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Abstract

The purpose of this paper is to find out explicit solutions of the Betchov-Da Rios soliton
equation in 3-dimensional Lorentzian space forms. We start with non null curves and obtain
solutions living in certain flat ruled surfaces inL3 andH3

1, as well as inR3 andS3. Next
we take a null curve and have got solutions lying in the associatedB-scrolls intoL3, S3

1 and
H3

1. It shoul be pointed out that we extend previous results already obtained and, as far as
we know, this is the first time that solutions in the De Sitter 3-space appear in the literature.
Soliton solutions are characterized as null geodesics inB-scrolls.

1. Introduction

Physical systems such as vortex filaments in perfect fluids, one-dimensional classical contin-
uum Heisenberg chains and elastic strings can be thought of as one-dimensional extended objects,
the support of which, their centerline, may be mathematically modeled by a generally twisted
space curveγ ⊂ R3. Regardless of the physical properties that actually characterize the dynamics
of such systems, for the moment let us take into consideration the pure kynematics of curves as
an idealization of the general evolution of these systems. Let us identify the thin filament with
the vortex lineγ, smooth and free from self-intersections. The velocity induced by the vortex
line γ at an external point was obtained by Da Rios by means of the so-called localized induction
aproximation (LIA). By using the Biot-Savart integral to express that velocity and ignoring finite
contributions, Da Rios found out that the asymptotic velocity contribution is given along binormal
direction, sayv = κB, κ being the curvature of the vortex axis. Hence, under LIA (neglecting
long-distance effects and self-interaction), vortex filaments move simply in the binormal direction
with speed proportional to the curvature (see [5], [6] and [7] for more details)

The intrinsic equations governing vortex motion were also derived by Da Rios. They are given
in terms of time derivatives of curvature and torsion ofγ. Let γ(s, t) be time variations ofγ(s),
s being the arc length parameter. Let{κ, τ, γ′ = T, N, B} be the Frenet-Serret apparatus along
γ. Let us write the velocity as∂γ

∂t = γ̇ = vT T + vNN + vBB, wherevT , vN andvB are regular
functions ofs andt. The intrinsic equations are given in terms ofv′N , κ̇ and τ̇ , where overdots
and primes denote partial derivatives with respect tot ands, respectively. The first one writes
down asv′N = κvN which gives a necessary and sufficient condition for inextensibility ofγ and
can be regarded as a congruence condition for material points of the curve. Actually, that means
simply thatγ is arc-length parametrized. Under LIAvT = vN = 0 andvB = κ, so that the two
remainder equations are reduced to the so-called Betchov-Da Rios equationsκ̇ = −κτ ′ − 2κ′τ
and τ̇ = (κ′′/κ − τ2)′ + κκ′. These equations prescribe (up to rigid motion) the evolution of
the vortex filament in an infinite domain ofR3 for given initial conditionsκ(s, 0) and τ(s, 0).
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Otherwise, under LIA, the motion of a thin vortex is governed by the simple equation (also called
the Betchov-Da Rios equation)

∂γ

∂t
∧∇ ∂

∂t

∂γ

∂t
=

∂γ

∂s
,

∇ being the Levi-Civita connection of the space. It is worth noting that, under LIA, total length,
total squared curvature and total torsion are conserved quantities in time (see also [7]).

In [1] and [2] we have found solutions of the Betchov-Da Rios in the Riemannian 3-sphere and
in the 3-dimensional anti De Sitter space. In the first case, by using the Hopf fibration, we have got
a nice geometric characterization of those solutions: they are helices inS3 and geodesics of Hopf
cylinders inS3. In the second one, we have also obtained that solutions are the geodesics ofB-
scrolls intoH3

1. Closed solutions are found in any case. To point out the chief difference between
Riemannian and pseudo-Riemannian situations, we have to mention that soliton solutions appear
in H3

1 and they are characterized as null geodesics ofB-scrolls intoH3
1.

The purpose of this paper is to state and find out solutions of the Betchov-Da Rios soliton
equation in 3-dimensional Lorentzian space forms. Actually, we give explicit examples of surfaces
in L3, as well as in the De SitterS3

1 and anti De SitterH3
1 worlds, where the solutions are lying.

To do that we start with non null curves and get solutions living in certain flat ruled surfaces in
L3 andH3

1, as well as inR3 andS3. In a second step, we take a null curve and find out solutions
lying in the associatedB-scrolls intoL3, S3

1 andH3
1. Several interesting facts should be pointed

out. First, we extend the results already obtained in [1] and [2]. Secondly, as far as we know, this
is the first time that solutions in the De Sitter 3-space appear in the literature.

2. Setup

Let M̄3
ν (c) be a 3-dimensional pseudo-Riemannian space form of curvaturec and indexν =

0, 1. As usual,M̄3
ν (c) is either the pseudo-Euclidean spaceR3

ν , or the pseudo-sphereS3
ν(c) ⊂ R4

ν ,
or the pseudo-hyperbolic spaceH3

ν(c) ⊂ R4
ν+1, according toc = 0, c > 0 or c < 0, respectively.

For the sake of simplicity, and provided that we need explicitly mention neither curvaturec nor
indexν, we will simply write downM̄ instead ofM̄3

ν (c).
Let α : I ⊂ R → M̄ be an immersed curve and letV be a vector field alongα in M̄ . Let us

consider the ruled surfaceMα in M̄ , generated byα andV , defined by

X : I × (−a, a) → M̄

(s, t) → X(s, t) = expα(s)(tV (s)).

For each fixeds, the curveγs(t), defined byt → γs(t) = X(s, t), is the geodesic of̄M uniquely
determined by the initial conditionsγs(0) = α(s) andγ′s(0) = V (s). Let {Xs, Xt} be the frame
defined by

Xs(s, t) = dX(s,t)

(
∂

∂s

)
= (dexpα(s))tV (s)(α

′(s) + tV ′(s))

and

Xt(s, t) = dX(s,t)

(
∂

∂t

)
= (dexpα(s))tV (s)(V (s)),

2



Manuel Barros, Angel Ferrández, Pascual Lucas and Miguel Angel Meroño, Solutions of the Betchov-Da Rios soliton equation: A Lorentzian approach

V ′(s) being the covariant derivative alongα of V (s). Observe that, att = 0, Xs(s, 0) = α′(s) and
Xt(s, 0) = V (s), so thatX(s, t) will define a regular pseudo-Riemannian surface intoM̄ when-
everα′(s) andV (s) are linearly independent and the planeΠ = span{α′, V } is non degenerate
in M̄ . According to the causal character ofα′ andV , there are four possibilities:

(1) α′ andV are non-null and linearly independent.
(2) α′ is null andV is non-null with〈α′, V 〉 6= 0.
(3) α′ is non-null andV is null with 〈α′, V 〉 6= 0.
(4) α′ andV are null with〈α′, V 〉 6= 0.
It is easy to see that, with an appropriate change of the curveα, cases (2) and (3) reduce to (1)

and (4), respectively.
Now we are going to do a detailed study of this kind of surfaces. To compute the metric

induced onMα, we apply the Gauss lemma to see that

〈Xs, Xt〉 = 〈α′ + tV ′, V 〉 = 〈α′, V 〉,
〈Xt, Xt〉 = 〈V, V 〉 = εV ,

whereεV ∈ {−1, 0, 1}. Note that, for each fixeds, the vector fieldXs is a Jacobi vector field
along γs(t) with initial conditionsXs(0) = α′(s) and X ′

s(0) = V ′(s). As M̄ is a space of
constant curvature, we can writeXs(s, t) = f(t)Ts(t)+g(t)Qs(t), Ts(t) andQs(t) being parallel
translation vector fields alongγs(t) of vectorsα′(s) andV ′(s), respectively. Furthermore, the
differentiable functionsf andg satisfy the following differential equations

f ′′ + εV cf = 0, f(0) = 1, f ′(0) = 0,
g′′ + εV cg = 0, g(0) = 0, g′(0) = 1.

Observe that, under above conditions, the functionsf andg must satisfy the following system of
ordinary differential equations

f ′ = −εV cg,

g′ = f,

f2 + εV cg2 = 1.

Then we have

〈Xs, Xs〉 = f2〈Ts, Ts〉+ 2fg〈Ts, Qs〉+ g2〈Qs, Qs〉
= f2〈α′, α′〉+ 2fg〈α′, V ′〉+ g2〈V ′, V ′〉.

Hence the matrix(Gij) of the induced metric onMα states as follows

(
f2〈α′, α′〉+ 2fg〈α′, V ′〉+ g2〈V ′, V ′〉 〈α′, V 〉

〈α′, V 〉 εV

)
.

Assume now that we have choosen an orientation onM̄ . Then a volume elementω is deter-
mined onM̄ by the conditionω(X,Y, Z) = (−1)ν , for any positively oriented orthonormal frame
{X,Y, Z}. Therefore, for any coupleX andY of tangent vectors tōM , the vector productX ∧Y
is the unique tangent vector tōM such that〈X ∧ Y, Z〉 = ω(X, Y, Z), for any tangent vectorZ.
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It is well known that vector product of parallel vector fields is again a parallel vector field, so that
a vector fieldξ normal toMα in M̄ can be given in terms ofXs ∧Xt and therefore we can write

ξ(s, t) = Xs ∧Xt = f(t)P̂s(t) + g(t)Q̂s(t),

whereP̂s(t) andQ̂s(t) are parallel translation vector fields alongγs(t) of (α′ ∧ V )(s) and(V ′ ∧
V )(s), respectively. Bearing in mind that〈X ∧ Y,X ∧ Y 〉 = (−1)ν(〈X, X〉〈Y, Y 〉 − 〈X,Y 〉2),
we see that〈ξ, ξ〉 = (−1)νdet(Gij).

Whenα(s) is a non null curve, if we take the vector fieldV orthogonal toα′ then the metric
(Gij) writes down as (

G11 0
0 εV

)
.

The unit normal vector field is given byη = eξ, where the functione is obtained frome2 =
εα/G11. The shape operatorS is easily computed from

〈SXs, Xs〉 = −e〈Xs, ξs〉 = e〈Xss, ξ〉,
〈SXs, Xt〉 = −e〈Xs, ξt〉 = e〈Xst, ξ〉,
〈SXt, Xt〉 = −e〈Xt, ξt〉 = e〈Xtt, ξ〉 = 0,

and the curvature of the surface is given by

K = c−
(

εαεV

G11

)
e2〈Xst, ξ〉2.

As Xs = fTs + gQs, we have thatXst = f ′Ts + g′Qs and therefore

〈Xst, ξ〉 = ff ′〈α′, α′ ∧ V 〉+ fg′〈α′ ∧ V, V ′〉+ f ′g〈α′, V ′ ∧ V 〉+ g2〈V ′, V ∧ V ′〉
= (fg′ − f ′g)ω(α′, V, V ′)
= 〈α′ ∧ V, V ′〉.

Thus

K = c− (−1)ν

(〈α′ ∧ V, V ′〉
G11

)2

. (1)

3. Solutions in flat ruled surfaces

Let α : I → M̄ be an immersed unit speed curve in̄M . Let {T, N, B} be the Frenet frame
alongα. The Frenet equations relative to this frame write down as follows

∇T T = ε2κN,

∇T N = −ε1κT − ε3τB,

∇T B = ε2τN,

whereε1 = 〈T, T 〉, ε2 = 〈N,N〉 andε3 = 〈B,B〉 stand for the causal characters ofT , N andB,
respectively;κ andτ being the curvature and torsion functions ofα.

Consider the surfaceMα into M̄ parametrized by

X(s, t) = expα(s)(tB(s)).
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Then we have

Xs(s, t) = (dexpα(s))tB(s)(T (s) + ε2τ(s)tN(s)),
Xt(s, t) = (dexpα(s))tB(s)(B(s)).

SinceXs is a Jacobi vector field along the geodesicγs(t), we can writeXs(s, t) = f(t)Ts(t) +
ε2τ(s)g(t)Ns(t), Ts(t) (resp. Ns(t)) being the parallel translation ofT (s) (resp. N(s)) along
γs(t) and the functionsf andg are determined as above.

Assume now thatMα is flat. From (1) this is equivalent toτ2(s) = (−1)νc. The unit normal
vector field toMα can be written as

η(s, t) = f(t)Ns(t)− ε1τ(s)g(t)Ts(t).

For later use we have thatXs ∧Xt = ε2η, Xs ∧ η = −ε3Xt andXt ∧ η = ε1Xs. On the other
hand, it is quite easy to get

∇XsXs = ε2κη,

∇XsXt = ε2τη,

∇XtXs = ε2τη,

∇XtXt = 0.

It is a straightforward computation that, in general, the standard parametrizationX(s, t) of
Mα is not a solution of the Betchov-da Rios equation. In view of the geometric structure of ruled
surfaces, that was explicitly described in Section 2, it seems natural to seek for parametrizations of
them being congruence solutions of Betchov-da Rios equation. A special case appears whenα is
a curve of constant curvatureκ; in this case, it suffices to writeY (s, t) = X(s, ct), c = −ε2ε3κ,
to find out thatY is a solution of this equation. In the main result of this section we will show that
all solutions can be essentially found in this way.

Let h ∈Diff (R2) and writeh(u, v) = (s(u, v), t(u, v)), so thatsutv − svtu does not vanish
anywhere. NowY (u, v) = X(s(u, v), t(u, v)) is a solution of the Betchov-Da Rios equation if
and only ifYu ∧ ∇YuYu = Yv and〈Yu, Yu〉 = ε, ε being the causal character of theu-curves. In
particular,〈Yu, Yv〉 = 0. We putYu = suXs + tuXt andYv = svXs + tvXt. A straightforward
computation allows us to get

∇YuYu = suuXs + tuuXt + 2sutu∇XsXt + s2
u∇XsXs

= suuXs + tuuXt + ε2(2τsutu + κs2
u)η.

We find that

Yu ∧∇YuYu = ε1ε2(κs2
utu + 2τsut2u)Xs − ε2ε3(κs3

u + 2τs2
utu)Xt + ε2(sutuu − suutu)η.

ThereforeY (u, v) is a solution of the Betchov-Da Rios equation if and only if the following system
of partial differential equations holds:

sv = ε1ε2sutu(κsu + 2τtu),
tv = −ε2ε3s

2
u(κsu + 2τtu),

0 = sutuu − suutu.
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It follows thattu = bsu, for a certain functionb, only depending onv, which measures the slope
of theu-curves (v constant). On the other hand, since〈Yu, Yu〉 = ε1s

2
u + ε3t

2
u = ε, we find that

ε = (ε1 + ε3b
2)s2

u. Thensu only depends onv, so thats(u, v) = h1(v)u + h2(v), for certain
differentiable functionsh1 andh2. In particular,suu = tuu = 0, and so we obtain

∇YuYu = ε2s
2
u(κ + 2bτ)η.

On the way, the following claim has been proved: theu-curves are geodesics in the surfaceMα.
The curvature function of these curves in̄M is given by

ρ(u, v) = (κ + 2bτ)s2
u.

In particular it does not vanish anywhere.
Now we use the compatibility conditionsuv = svu to getρ(u, v) = f1(v)u+f2(v), for certain

functionsf1 andf2 defined on the whole real line. Consequently,f1 vanishes identically, because
ρ does not vanish and is defined on the whole plane. This shows thatρu = 0 and from (2) we
deduce thatκ is constant. Now we use the other compatibility condition, namelytuv = tvu, to
deduce thatb, su andρ are all constant. Consequently, we have proved the following

Theorem 3.1 Let α(s) be an arclength parametrized curve in̄M with torsionτ2 = (−1)νc and
Mα the flat ruled surface parametrized byX(s, t). For anyh ∈Diff(R2) we considerY = X ◦h :
R2 → Mα. ThenY is a solution of the Betchov-Da Rios soliton equation inM̄ if and only if
(1) α has constant curvature, sayκ, in M̄ and
(2) h(u, v) = (s(u, v), t(u, v)) is given by

s(u, v) = au + ε1ε2abρv + c1,

t(u, v) = abu− ε2ε3aρv + c2,

wherea2(ε1 + ε3b
2) = ε = ±1, b ∈ R \ {−κ/2τ}, ρ = a2(κ + 2bτ) is the curvature of the

u-curves inM̄ and(c1, c2) is any couple of constants.

Next we are going to show that any solution obtained in this theorem is actually a helix inM̄ ,
whose evolution is made up by helices which are congruent to him. In order to clarify this fact, we
only need to compute the torsion of theu-curves. Notice that the unit normal to those curves and
η (the unitary normal toMα in M̄ ) agree, and the unit binormal is(1/ρ)Yv. Therefore the torsion
θ of theu-curves is

θ = 〈∇Yuη,
1
ρ
Yv〉 = εε2

ε3τ − ε1κb− ε1τb2

ε1 + ε3b2
.

The converse holds too. Given a helixβ in M̄ with curvatureρ and torsionθ, it can be regarded
as a solution of the filament equation in̄M living in a certain flat ruled surfaceMα. Indeed, just
consider the ruled surfaceMα over a curveα in M̄ with constant curvatureκ = (ε/ρ){ε1ρ

2 +
ε3θ

2 − ε3(−1)νc} and torsionτ2 = (−1)νc, and then take a geodesic inMα with slopeb =
(1/ρ)(εε3τ − ε1ε2θ).

We wish to point out that this theorem allows us to give explicit examples of solutions of the
Betchov-Da Rios equation in the Riemannian space formsR3 andS3, as well as in the Lorentzian
space formsL3 andH3

1 (see [2]).
Now, we exhibit some examples.
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Example 3.2 (Solution lying in the Hopf lifting of a horocycle)
Let α : R → H3

1 be the curve inH3
1 ⊂ R4

2 defined by

α(s) = (cos s + s sin s, s cos s− sin s, s sin s, s cos s)

It should be noticed that this curve projects down, via the usual Hopf maps, in a horocycle of the
hyperbolic plane ([2]). It is not difficult to see that the unit binormal of this curve is timelike and
it is given by

B(s) = (sin s− s cos s, cos s + s sin s,−s cos s, s sin s)

Moreover, the curvature and torsion ofα are computed to beκ = 2 andτ2 = 1. TheB-scrollMα

can be parametrized by

X(s, t) = (cos(s + t) + s sin(s + t),− sin(s + t) + s cos(s + t), s sin(s + t), s cos(s + t))

As a consequence of Theorem 3.1, the solutions of the Betchov-Da Rios equation inH3
1 lying in

the above ruled surface are given byY (u, v) = X(s(u, v), t(u, v)), wheres(u, v) = a(u + bρv)
andt(u, v) = a(bu + ρv) with a2(1− b2) = ±1 andρ = 2a2(1± b) 6= 0.

Example 3.3 (Solution lying in the Hopf lifting of a geodesic circle)
Let α : R → H3

1 be the curve inH3
1 ⊂ R4

2 defined by

α(s) = (p cos(
q

p
s),−p sin(

q

p
s), q sin(

p

q
s), q cos(

p

q
s))

wherep =
√

2r+1
2 andq =

√
2r−1

2 , andr a real number with4r2 − 1 > 0. It should be noticed
that this curve projects down, via the usual Hopf maps, in a geodesic circle of the hyperbolic plane
([2]). It is not difficult to see that the unit binormal of this curve is timelike and it is given by

B(s) = (p sin(
q

p
s), p cos(

q

p
s),−q cos(

p

q
s), q sin(

p

q
s))

Moreover, the curvature and torsion ofα are computed to satisfyκ2 = 16r2

4r2−1
andτ2 = 1. The

B-scrollMα may be parametrized as

X(s, t) = (p cos(
q

p
s + t),−p sin(

q

p
s + t), q sin(

p

q
s + t), q cos(

p

q
s + t))

Now we use Theorem 3.1 to see that the solutions of the Betchov-Da Rios equation inH3
1 which lie

in the above ruled surface are given byY (u, v) = X(s(u, v), t(u, v)), wheres(u, v) = a(u+bρv)
andt(u, v) = a(bu + ρv) with a2(1− b2) = ±1 andρ = a2( 4r√

4r2−1
± 2b) 6= 0.

Observe that whenε1 + ε3b
2 = 0, Y (u, v) parametrizes a null geodesic ofMα into L3 and

H3
1(c). A straightforward computation shows that this curve is a singular solution of the Betchov-

Da Rios equation. So we have the following

Corollary 3.4 LetMα be a flat Lorentzian ruled surface intoL3 or H3
1(c) whereα is of constant

curvature. Then the only soliton solutions of the Betchov-Da Rios equation inL3 or H3
1(c) lying

in Mα are the null geodesics ofMα.
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4. Solutions in B-scrolls over null curves

Let α : I → M̄ be an immersed null curve in̄M (ν = 1) with associated Cartan frame
{A = α′, B, C}, i.e., 〈A,A〉 = 0, 〈B, B〉 = 0, 〈A,B〉 = −1, 〈C, C〉 = 1, 〈A,C〉 = 0 and
〈B,C〉 = 0, satisfying the equations

∇AA = kC,

∇AB = λC,

∇AC = λA + kB,

k = k(s) 6= 0 being a function along the curveα(s) andλ a constant.
Let Mα be the surface in̄M parametrized by

X(s, t) = expα(s)(tB(s)).

This surface is called aB-scroll over the null curveα (see [3]). As above we have

Xs(s, t) = (dexpα(s))tB(s)(A(s) + tλC(s)),
Xt(s, t) = (dexpα(s))tB(s)(B(s)).

SinceXs is a Jacobi field along the null geodesicγs(t) = X(s, t) andM̄ is a space form, we can
write

Xs(s, t) = As(t) + tλCs(t),

As(t) (resp.Cs(t)) being the parallel translation ofA(s) (resp.C(s)) alongγs(t).
Let η = Xs ∧Xt be a unit normal vector field toMα. A straightforward computation yields

∇XsXs = λ2tXs + λ4t3Xt + (k − λ3t2)η,

∇XsXt = ∇XtXs = −λ2tXt + λη,

∇XtXt = 0.

We look for reparametrizations ofX which are solutions of the Betchov-Da Rios equation. To do
that leth ∈Diff (R2) and writeh(u, v) = (s(u, v), t(u, v)). ThenY = X ◦ h is a solution if and
only if

Yu ∧∇YuYu = Yv,

and〈Yu, Yu〉 = δ = ±1. Bearing in mind thatYu = suXs + tuXt andYv = svXs + tvXt, a
simple computation leads to

∇YuYu = suuXs + tuuXt + 2sutu∇XsXt + s2
u∇XsXs

= (suu + λ2ts2
u)Xs + (tuu − 2λ2tsutu + λ4t3s2

u)Xt

+ (2λsutu + (k − λ3t2)s2
u)η.

Now from

Xs ∧ η = Xs + λ2t2Xt,

Xt ∧ η = −Xt,

8
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we deduce thatY is a solution of the Betchov-Da Rios equation if and only if the following system
of partial differential equations holds:

λ

(
tu
su
− tv

sv

)
=

sv

s3
u

− k,

tu
su

+
tv
sv

= λ2t2,
(

tv
sv

)

u

= λ2tsu
tv
sv

.

To get solutions of this system, letα be a generalized null cubic, i.e., a null curve with a Cartan
frame such thatλ = 0 (see [4]). Then it reduces to

sv = ks3
u,

tv = −ks2
utu,

0 = suutu − sutuu.

Following a similar procedure to that in the previous section we deduce thatsu = a andtu = ab,
a andb being both constant and related by2ba2 = −δ. Moreoverk is also a constant function
and theu-curves are geodesics inMα whose curvature in̄M is ρ = ka2. On the other hand, since
the vector field1

ρYv is the binormal tou-curves, we find that the torsionθ of theu-curves inM̄ is
given by

θ = −δ〈∇Yuη,
1
ρ
Yv〉 = δρ.

So we have shown the following result:

Theorem 4.1 Let α(s) be a generalized null cubic in̄M andMα theB-scroll parametrized by
X(s, t). For anyh ∈Diff(R2) we considerY = X ◦ h : R2 → Mα. ThenY is a solution of the
Betchov-Da Rios soliton equation in̄M if and only if
(1) the functionk is constant and
(2) h(u, v) = (s(u, v), t(u, v)) is given by

s(u, v) = au + ka3v + c1,

t(u, v) = abu− kba3v + c2,

where2ba2 = −δ = ±1, δ is the causal character of theu-curves,b ∈ R \ {0} and(c1, c2) is any
couple of constants. Moreover, theu-curves are helices in̄M with curvatureρ = ka2 and torsion
θ = δka2.

It is worth noting that we have found out explicit examples of solutions of the Betchov-Da
Rios equation in the three models of Lorentzian space formsL3, S3

1 andH3
1. The newness here is

S3
1.

Finally, to illustrate the last theorem we exhibit some examples.

Example 4.2 Let α : R → L3 be the curve inL3 defined by

α(s) = k

(
s3

3
− s

4
,
s2

2
,
s3

3
+

s

4

)
, k 6= 0.
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It is easy to see that this curve is a generalized null cubic inL3 with constant curvaturek and
Cartan frame given by

A(s) = k

(
s2 − 1

4
, s, s2 +

1
4

)
,

B(s) =
2
k
(1, 0, 1),

C(s) = (2s, 1, 2s).

TheB-scrollMα associated toα is parametrized by

X(s, t) =
(

k

(
s3

3
− s

4

)
+

2t

k
, k

s2

2
, k

(
s3

3
+

s

4

)
+

2t

k

)
.

As consequence of Theorem 4.1 the solutions of the Betchov-Da Rios equation inL3 lying in the
B-scrollMα are given byY (u, v) = (Y1(u, v), Y2(u, v), Y3(u, v)), where

Y1(u, v) = k

(
a3

3
(u + a2kv)3 − a

4
(u + a2kv)

)
− δ

ak
(u− a2kv),

Y2(u, v) =
a2k

2
(u + a2kv)2,

Y3(u, v) = k

(
a3

3
(u + a2kv)3 +

a

4
(u + a2kv)

)
− δ

ak
(u− a2kv),

with a ∈ R \ {0} andδ = ±1. Theu-curves are helices inL3 with causal characterδ, curvature
ρ = ka2 and torsionθ = kδa2.

Example 4.3 Let α : R → S3
1 be the curve inS3

1 defined by

α(s) =
√

2
2

(
cos[

√
ks], sin[

√
ks], cosh[

√
ks], sinh[

√
ks]

)
, k > 0.

This curve is a generalized null cubic inS3
1 with constant curvaturek and Cartan frame given by

A(s) =

√
2k

2

(
− sin[

√
ks], cos[

√
ks], sinh[

√
ks], cosh[

√
ks]

)
,

B(s) =

√
2k

2k

(
sin[

√
ks],− cos[

√
ks], sinh[

√
ks], cosh[

√
ks]

)
,

C(s) =
√

2
2

(
− cos[

√
ks],− sin[

√
ks], cosh[

√
ks], sinh[

√
ks]

)
.

TheB-scrollMα associated toα is parametrized by

X(s, t) =
√

2
2

(
cos[

√
ks] +

t√
k

sin[
√

ks], sin[
√

ks]− t√
k

cos[
√

ks] ,

cosh[
√

ks] +
t√
k

sinh[
√

ks], sinh[
√

ks] +
t√
k

cosh[
√

ks]
)

.
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Now the solutions of the Betchov-Da Rios equation inS3
1 lying in Mα are given by

Y (u, v) =
√

2
2

(Y1(u, v), Y2(u, v), Y3(u, v), Y4(u, v)),

where

Y1(u, v) = cos[
√

k(au + ka3v)]− δ

2
√

k

(u

a
− kav

)
sin[

√
k(au + ka3v)],

Y2(u, v) = sin[
√

k(au + ka3v)] +
δ

2
√

k

(u

a
− kav

)
cos[

√
k(au + ka3v)],

Y3(u, v) = cosh[
√

k(au + ka3v)]− δ

2
√

k

(u

a
− kav

)
sinh[

√
k(au + ka3v)],

Y4(u, v) = sinh[
√

k(au + ka3v)]− δ

2
√

k

(u

a
− kav

)
cosh[

√
k(au + ka3v)],

with a ∈ R \ {0} andδ = ±1.
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Paris, Śerie I, 321:505–509, 1995.
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