iB(s)(A(s) +tAC(s)),
Xi(s,t) = (dexpys))i(s)(B(5))-

Since X is a Jacobi field along the null geodesidt) = X (s, t) andM is a space form, we can
write
Xs(s,t) = Ag(t) + tACs(1),

As(t) (resp.Cs(t)) being the parallel translation of(s) (resp.C(s)) alongys(t).
Letn = X A X; be a unit normal vector field td/,,. A straightforward computation yields

Vx.Xs = MtX,+\83X, + (k- X2,
Vx.X: = Vx,X,=-2\tX; + M\,
Vx,X; = 0.

We look for reparametrizations of which are solutions of the Betchov-Da Rios equation. To do
that leth €Diff (R?) and writeh(u,v) = (s(u,v),t(u,v)). ThenY = X o h is a solution if and
only if

Yu A vYu}/u = vaa
and(Y,,Y,) = 6 = +1. Bearing in mind that,, = s, X + t,X; andY, = s, X5 + t, Xy, a
simple computation leads to

ﬁyuyu = SuuXs + tuuXe + 25utuﬁXth + SiﬁXsXs
= (Syu+ )\Qtsi)Xs + (tyu — 2N tsyty + )\475353))(}
+ (2Asuty + (k — X3t2)s2)n.

Now from

X, An = Xo+Mt2X,,
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we deduce that’ is a solution of the Betchov-Da Rios equation if and only if the following system
of partial differential equations holds:

A(tu_tv> S
Su Sy s;,
tl tl — )\2752’
Su  Su

To get solutions of this system, letbe a generalized null cubic, i.e., a null curve with a Cartan
frame such thak = 0 (see [4]). Then it reduces to

s, = ks,
ty, = —ksit,,
0 = Suuty — Sulyu-

Following a similar procedure to that in the previous section we deduce,thate andt,, = ab,

a andb being both constant and related ®yu> = —5. Moreoverk is also a constant function
and theu-curves are geodesics i, whose curvature i/ is p = ka?. On the other hand, since
the vector fieId};Yv is the binormal ta:-curves, we find that the torsighof the u-curves inM is
given by

— 1
HZ—Mme;K)=5ﬂ
So we have shown the following result:

Theorem 4.1 Let a(s) be a generalized null cubic in/ and M, the B-scroll parametrized by
X (s,t). For anyh €Diff(R?) we conside?” = X o h : R> — M,. ThenY is a solution of the
Betchov-Da Rios soliton equation i if and only if

(1) the functionk is constant and

(2) h(u,v) = (s(u,v),t(u,v)) is given by

s(u,v) = au+ kaPv+ e,

t(u,v) = abu — kba®v + co,

where2ba? = —§ = +1, 6 is the causal character of thecurvesp € R\ {0} and(cy, c2) is any
couple of constants. Moreover, thecurves are helices if/ with curvaturep = ka? and torsion
0 = Ska?.

It is worth noting that we have found out explicit examples of solutions of the Betchov-Da
Rios equation in the three models of Lorentzian space farm§?$ andH;. The newness here is
S8,

Finally, to illustrate the last theorem we exhibit some examples.

Example 4.2 Leta : R — L2 be the curve if.? defined by
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It is easy to see that this curve is a generalized null cubit3invith constant curvaturé and
Cartan frame given by

A(S) = k<82_411,8’82+411>,
2
B(s) = =(1,0,1),

C(s) = (2s,1,2s).

The B-scroll M, associated te: is parametrized by

3 s 2t 2 3 s 2t
= (o(3-3) () 2)

As consequence of Theorem 4.1 the solutions of the Betchov-Da Rios equatidtying in the
B-scroll M, are given byY (u, v) = (Y1 (u,v), Ya(u,v), Y3(u,v)), where

a’ 27,33 _ @ 2 0 2
Yi(u,v) = k| —(u+ a’kv) —Z(u—i-a kv) ——k(u—a kv),

3 a
a’k
Yo(u,v) = 7(u+a2kv)2,
Ya(u,v) = k ﬁg(um?k B4 Llut a2k ) — > (u— a2ko)
3(u,v) = 3 v 4u a“kv py V),

with @ € R\ {0} andé = +1. Theu-curves are helices ih? with causal charactef, curvature
p = ka? and torsior) = kéa?.

Example 4.3 Leta : R — S} be the curve ir$$ defined by

a(s) = \f <cos[\/%s],sin[\/%s], cosh[\/%s],sinh[\/gs]) , k> 0.

This curve is a generalized null cubic$d with constant curvature and Cartan frame given by

V2k

A(s) = - (— sin[Vks], cos[\/%s],sinh[\/%s],cosh[\/EsD ,
B(s) = \g??k (sin[\/Es], - cos[\/Es],sinh[\/Es],cosh[\/EsD ,
C(s) = \f (— cos[Vks], — sin[Vks], cosh[VEs], sinh[\/Es]) :
The B-scroll M, associated te is parametrized by
X(s,t) = ? (cos[\/%s] + \;E sin[Vks], sin[Vks] — \;E cos[Vks|
t . . t
cosh[Vks] + T sinh[Vks], sinh[Vks] + T cosh[x/%s]) .

10
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Now the solutions of the Betchov-Da Rios equatioSirlying in M, are given by

Y(u,v) = ?(Yl(u, v), Ya(u,v), Y3(u,v), Ya(u,v)),

where

Yi(u,v) = cos[Vk(au+ ka®v) - — kav) sin[VEk(au + ka®v)),

Ya(u,v) = sin[Vk(au+ ka®v) E - kav) cos[Vk(au + ka®v)],
Ya(u,v) = cosh[Vk(au+ ka®v)] (— - k:cw) sinh[Vk(au + ka®v)],

7
Yi(u,v) = sinh[Vk(au+ ka®v)] 7 - — kav) cosh[Vk(au + ka®v)),

witha € R\ {0} andd = £1.
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