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Abstract

This paper deals with string theories and M-theories on backgrounds of thedi@shx M,

M being a compact principdl (1)-bundle. These configurations are the natural settings to
study Hopf T-dualities [15], and so to define duality chains connecting different string theories
and M-theories. There is an increasing great interest in studying those properties (physical or
geometrical) which are preserved along the duality chains. For example, it is known that Hopf
T-dualities preserve the black hole entropies [15]. In this paper we consider a two-parameter
family of actions which constitutes a natural variation of the conformal total tension action
(also known as Willmore-Chen functional in Differential Geometry). Then, we show that the
existence of wide families of solutions (in particular compact solutions) for the correspond-
ing motion equations is preserved along those duality chains. In particular, we exhibit ample
classes of Willmore-Chen submanifolds with a reasonable degree of symmetry in a wide va-
riety of conformal string theories and conformal M-theories, that in addition are solutions of
a second variational problem known as the area-volume isoperimetric problem. These are
good reasons to refer those submanifolds as the best worlds one can find in a conformal uni-
verse. The method we use to obtain this invariant under Hopf T-dualities is based on the
principle of symmetric criticality. However, it is used in a two-fold sense. First to break sym-
metry and so to reduce variables. Second to gain rigidity in direct approaches to integrate the
Euler-Lagrange equations. The existence of generalized elastic curves is also important in the
explicit exhibition of those configurations. The relationship between solutions and elasticae
can be regarded as a holographic property.

Anti-de Sitter space; String theories; M-theories; T-dualities; Conformal total tension actions;
Generalized elasticae.
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1. Introduction and set up

There is an increasing interest in the interplay between bulk and boundary dynamics. The two
main directions being explored presently are:

1. The conjecture of J.Maldacena [30], that concerns with the string theory or M-theory on
certain backgrounds of the formdS, x Mp_,. Here,AdS, is the anti-de Sitter space of
dimensionp and Mp_,, is a compact space with dimensiédh— p. Now, D is 10 or 11
depending on whether we are doing string theory or M-theory, respectively. This conjecture
postulates that the quantum string or the M-theory on this background is mathematically
equivalent to an ordinary but conformally invariant quantum field theory in a space time of
dimensionp — 1 which plays the part aboundaryof AdS,. This relationship is known as
AdS/CFT correspondence.
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2. The holographic hypothesis (see [24] and references therein) states that all information of
a theory in the bulk of a bounded region is available, in some sense, on the boundary of
the region. However, the abowmme sensmeans that, as far as we know, there are at
least four possible non-equivalent definitions of what holography may mean. For instance,
the AdS/CFT correspondence can be viewed as an example of the holographic hypothesis
[41].

Consequently, theldS/C F'T correspondence has revived a great interest in gauged extended
supergravities which arise as the massless sector of the Kaluza-Klein compactificafibas Of
supergravity, such addS, x S” and AdS; x S?*, as well as in Type |IB supergravity, such as
AdSs x S® (see, for example, [12, 14, 31]). In [14], M.J.Duff, Hiland C.N.Pope considered that
S%is al/(1) bundle overCP? (by means of the usual Hopf map) to define an unconventional type
of T-duality. This is applied to construct the duality chain 4 Yang-Mills]—[Type IIB string
on AdSs x S°]—[Type lIA string onAdS5 x CP? x S']—[M-theory onAdSs x CP? x T2].

This kind of duality can be extended to more general contexts including backgrouAds as\/,

wherelM are Einstein spaces that are not necessarily round spheres litit stiflbrations. Notice

that these spaces naturally appear as the near horizon geometries of supermembranes with fewer
Killing spinors [16].

Hopf T-duality drastically changes the topology of the compactification sfabg untwist-
ing it to CP? x S'. However, it preserves the black hole entropies. The purpose of this paper
is to show an interesting property which remains invariant along the Hopf T-duality chain. In
fact, we prove the existence of rational one-parameter families of Willmore-Chen submanifolds
(i.e. critical points of the conformal total tension action) at any stage of the duality chain. This
is done in sections 4 and 5. The case of Type IIB theory on the backgrdufgl x S® is par-
ticularly interesting. The high rigidity of the round five sphere allows us to get a wide variety of
solutions, having three quite different families of them. The first one contains solutions which are
obtained via a standard use of the principle of symmetric criticality [36], when lifting elasticae in
the complex projective plan€P? by the usual Hopf mapping. In particular, many properties of
these solutions are reflected, by a kind of holographic principle, in those elasticae (for example,
they have constant mean curvature if and only if they come from elasticae which have constant
curvature inCPP?). Other two classes of configurations are obtained by exploiting the principle of
symmetric criticality in a different approach, which is used to gain rigidity when integrating the
corresponding motion equations. Therefore, we show that minimal flat tori are always solutions,
which seems reasonable and however it is not an immediate result. This allows us to give a second
family of explicit solutions by considering results of [26, 27]. We still have a third family by using
the Chen finite type theory of submanifolds [3, 11]. Namely, we get explicit solutions constructed
in the corresponding Euclidean space through the eigenfunctions of the Laplacian associated with
exactly two different eigenvalues. Of course these three classes of solutions can be projected down
to any5-dimensional lens space.

The above stated results are extended in section 6 to other configurations of théd&gnx
M5, where M5 is a principalU (1)-bundle over a compadtdimensional manifoldV which ad-
mits an Einstein metric with positive scalar curvature. ThE$e)-bundles are classified by the
cohomology groupgi?(N, Z). Therefore, as an illustration we consider the Stiefel manifold re-
garded as the principdl (1)-bundle on the complex quadri¥ = S? x S? associated with a
suitable multiple of its first Chern class.
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In section 7, we investigate the above invariant along the Hopf T-duality chains generated by
Type 1IB theories on backgrounds carrying both NS-NS and R-R electric and magtetin
charges, and whose near horizon geometry contditSy x S®. This case is richer than those
we have considered above where only R-R charges were supported. In this case, we show the
existence of ample classes of solutions along any duality chain. In particular, we prove:

The conformal structure associated with the string-frame in the near horizon limit of any non
dilatonic black hole inD = 5 andD = 4 admits a rational one-parameter clasd-@imensional
Willmore-Chen configurations that have constant mean curvature in the original string metric.
However, the degree of symmetry of these solutions is preserved only when NS-NS charges appear
while that is decreased when R-R charges are carried

All these results are preceded by a symmetry breaking method which is developed through
two general settings in section 2. The algorithm we use is based on the principle of symmetric
criticality, rather in a formulation of this principle due to R.S.Palais [36]. Certainly this method can
be applied to other backgrounds different from those considered in this paper, and also it is open
to be extended to other contexts. For example, we do not know if the statement of Theorem 2.4
works with no assumption on the flatness of the concerned gauge potential. The paper is completed
with sections 3 and 9. The former is dedicated to exploit the nice geomettyi.8f in order to
obtain wide classes of elastic helices (in particular closed elastic helices, see Theorem 3.2) which
generate solutions of the motion equations in any configuration of theAai$h x M (Corollaries
3.4 and 3.5). In section 8, we show how our results can be extended to higher-dimensional theories,
including F-theory.

Now we give here a generic formulation of our method.

LetI(Q, (L, ds?)) be the space of immersions of a compact manipid a pseudo-Riemannian
manifold (L, ds?). Define a real two-parameter family of actions

{War : 1(Q, (L,ds*)) — R:a,r € R},

by
War () = o? — ar,)"2dv,
( ) /( aT) v

forall ¢ € I(Q, (L, ds?)), wherea andr, stand for the mean curvature and the extrinsic scalar
curvature functions of, respectively. Alsalv is the volume element af*(ds?) on Q. It should

be noticed that when = 1 andr is the dimension of), then we get the Willmore-Chen func-
tional, which provides a variational problem of great interest in Differential Geometry, due in part
to its invariance under conformal changes of the surrounding métficalso known as the con-
formal total tension action. Moreover,/if= 2, we have the Willmore functional which formally
coincides with the Canham-Helfrich bending energy of fluid membranes and lipid vesicles [8, 23],
and amazingly also with the Polyakov extrinsic action in the bosonic string theory [37]. It should
be also observed that if the dimensior(pis one (i.e. we are talking about immersed curves), then
7. vanishes identically and is nothing but the curvature functionof the curvey in (L, ds?). In

this case the above family of actions reduces to a one-parameter one of elastic energy functionals,
Fr = fv Kk"ds, acting on the space of closed curvem (L, ds?).

Now, all these actions naturally appear from the own Willmore-Chen functional. This may be
showed via an interesting argument, involving the principle of symmetric criticality [36], as well
as the Kaluza-Klein inverse mechanism, which allows us to obtain the above actions by a reduction
of symmetry process from the Willmore-Chen action in the conformal Kaluza-Klein ansatz.

3
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2. Symmetry breaking phase transitions

Letw be a principal connection on a principal fibre bun8lg\/, ), G being anm-dimensional,
compact Lie group endowed with a bi-invariant metfic>. We denote byM and M the spaces
of pseudo-Riemannian metrics ai and P, respectively. Foe € {—1,+1}, let®. : M —M
be the mapping defined by

e (g) = 7" (9) + ew* (do?),

wherer : P — M stands for the projection map of the principal fibre bundle.

A pseudo-Riemannian metricc M is called aKaluza-Klein metricon P if it belongs to the
image of®.. These metrics are also known as “bundle like” metrics and they are the natural ones
working on a unified theory, collecting the gravitatigrwith the gauge potentiab, in the sense
of Kaluza-Klein.

It is obvious thatr : (P, g) — (M, g) is a pseudo-Riemannian submersion whose leaves are
the fibres, and so they are diffeomorphic to the structure géaupis also evident that the natural
action ofG on P is carried out by isometries @, g).

LetV be the vertical distribution of the pseudo-Riemannian submersiofatite horizontal
one, its complementary-orthogonal distribution. Note that while is involutive, whose leaves
are the fibresH is not integrable, in general. Lé{ be ag-dimensional submanifold ifM, g),
then one can define a distributidh alongz~"(N) by Dy = (dmp) ™' (T N), for anyp € P.
Notice thatV; C Dy, soD is an(m+-q)-dimensional distribution which is integrable. Furthermore
N = 7~ }(N) is aG-invariant submanifold of dimension+q. The converse is also true. Assume
N is an(m + q)-dimensional submanifold ofP, G), which is G-invariant. Then\ is foliated
by the fibres and so the horizontal vectors tangenY tdefine ag-dimensional distribution V.
Notice that this is not involutive though it projects down to an integrable distribddiam (M, g).
Hence,N = 7~1(IV), whereN is a leaf of D. Summarizing we have

Lemma 2.1 Let N be ag-dimensional submanifold ¢f\/, g), thenN = 7=1(N) is an(m + q)-
dimensional submanifold dfP, g) which is G-invariant. Conversely, ifV is a d-dimensional
submanifold of P, g) which isG-invariant, thenV = 7= (IV), whereN is a(d—m)-dimensional
submanifold of M, g).

From now on, we will denote by overbars the lifts of corresponding objects on the base. In
particular,X will denote the horizontal lift of a vector field on M.

Proposition 2.2 Leto anda be the second fundamental formsrin (M, g) and N = 7~ (V)
in (P, g), respectively. Denote hy and @ the corresponding mean curvature functions, then we
have

1. a(V,W) = 0, for vertical vector fieldd” and V.

2. 5(X,Y)

o(X,Y).

3. a?=

2
q 2
(m+q2® 7

4. If wis flat, thens (X, V) = 0.
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Proof. To show the first claim, just notice that the fibres are totally geodesic not ofly, i),

but also inV, with respect to thg-induced metric. To prove the second statement observe that
7(X,Y) is horizontal. The third one is now clear. The last assumption is also evident because the
O’Neill invariant, which measures the obstruction to the integrability of the horizontal distribution,
vanishes identically i is assumed to be flat.

Proposition 2.3 Let 7. and 7. be the extrinsic scalar curvature functions &fin (M, g) and
N =7~1(N)in (P, g), respectively. It is flat, then we have

- (g —1)
© (m4q)(m+q—1)

Te O

Proof. Let{V,;1 < a < m} be the fundamental vector fields in associated with a frame of
unit left-invariant vector fields itG, do?). Let {X;; 1 < i < ¢} be alocal orthonormal frame on
(N,g"), ¢’ being theg-induced metric onV. Then we have

s oo | 2 F e X)) - KX X))

,j=1

where K and K’ stand for the sectional curvature functions(&f g) and N with respect to the
g-induced metric. Now, we use Proposition 2.2 jointly with the Gauss equationsiof(P, g)
andN in (M, g), respectively, to get the result.

For a compactg-dimensional manifoldV, we write I¢(N x G,(P,g)) = {¢ € I(N x
G,(P,g)) : ¢isG — invariant}. SinceG is compact, therds(N x G, (P, g)) is a submanifold
of I(N x G, (P, g)), which according to Lemma 2.1 can be identified withV, (M, g)). That
is, » € Io(N x G, (P,g)) if and only if there exists) € I(N, (M, g)) such thatp(N x G) =
7 1(¢(N)). Then we use Propositions 2.2 and 2.3 to obtain

War() = () vl(Gdo? Wi (0), (1)

m
whereb = %a. i i
Now, given (a,7) € R? we denote byx", " and % the sets of critical points of the
functionalW,, onI(N, (M, g)), I(N x G, (P,g)) andIg(N x G, (P, g)), respectively. In other
words, they are the sets of configurations which are solutions of the motion equations for the
Wer-dynamics ori (N, (M, g)), I(N x G, (P, g)) andIg(N x G, (P, g)), respectively. Then the
principle of symmetric criticality [36] assures us that

U =3"NIg(N x G, (P, 7))

Said otherwise, to obtain critical points¥f,, onI(N x G, (P, g)) which do not break the natural
G-symmetry of the problem, we only need to computg, restricted tal (N x G, (P, g)). Since

5
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we have already computed this restriction (see (1)), then we obtain the following result, which
can be regarded as a criterion for reduction of variables (in the sense of Palais) in the variational
problems associated with the function@ls,..

Theorem 2.4 ¢ € £ if and only if¢ € £, with b = %a.

Remark 2.5 Roughly speaking, the last result reduces the search for symmetric solutions of the
War--dynamics in a unified theorP, ) to that for solutions of th&V,,.-dynamics in its gravitatory
component M, g), a andb being related as above. It should be noticed, in addition, that the best
worlds to live in a conformal unified univerg®, [g]), [g] denoting the conformal structure asso-
ciated withg, are the Willmore-Chen submanifolds which preserve the internal symmetry. We use
the term “best” in a two-fold sense. First, because they preserve the above mentioned symmetry,
and secondly because they support the smallest global tension possible from the surrounding uni-
verse, and consequently they must be Willmore-Chen submanifolds. For these worlds, we obtain
the following gravitatory characterization.

Corollary 2.6 ¢ € 14, that is, ¢ is a G-invariant Willmore-Chen submanifold ifP, [g]) if

i bmtq with b — (@=1)(m+q)
and only ifp € ¥ 9, withb = JmTa=1)

It should be pointed out that the constancy of the mean curvature (tension) is preserved in
this symmetry breaking phenomenon, which can be viewed as an interesting holographic property
when we reflect that constancy in the gravitatory component. Furthermore, this provides another
reason to use the term “best” to name those solutions, since they are also solutions of the well
known area-volume isoperimetric problem.

Next we exhibit a second framework where one can reduce symmetry. The background is
globally a product and so it could be considered as a particular case of the above one, for example
whenM is simply connected. However, the metric (or the conformal structure) involves a warping
function and the fibre part is provided by a compact homogeneous space. Therefore it can be
regarded as a complementary of the first stated setting.

To describe this new situation €01, g1) and (Ma, g2) be a compact homogeneous space
with group of isometrieg¢ and a pseudo-Riemannian manifold, respectively. We recallthat
M, x s My is endowed with the metrig = g; + f2g> (with the obvious meaning), wherfis a
positive smooth function oiM;. It is usually called the warped product with warping functjon
(see [6]) for details).

Let S be ad-dimensional submanifold id/> with second fundamental forfa. ThenN =
M, x; S'is anH-invariant(n; + d)-dimensional submanifold a¥/, n, being the dimension of
N1. Moreover, evenH -invariant submanifold ol is obtained in this way. To do clear this claim,
just notice that everyZ-invariant submanifoldV of M is foliated by leave§ M, x {p};p € N}
and so it projects down, via the second projection, {diaa N — n; )-dimensional submanifold of
M.

The volume form of thg-induced metric on\/; xS is given by

dv = fdupds,

wheredv; andds stand for the volume forms dfMi, g1) and S with the g,-induced metric,
respectively. Now we are going to compute the second fundamentabf@fmi/; x .Sin M.

Proposition 2.7 The following statements hold:

6
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1. o(X,Y) =0for X andY tangent tolM;
2. o(X,V) = 0for X tangent to)M/; andV tangent toS;

3. o(V,W) = h(V,W) for V and W tangent toS.

Proof. The first one follows from the fact that the leaves are totally geodesic not ol ibut
also inM; x; S. Let{ be any vector field normal tdf; x ¢ S in M, then it can be viewed as a
normal one taS in Ms. On the other hand, since each fifgg x M, is totally umbilical in 7,
then its second fundamental form satisfi€g, £) = 0. Consequently (o (X, V), &) = 0, which
shows the second statement. The last one follows from [33].

Theorem 2.8 If S is compact, then/; x ¢ S is in > if and only if S is in X", wherec =
pld=D)(n1+d)

d(n1+d—l) )
Proof. Let H and H> be the mean curvature vector fields bf; x; S in M andS in M,
respectively. We use Proposition 2.2 to see that

d 1
H=———_H
ny +d f? >

and so the corresponding mean curvature functions are related by

2 d2 1 2

= 7(711 + d)2 FO{Q.
On the other hand, the extrinsic scalar curvature functioasdr, of M; xS in M andS in
Mo, respectively, are related by
d(d—1) 1
—T2.
(n+d)(ny +d—1) f2°

Now the restriction obVj, to the space off -invariant submanifolds)/; x .S, in M is given by

W (My x ¢ S) = <n10—l|rd>r </le frl_lclm) /s <a§ — bm)rp ds.

Once more the principle of symmetric criticality allows us to obtain the statement.
The next result is obtained whehis chosen to be a curve.

Corollary 2.9 Lety be a closed curve if/y. ThenM; x ;v is in X" if and only if~ is a critical
point of the elastic energy functionl given by

Fr(y) = / ks,

acting on closed curves i1, g2), wherex denotes the curvature function of

Remark 2.10 Closed curves which are critical points &f are calledyeneralized elasticap!].
In particular, those which are critical points 8 are calledree elasticag28].
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3. SomeAdS-geometry

The role of the anti-de SitterddS) geometry in the high energy physics increased due in part
to both the Maldacena conjecture and the holographic hypothesis. Furtherfasi@eometry
plays a very important role in the theory of higher spin gauge fields where iterations contain
negative powers of the cosmological constant [19]. That theory may be considered [43] as a
candidate for a more symmetric phase of string theory. The group manifold4&#sgeis of
special interest in many subjects (see [38] for some of them, including the study of conserved
currents of arbitrary spin built from massless scalar and spinor fieldsiB). Next, we study
another interesting property emanating from the geometrgdfi which also corroborates the
importance ofAdSs. In fact, we go to classify all generalized elasticae with constant curvature
in AdS, for arbitrary dimension. To do that, one first uses a standard argument, which involves
several integrations by parts, to compute the Euler-Lagrange equations associated with the elastic
energy functionafF”. An early consequence obtained from these equations is that any generalized
elasticae inAd.S must lie fully in someAdSs5 totally geodesic imdS. We can also read from those
eqguations that a generalized elastica with constant curvatutésp also has constant torsion and
so itis a helix inAdSs. This is a nice reason to study the geometry of helice$dss.

The 4-dimensional pseudo-Euclidean space with indeR32,can be identified witiC? =
{z = (z1,22) : 21,22 € C} endowed with the usual inner produet w) = Re(zw; — z2w2).
The 3-dimensional anti De Siter space is the hyperquadiii§; = {z € R} : (z,2) = —1},
and the induced metric defines a Lorentzian structure, with constant sectional curvajwoe
AdSs. The circle of radius on&!, regarded as the set of unit complex numbers, acts naturally
(multiplication coordinate to coordinate) ofvlS;. The space of orbits, under this action, can be
identified with the hyperbolic 2-plané?(—4) of Gaussian curvature4. The natural projection
I1: AdS; — H?(—4) gives a semi-Riemannian submersion.

A global unit timelike vector fieldV can be defined omdSs by puttingV, = iz, for all
2z € AdSs3 (as usual = /—1). TheV flow is made up by fibres, which are unit circles with
negative definite metric. We will use the standard notation and terminology of [33], relative to
semi-Riemannian submersions. In particular, one has the spliting V., ®H., z € AdSs,
whereT is the tangent 3-space tdSs in z, V., = span(V,) is the vertical line and, is the
horizontal subspace®{, = H.). Recall thaty, = ker(dIl,) anddlIl, restricted toH . gives
an isometry betweefi{, and the tangent plane f?(—4) at I1(z). Overbars will denote the
horizontal lifts of corresponding objects &t (—4). The semi-Riemannian connectiofisandV
of AdS; andH?(—4), respectively, satisfy

ViV = VxY +(9(JX,Y)oI)V, (1)
ViV = VX =iX, 2
VvV o= 0, )

hereJ andg, denote the standard complex structure and metri’gf-4), respectively. Notice
that the third equation gives the geodesic character of the fibr&g55.

The mappingll : AdS; — H?(—4) is also a principal fibre bundle ovéf?(—4) with
structure grous! (acircle bundld. We define a connection on this bundle by assigning to each
z € AdSs the horizontal 2-plan@{.. The Lie algebra:(1) of S' = U(1) is identified withR, so
V is thefundamentalector field1* corresponding tad € u(1).

We denote byw and) the connection 1-form and the curvature 2-form of this connection,
respectively. It is well known that there is a unigBevalued 2-form© on H?(—4) such that

8
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Q = II*(6). We also putdA to denote the canonical volume form & (—4), in particular
dA(X,JX) = 1 for any unit vector fieldX onH?(—4). Itis clear tha®®(X, JX) = Q(X,iX)
and so we can use the structure equation, the horizontaliy, gtind: X and the formula (1) to
obtain
QX,iX) = dw(X,iX) = —w([X,iX]) = —2w(V) = -2,
and consequently
O = —2dA.

Leta : [0,L] — H?(—4) be an immersed curve with length > 0. We always assume that
« is parametrized by the arclength. The completedift = 11~ (a) will be called theHopf
tube associated withe and it can be parametrized as follows. We start from a horizontal lift
a : [0,L] — AdSs of o and then we get all the horizontal lifts of by actingS! over a.
Therefore we hav@ : [0, L] x R — AdS3 with

U(s,t) =ea(s).

It is not difficult to see thal’,, is a Lorentzian flat surface which is isometrido L] x S* (where
the second factor is endowed with its negative definite standard metric). In particuars if
closed, therCC, is a Lorentzian flat torus (thdopf torusassociated witl). It will be embedded
in AdSs if « so is inH?(—4), and its isometry type depends not only brbut also on the area
A > 0in H?(—4) enclosed byx.

Theorem 3.1 Leta be a closed immersed curveliff (—4) of lengthZ and enclosing an ared.
The corresponding Hopf torus,, is isometric tol.?/T', whereT is the lattice in the Lorentzian
planelL? = R?, generated by0, 27) and (L, 2A4).

Proof. Let @ be any horizontal lift ofw and ¥ : L2 — C, C AdSs; the semi-Riemannian
covering defined by (s, t) = e'*a(s). The lines parallel to theaxis inL? are mapped by onto
the fibres oflI, while the lines parallel to theaxis inlL? are mapped by onto the horizontal lifts
of a. These curves are not closed because of the holonomy of the involved connection, which was
defined above. However the non closeness of the horizontal lifts of closed curves is measured just
for the curvature as follows (we will apply, without major details, a well known argument which is
nicely exposed in [21, vol.Il, p.293]). There exigtg [, ) such that(L) = ¢*a/(0) for any
horizontal lift. The whole group of deck transformationsiofs so generated by the translations
(0,2m) and(L, 6). Finally we havel = — | ©, wherec is any 2-chain ofiti?(—4) with boundary
Jc = «. In particular, from (4), we get = 2A and the proof finishes.

From now on, we assume thats an arclength parametrized curve with constant curvatime
H?(—4). ThenC,, = I1"!(«) is a Lorentzian flat surface with constant mean curvature. Moreover
it admits an obvious parametrizatidr(s, ¢) by means of fibress(constant) and horizontal lifts of
a (t constant). Lepd be a non-null geodesic @f,,, that is determined from itslopeg (which is
measured with respect ). It is not difficult to see thag is a helix in AdSs, with curvature and
torsion given respectively by

_ e(s+29)
p = 1_92 ) (5)
_ 2
, 5(1+gm+g)7 (©)
1— g2

9
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wheree = +1 represents the causal charactef of

We also have a converse of this fact, namely, given any helix AdSs with curvaturep
and torsiorv, then it can be regarded as a geodesic in a certain Hopf tudd&f. Indeed, just
consider the Hopf tub€’, = II-!(a), wherea is a curve inH?(—4) with constant curvature
%, heres denotes the causal characterdfand then we choose a geodesi@n
with slopeg = —‘”T".

We suppose that is closed, that is, it is a geodesic circle of a certain radins0 in H?(—4).
Then its curvature i = —2coth 2r (notice we choose orientation to get negative values for
curvature). The length af is L = 7 sinh 2r and the enclosed arealiff (—4) is A = Z(cosh 2r —
1). As we already know the Hopf torus, = IT-!(a) comes from a lattice ifl.2 which is
generated by0, 27) and(L,2A). Now a geodesi@(s) of C, = II"!(«) is closed if and only if
there exists, > 0 such thatv ~1(3(s,)) € I'. Consequently

27 A
= — —_— 7
9=7 <q+ ﬂ) ; (7
whereq is a rational number.

The slope of closed helices can be also written in termsas follows

R =

whereq € Q — {0}.
The Euler-Lagrange equation for helicesn AdSs of curvaturep > 0 and torsionv # 0
being critical points ofF" is
(r—Dp*+rm?—r=0,
that is, in the(p, ) plane of helices inAdSs, the actionF" has exactly one ellipse of critical
points. To determine the closed helicesAdSs, which are in the above ellipse, we use the

discussion made above. In particular the Euler-Lagrange equation can be written in terargiof
the slopey as follows

orkg® + (m? +4(2r — 1)) g +2(3r — 2)kg + (r — 1),<;2 —0.

The following theorem shows the existence of wide families of generalized elasticaksSin
for arbitrary degrees.

Theorem 3.2 For any non-zero rational numberand an arbitrary natural number, there exists
a closed helixd,, in AdSs which is a generalized elastica itdSs, i.e. a critical point ofF".

Proof. We manipulate equations (8) and (10) to see that a closed HetixAdSs is a critical
point of 77 if and only if, regarded as a geodesicrafional slopeg in a Hopf torus on a geodesic
circle a in H?(—4) with curvatures, then both parameters give a zero of the following function

4r — 2
F(k,q) = r(4¢* + 1)/ K2 — 4 — 4q (/-12— T )

r

It is not difficult to see that for any non-zero rational numbgthere exists a real numbere
(—o0, —2) such thatF'(x, q) = 0. We choose a geodesic circleliff (—4) with curvaturex and a

10
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geodesic inC,, = II"!(a) whose slope ig = 2%((_] + %), whereL and A are, respectively, the
length ofa and the enclosed area byin H?(—4). Certainly3 is a closed helix inAdSs and its
curvature and torsion satisfy the Euler-Lagrange equation associate@with

From now on we will denote by\,, the set of closed helices,, in AdS3 obtained in the
last theorem. Notice that these sets give the complete moduli space (up to moti&hSsnof
generalized elasticae with constant curvaturddtbs.

Remark 3.3 It is not difficult to deduce fron¥'(x,q) = 0 that the relationship betweenand
 gives the following property. Every # 0 occurs for exactly one, while eachx determines
exactly two values ofj, except when:? = # (which corresponds tg = % orq = —%). The
product of these two values ofis alwaysi, therefore when one of the them is rational the other
one must also be rational. Thus the corresponding Hopf tofidfs has transverse foliations by

closed generalized elastic helices.

Now we can combine Corollary 2.9 with Theorem 3.2 to obtain a more general existence result
for critical points of the two-parameter family of functionggV,, }. However, we will change a
little bit the notation (namely the order in products) to agree with the classical one used in Physics.
The setting can be described as follows. [&f, g) be a compact homogeneous space with group
of isometriesH. On the product spacédS x M, we consider the Lorentzian metrfég, + g,
whereg, is the canonical metric oddS, say for instance with constant curvaturé, and f is
a positive smooth function o/, which works as a warping function on the above product. We
consider the actiomV,,, acting onI (Q, (AdS x M, f?g, + g)), here dim@Q =dim M + 1, and
use the above mentioned results to get the complete classificatibrirafariant critical points of
W, which have constant mean curvature according to the following statement.

Corollary 3.4 The class off -invariant critical points of\WW,,. which have constant mean curva-
ture in (AdS x M, f?go + g) is {Byr X M : By € Ay} In particular, if dimM = r — 1,
the above family gives all thél-invariant, Willmore-Chen submanifolds with dimensiorn
(AdS x M, [f?g, + g]) that have constant mean curvature relativeftg, + g.

As a first conclusion, we get a rational one-parameter family of solutions of the motion equa-
tions associated with the actiong,,., at any stage of the Hopf T-duality chain. These solutions
emerge from closed generalized elastic heliceglits and can be regarded as solitons corre-
sponding to extended dynamical objects obtained when the compactification space propagates in
the target space by describing closed helicoidal orbits. We can also study, of course, non-closed
helicoidal motions. In this case a real one-parameter class of hon congruent solutions may be
obtained and the above closeness property is obtained in terms of the rationality nature of the
parameter. However we are interested in closed solutions which are narrowly related with the
AdS-geometry.

Corollary 3.5 For any couple of real numbets r, and any non-zero rational numbemwe have
1. B, x S° belongs taxe" in the Type IIB string omdSs x S°.
2. B4 x CP? x S! belongs ta2" in the Type IIA string omdS; x CP? x St

3. B4 x CP? x T? belongs ta~?" in the M-theory ondd S5 x CP? x T2,

11
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Furthermore, these configurations always lie in a codimension two, totally geodesic submani-
fold of the corresponding background. Also they are eithiéx(6)-invariant, (SU(3) x U(1))-
invariant or (SU(3) x U(1) x U(1))-invariant depending on whether we are in Type IIB, Type
[IA strings or M-theory, respectively.

4. Willmore-Chen submanifolds in Type IlA string theories and M-
theory

The Hopf T-duality has the effect of untwistii®§ to CP? x S'. This corresponds with Type
IIB configurations carrying strictly R-R electric and magnetic 5-form charges [14]. In our case,
the compactification spaces &®2 x S* for Type IIA string andCP? x T for M-theory, and they
can be treated according to the settings we have considered in section 2. In both cases we naturally
break symmetry to study generalized elasticae in the complex projective(@kzrendowed with
its usual Fubini-Study metrig,, with holomorphic sectional curvatude

For a curvey in CP2, one can consider the anglebetween the complex tangent plane
sparf+/(s), J7'(s)} and the osculating plane ef, J standing for the usual complex structure
of CIP2. A curve is said to be of constant slant if the anglis constant along. In [1] the first au-
thor gave the complete classification of curves with constant slaiPtwhich are critical points
of the elastic energy functiondl(x? + \)2ds, where) is a certain constant. The argument used
there can be adapted now to get the complete classification of critical points with constant slant for
elastic energy functionals of the forifi(x? + \)"/2ds, wherer is any real number, in particular
generalized elasticae with constant slan€iP? (see also [5] for another related problem). In the
next discussion, the term generalized elastica will be used to name a critical point of the above
types of functionals. Before to explain the main points in that classification, where the parameters
A andr are referred as the potentials, we will exhibit the argument for an arbirdgcause it
will be used later.

1. First of all, notice that the standard Frenet equations of curv€®tare useful, for exam-
ple, in defining the concept of helix. However, to study generalized elastic&®3rone
needs a different reference frame along curveSi#A which involves the complex structure
J of CP2. One way to describe this frame is to begin by lifting horizontally the cyiiee
in CP?, via the usual Hopf mapping, to a cur¥ds) in S®. The unit tangent vector field
T(s) = +'(s) lifts to T((s) = Y’(s). Now, we may choose a vector field(s) along~(s)
such that its horizontal liftind/(s) gives the third component in a special unitary frame
o(s) ={Y(s),T(s),U(s)} in C3. In other wordsg (s) is a lift of the curvey(s) to a curve
in SU(3). This curve satisfies a natural differential equation which projects dow@Pto
and gives the natural equations of the new fraifi¢s), JT'(s), U(s), JU(s)} along~y(s)
(see [1, 5] for more details).

2. By computing the Euler-Lagrange equations for generalized elasticae in terms of the new
frame, one can see that each generalized elastica with constant sIitima helix.

3. The main point in the geometrical integration of the motion equations for helices is the

following: Every generalized elastic helix @iP? is the image, under the natural projection,
of a one-parameter subgroup$if (3).

12
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4. Inthis framework one can obtain the moduli space, up to congruen€@®jrof generalized
elasticae with constant slant@P2. This space consists of a real three-parameter family of
helices inCPP? where two parameters in this family can be chosen to be the potentials. Now
the closedness characterization for these curves can be obtained in terms of a rationality
condition of the third parameter. Therefore, for any couple of real numbarsl A, the
potentials, we obtain a rational one-parameter farity= {3, : ¢ € E} c Q} of
generalized elastic closed helicesGir?, hereETA is a certain subset of rational numbers
determined in terms of the potentials.

The above argument, which shows the existence (in particular) of generalized elasti®de in
can be combined with the methods of breaking symmetry in the motion equations associated with
the actionW,,. that was given in section 2. It allows us to obtain the following result of existence
of solutions in the Type IIA string orldSs x CP? x S!.

For any couple of real numbeus r the class(3}, x S' : ¢ € E}} is a rational one-parameter
family of U (1)-invariant tori which belong t&®" in the Type IIA string onAdSs x CP? x S!.

In particular, ifr = 2, we obtain Willmore tori as solutions of the conformal motion equations
associated with the corresponding action. Of course we can exploit, once more, the breaking
symmetry process to obtain solutions relative to metricgldf; x CP? x S! which are given as
double warping metrics coming from a couple of warping functions on the circle.

The above solutions can be Hopf T-dualized to obtain solutions not only in the M-theory on
AdSs x CP? x T?, but also in the M-theory on an¢dSs x P, whereP is a circle bundle on
CP? x S! endowed with a Kaluza-Klein ansatz associated with a principal flat connection. To
be precise, let) be a real number such that~ is not a rational number, the map : Z — St
given by ¢, (k) = ¢*" defines a monomorphism betweéh, +) andS! C C regarded as a
multiplicative group. Let/ = CP? x R be the universal covering dP? x S'. CertainlyU
can be regarded as a princigalbundle onCP? x S!, which admits an obvious principal flat
connection, say. The transition functions of this bundle can be extendedgyiao S!-valued
functions and they can be used as transition functions to define a priSéipaindle, sayP,;, on
CP? x S'. Moreover, one can extendto a principal flat connection, also called on the whole
St-bundle whose holonomy subbundle is isomorphi&{@P? x S',Z). Notice that whem is
chosen to be one, thep, is nothing but the direct produ€tP? x 72 on which the usual M-theory
is Hopf T-dualized. If we calir : P, — CP? x S! the projection of the above fibration, then we
have
{m=1(BY, x S') : BY, € TV} is a rational one-parameter family @f (1) x U(1))-invariant sub-
manifolds which are solutions of the motion equations associated with the &etjom the M-
theory onAdSs x P.

5. A zoo of solutions in the Type IIB string theory

Throughout this section/ will be a principal fibreH-bundle,H being ad-dimensional com-
pact Lie group, over a certain pseudo-Riemannian manifdld, ¢’). Letp : M — M’ be the
projection and le® be a principal connection on this principal fibkebundle. We denote bya?
the bi-invariant metric orff, so that the Kaluza-Klein metric writes down

g="p*(g) +eb*(da®).

13
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As above, we can determine the manifold made ufiof 1)-dimensional H-invariant, compact
submanifolds in(M, g). It can be identified with the set of complete lifts of closed curves im-
mersed inM/’. Therefore, to compute the critical points)of,,. in (M, g) which areH-invariant,

we use again the principle of symmetric criticality and compute the restrictivvi,pto the above
submanifold. To do that, let and 7. be the mean curvature and the extrinsic scalar curvature
functions ofp~!(v) in (M, g), respectively. We also denote Syand .S’ the Ricci curvatures of
(M, g) and(M’, ¢'), respectively. Finally, assume thats) is arclength parametrized, denote by
k its curvature function ifM’, ¢') and lety/(s) be the horizontal lift tq M, g) of its unit tangent
v'(s). In this setting, we have (see [1])

2 1 2

o= () er =S

On the unit tangent bundé M’ of (M’, ¢'), lety : UM’ — R be defined by

Then _
Wi ) = "G [ ute s

Consequently we have

Theorem 5.1 p~!(v) is a critical point of W, in (M, g) if and only ify is a critical point of the
elastic energy functionaF defined by

ﬂwz/W+MﬂW%&
Y

on the space of closed curves(if/’, ¢').

The most interesting situation in Theorem 5.1 occurs when the potgnisatonstant. In this
case, recall that we used the term generalized elastica, with potdrtial&), to refer to critical
points of F.

A sufficient condition to guarantee the constancy/ofs to assume that bottM, g) and
(M', ¢') are Einstein, and thehmust be a Yang-Mills connection. Thereforepind\’ denote
the cosmological constants @i/, g) and(M’, ¢'), respectively, we find

o= b(d; 1)(/\,_)\)_

In particulary > 0 (see [1]).

However that condition is not necessary. In fact, suppose that(Bdtly) and (M’ ¢') are
Einstein giving a constant potential Now, we deformate the metricby changing the relative
scales of the base and the fibres. To be precise, we define a one-parameter family of metrics on
M by putting{g; = p*(¢') + t0*(da?),t > 0}. This gives a one-parameter family of Riemannian
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submersions with totally geodesic fibres, all of them having the same horizontal distribution asso-
ciated withd. This is nothing but the canonical variation of the starting Riemannian submersion.
Since we are assuming that = g is Einstein, then there is at most one more Einstein metric in
{g:} (see [6]). However, if), denotes the corresponding potential, it is not difficult to see that
Yy = top and so it is constant for any

The existence of one-parameter families of generalized elastic closed helices, for arbitrary
potentials, irS* andCIP?, respectively, has been established in [1] and in the last section, respec-
tively.

Example 5.2 Let 7 be the usual Hopf map from the 5-sph&Peover the complex projective plane
CP2. Then for anyt > 0 and any pair of real numbebs r, there exists a rational one parameter
family of U (1)-invariant flat tori with constant mean curvature(§, g;) which are critical points
of Wj,,.. Hereg; = g is the canonical metric of curvature one $h

Example 5.3 Let 7 be the usual quaternion Hopf map from the 7-spl$&rever the quaternion
projective lineS*. Then for anyt > 0 and any pair of real numbebsr, there exists a rational one
parameter family of5O(4)-invariant 4-dimensional submanifolds with constant mean curvature
in (S7, g;) which are critical points ofV,,.. Hereg; = g is the canonical metric of curvature one
ons’.

We have just obtained a rational one-parameter family of flat tori with constant mean curvature
in the round 5-sphere, which are critical pointsWf,. for arbitraryb andr. These tori appeared
connected, via the Hopf map, with the existence of generalized elastic closed helices in the com-
plex projective plane. The chief point to obtain this variational reduction of variables was provided
by the Palais principle of symmetric criticality.

Now, we are going to exhibit a new method to get flat to$#i+! which are not obtained as
lifts of closed curves in the complex projective sp&t&?, but still are critical points foiV,..

Let 7' be a compact genus one surface and38t*!, go) be the round sphere of radius one.

For any pair of real numbetsandr we haveW,, : I(T,S?>"*!) — R given now by

Winle) = [ (a? +-bG) 2o,
T

where « is the mean curvature @b, G and dv being the Gaussian curvature and the volume
element of T, ¢*(go0)), respectively.

The computation of the first variation &, is not easy in general. Certainly, the case
2 (the Willmore functional corresponds with = 2 andb = 1) is the simplest one. In fact,
using the Gauss-Bonnet formula, the functional is reduceg.ta® + b)dv. In this case, the first
variation formula was computed in [45], and from there one sees that the minimal immersions
are automatically solutions of the corresponding Euler-Lagrange equations. Moreover, it is not
clear, in general, that the minimal immersions are critical pointd/pf. We will overcome these
obstacles by using again the Palais principle of symmetric criticality. Contrarily to those occasions
where we used the principle for reduction of variables, now we will use it to improve rigidity.
Notice that the highest rigidity for a metric on a compact genus one surface means flatness.

To clarify that idea, letX' be a 2-dimensional compact subgroupS#P(2n + 2) regarded
as the isometry group afs?"*!, go). It is obvious thatK acts naturally on/ (T, S?>"*1). Let
¢ be aK-invariant immersion, theflT’, ¢*(go)) has a subgroup of isometries of dimension two.
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We apply a well known classical argument to see thiaacts transitively or(T’, ¢*(go)). This
homogeneity implies constant Gaussian curvature arti@'sp*(go)) is a flat torus. Consequently,
the submanifold ofs -invariant immersiong (T, S>**1) is made up of flat tori. It is not difficult

to see that each isometric immersion from a flat toruSitt 1, go) can be viewed as an orbit
associated with a 2-dimensional, compact subgroufx@af2n + 2) (see [26, 27] for minimal flat
tori in the 5-sphere). Then we apply the principle of symmetric criticality to obtain the following.

Proposition 5.4 ¢ € I (T,S***1) is a critical point of W, if and only if it is a critical point of
Wi, but restricted to the submanifolge (7, S?**1).

Now we can compute the first variation of this restriction, that is, we take variatiogs of
I (T,S?" ) in I (T,S**1). We use a standard argument, which involves some integrations by
parts, to obtain the following Euler-Lagrange equation

rAH —rA(H) + 40°H — 2(r — 2)bH = 0,

whereH is the mean curvature vector field, denotes the Laplacian associated with the normal
connection andi is the Simons operator [40].
A first consequence makes mention to the minimality.

Corollary 5.5 Every minimal flat tori in(S?"*1, g¢) is a critical point ofW,,., for arbitrary b and
T.

To illustrate that, we consider the following one-parameter family of minimal flat tori in
(S®, g0) (see [26]). Letg € (0,1] be a rational number and consider, in the Euclidean plane
R?, the latticel” generated by

V2 2—q¢> V2
—— 0 and — 5 |-
g4 — ¢ av/2(4 —¢q?) 2
We definey : R? — C3 by

1 . . i(s4t)
y(s,t :<ew,e”, 2 —q2e « >
BV S

Itis not difficult to see that this gives an isometric immersion. Furthermore, itinduces an isometric
immersionz from the flat torusl” = R?/T" in (S®, go). Since the coordinate functions ofin
C3 are eigenfunctions of the Laplacian Bf associated with the eigenvalue2js minimal in
(S®, go). Notice that the casg = 1 gives the so called equilateral flat torus, because it comes from
an equilateral lattice.

Next we give some explicit examples of non-minimal flat tori(&?, go) which are critical
points of the functionalV,,.. Given three real numbers d ande, with ¢,d > 0, we consider
the latticel' in R? generated by2rc, 2re) and(0,2rd). Choosen, m, 7 € Z — {0} such that
w =% -7 andw = nc satisfyw # w andw # 0. We can also assume thgt > 1. Then we

c cd

definey : R? — C? by
t\ . AN _
y(s,t) = <pcos (p) €™, psin (p) e /1 —p%’“’s) ,
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wherep = d/m. It is easy to see that defines an isometric immersion if and onlypifw? +
(1 — p*)®? = 1. Furthermore, in this case it induces an isometric immersidrom the flat

torusT = R?/I"in (S?, go). Some interesting properties of these immersions are collected in the

following.

1. The center of mass af in C? coincides with the center &, in this sense we say that it

is of mass symmetric. Notice that minimal submanifolds in a round sphere are always mass

symmetric.

2. The immersione is not minimal in(S°, go). In fact, it is constructed ift® by using eigen-
functions of the Laplacian df associated with two different eigenvalues, namely+- I%

andw?. Therefore, we say that it is @ftype in the sense of B.Y. Chen (see [11]).
3. These immersions have non-zero constant mean curvature.

4. They are not Hopf tori. That is, they are not invariant under the natiifa)-action onS®
to obtainCP? as space of orbits.

The following result shows the existence of an ample family of non-minimal flat tqingo)
which are critical points oV, for arbitraryb andr > 0.

Proposition 5.6 For any pair of real numbers andr, there exist infinitely many non-minimal flat
tori in the family(3) which are critical points o#V,,. in (S?, go).

Proof. Let A be the shape operator of: T — (S°, gg) in the unit direction defined byf. Let
A=w?+ % andyu = ©? be the two eigenvalues of the LaplaciarZofvhich are involved in the
2-type nature of: in C3. Now, a straightforward but long computation allows us to see:thst
a critical point ofW,,. in (S%, go), that is, a solution of (1), if and only if the following equation
holds

2r|AP* —4a® = r(A 4+ — 2) +2(2 — 1)b.

A messy computation shows that (4) is equivalent to
(2r — 1)p4w4 + (4;102 —2rp?—r — 2)p2w2 + M(b,r,p) =0,
where
M(b,r,p) =7 — 1 —4p(r —p —rp® +p*) + p*(p> — 1)(2(2 — r)b — 2r).

The equation (5) can be regarded as a biquadratic oreso if D denotes its discriminant, it is
easy to see thatm,, ., D = r2. Then given(b, r) there exists an open subdein (0, 1) such that
for all p € I one can get solutions of (5). Now it is clear that we can determine flat tori in the
family (3) with these parameters, and the proof finishes.

Along this section, we have obtained three explicit families of flat torfSh, go) that are
critical points ofW,,. for arbitraryb andr. Let us recall them.

1. The familyC, was obtained by lifting, via the usual Hopf map: S> — CP?, a rational
one-parameter family of generalized elastic closed helicéPthwith suitable potentials.
Therefore, the flat tori i€, have non-zero constant mean curvaturéSi go).
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2. The familyC, is made up of minimal flat tori iiS®, go). Explicit parametrizations for tori
in Co were given by K. Kenmotsu [26]. This is also a rational one-parameter family of tori.

3. The familyCs (see (3) and Proposition 5.6) consists of a multi-indexed family of non-zero
constant mean curvature, flat tori (#°, go) which are constructed ii® using eigenfunc-
tions of their Laplacians associated with exactly two different eigenvalues.

6. Further backgrounds

The above considereddSs x S° solution can be extended to any other configuration of the
form AdSs x M5, where M5 is any 5-dimensional compact Einstein space with positive scalar
curvature. An interesting class of such solutions is provided by chodgingo be a principal
U(1)-bundle over a compadtdimensional manifoldV. Now, theU(1)-bundles over such &
are classified by the cohomology grofi? (N, Z).

For example, letV be the Grassmannian of orient2gblanes inR*, viewed as the complex
quadricQ, = S* x S* with its natural Einstein metrig. By choosingici(N) € H?*(N,Z),
wherec; (N) denotes the first Chern class &, we obtain a principal/ (1)-bundleM = 73 S?
on N which coincides with the unit tangent bundle of the rowagiphere and admits a natural
Einstein metric (Stiefel manifoldj. This example can be regarded as a special one of an integer
two-parameter family of/(1)-bundles{M (p, q) : p,q € Z}, overS? x S?, where the integers
andgq are the winding numbers of the fibres over bBtrfactors in the complex quadric. Natural
Einstein metrics, with positive scalar curvature, can be obtained on/ddphg) [14]. Observe
that one can considerandq to be relatively prime, otherwise if = ged(p, q), thenM (p, q) =
M(p/a,q/a)/Z, is a lens space. Notice also tHalS® = M (1, 1) is diffeomorphic toS? x S3,
however it is not a product either as a homogeneous space or as an Einstein manifold.

Finally remark that the situation of greatest interest comes out when the Einsteingpacg
admits Killing spinors, which automatically implies that tHe.S; x M (p, ¢) solution preserves
some supersymmetries. However it only occurs whea ¢ = 1, i.e., for the Stiefel manifold
[14]. We may follow steps analogous to those described for the five sphere [14], to reduce the
AdSs x T1S? solution of the Type 1IB theory t& = 9, and perform a T-duality transformation.
Upon oxidation back t@ = 10 Type IIA theory, we have a solution ofidSs x Q2 x S'. This can
be oxidised further td = 11 M-theory, giving a solution not only 0AdSs x Q2 x T2, but also
on any background of the formdSs; x P, whereP is any principall/ (1)-bundle overQ, x S*,
which admits a principal flat connection and it is endowed with the corresponding Kaluza-Klein
antsaz](P) being the corresponding group of isometries. Consequently, we obtain the following
duality chain . = 4 Yang-Mills]—[Type IIB string onAdSs; x T;S*]—[Type lIA string on
AdS5 x Q2 x S']—[M-theory onAdS; x PJ.

According to the reduction of symmetry program, we can obtain examples of solutions, for
the motion equations associated with té&,.-dynamics, in any step of the above constructed
duality chain which reduces to generalized elasticae in the complex quadric, as well.4835 a
totally geodesic inAdSs. In the latter case, we can use those rational one-parameter families of
generalized elastic helices 4S5 which were obtained in section 3. Therefore we have a result
analogous to Corollary 3.5.

1. {8y xThS? : ¢ € Q—{0}} is a rational one-parameter family @O (4) x U(1))-invariant
solutions of the/V,,.-dynamic in the Type IIB theory oAdSs x T S3.
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2. {Byr x Q2 x St : ¢ € Q — {0}} is a rational one-parameter family @§O(4) x U(1))-
invariant solutions of th&V,,.-dynamic in the Type IIA theory oAdSs x Qa x S'.

3. {Byr x P :q € Q— {0}} is a rational one-parameter family bfP)-invariant solutions of
theW,,.-dynamic in the M-theory odldSs x P.

In the former case, we can emulate an argument given in [1] to construct real one-parameter fam-
ilies of generalized elastic closed helices in the complex quadric for any pair of given potentials.
These helices appear as geodesic in certain flat tori embeddgs Bo that a simple argument
allows us to get a closeness condition in terms of a rationality condition for the involved param-
eter (see the appendix of [1]). Using now the breaking of symmetry program, we can obtain
holographic solutions for thi/,,.-motion equations at any stage of the above described T-duality
chain. These solutions are similar to those obtained in sections 4 and 5@Preptayed the part

of () here.

Certainly, spherical compactifications of supergravity are maximally supersymmetric and there-
fore the boundary superconformal field theory, SCFT, has sixteen supercharges. However, the
conjecture of Maldacena is believed to be true for any supersymmetry. This is a good reason to
investigate SCFT with less than sixteen supercharges [22, 25, 29, 17, 18, 20, 34]. This reduction of
supersymmetry is obtained by orbifolding the space transverse to the boundary. HentéS the
part of the geometry remains intact while iepart of the geometry is orbifolded and depending
on the orbifold one obtains distinct CFT with different amounts of supersymmetry. An interest-
ing way to do it is by considering odd dimensional transverse spheres and then to regard them as
Hopf fibrations, i.e., principal/ (1)-bundles over complex projective spaces. Now, we can break
supersymmetry either by reducing ové(1)-fibre (this Hopf reduction has been already widely
used along this paper) or by considering multiple windings oflflie)-fibre over the base space.

In this second setting we do not reduce dimension and arrive to the lens spaces.

Let S?»~! ¢ C" be the(2n — 1)-dimensional sphere of radius one, i.e.,

Sl ={z=(21,...,20) €C" : |2)? = Z |22 = 1}.

j=1

For any natural number;, lete = €2™/" be a primitiver-th root of unity and{si, ..., s, } integers
which are relatively prime to. We define an action &, = {1,¢,¢2,...,e" 1} onS?"~! by

e-(z1,...,2n) = (€ 21,...,"2p).

The orbit space is denoted by(r, s1,...,s,) and it will be called a lens space. The natural
projectionp : S*»~! — L(r,s1,...,s,) gives the universal covering of this space. Hefige
is not only the fundamental group éf(r, s1, ..., s,), but also the deck transformation group of
this covering space. The classical case appears wher2 and L(r, 1, s) is usually denoted by
L(r, s). In particular,L(2, 1) is just the real projective spa&ePs.

Let {4, } andwy be the transition functions &#(L(r, s), Z,) and the connection 1-form of
its canonical flat principal connection, respectively. For any compact Lie gtbepdowed with
a bi-invariant metrialo?, we choose an arbitrary closed geodesic through the identity, sy
B(t) = exp(tA), whereA € g. We define a monomorphisthy : Z, — G by identifyingZ, with
the group of primitiver-th roots of unity and then using that the exponential mapping defines an
isomorphism betwee! and3. We may then extenlyy,} via ¢ to obtain a set ofi-valuated
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functions which can be used to construct a principal fibre buRdle(r, s), ). Furthermoreg
is extended to get a monomorphissy : S* — P which mapswy into a flat connection otP.
Summing up, we have obtained the following result.

Proposition 6.1 Let G be a compact Lie group. Then there exist& grincipal fibre bundle
P(L(r,s),G) over the lens spack(r, s) which admits a principal flat connection with holonomy
subbundle isomorphic to the 3-sphere, thai¥{,L(r, s), Z,.).

This proposition is also true 7 is not compact and the construction can also be generalized to
lens spaces of higher dimensions.

Let (L%, go) be a five dimensional lens space. Then we can use the natural covering mapping
from S° over L® to projectC;, Co andCs (the three families of solutions obtained in the above
section on the round five sphere). We also denot€hyC, andCs the projected families in
(L3, go). Then we have,

Corollary 6.2 LetG be anm-dimensional compact Lie group endowed with a bi-invariant metric
do?. Letr : P — L° be a principal fibreG-bundle, endowed with a principal flat connection
w. Let[go] be the Kaluza-Klein conformal class dhassociated witljy = 7*(go) + w*(do?).
Then there exist infinitely marjyn + 2)-dimensional G-invariant, Willmore-Chen submanifolds
in (P, [go]), which have constant mean curvature(i, gp). This family includes the three sub-
families obtained by lifting, via, the families of flat torC;, C3 andCs.

The above result can be obviously extended to any adtigp, not necessarily to that giving
the Willmore-Chen functional. Furthermore it can be applied to a wide variety of contexts. For
example, suppose the Lie groGpis chosen to b&/ (1) = S!, so thatP is a principall/ (1)-bundle
on L° and then we have:
The W,,--dynamic in the M-theory omdSs x P has infinitely manyU (1)-invariant compact
solutions with dimension three. This class includes the three subfamilies obtained when lifting,
viap : P — L°, the families of flat torC;, Co andCs on L°.

It should be noticed that these solutions have constant mean curvature (tension) in the original
Kaluza-Klein metric on4dSs x P.

Remark 6.3 We can construct examples of 2-type (in the sense of B.Y.Chen) flat t(8f i)
which are critical points oV, for arbitraryb andr. Moreover, we can use an argument similar
to that used in [3] to show that 2-type compact surfaces which are solutions Wfi{hdynamic

in any round spheréS™, go) are actually flat tori lying fully in eithe(S®, go) or (S7, go).

7. Dyonic strings and non-dilatonic black holes

General spaces of the typlelS x NV, whereN are Einstein spaces, necessarily spheres, emerge
naturally in supergravity as the near horizon geometries of supermembranes with fewer Killing
spinors and whose boundary conformal field theories have so less supersymmetry. In particu-
lar, the spaceddS; x S? appears as the near horizon geometry of the self-dual string or, more
generally, the dyonic string (see [15] and references therein for details). In that paper, truncated
six-dimensional type IIB and type IlIA Lagrangians are obtained and fheiuality transforma-
tions were explicitly computed. This construction is necessary if one wishes to consider solutions
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carrying both NS-NS and R-R electric and magnetic 3-form charges and whose near horizon ge-
ometry containsidSs x S3.

All the non-dilatonic black holes ifv = 5 and D = 4 were listed there and their near horizon
limits, when they are oxidised tb = 6, were obtained. Since all these near horizon limits can be
obtained by Hopf-duality on AdSs; x S? (actually, HopfI'-duality relates not only near horizon
limits but also their associated full solutions), we can combine Corollary 2.9 with Theorem 3.2
to obtain an existence result of Willmore-Chen submanifolds which can be regarded as a Hopf
T-duality invariant. In fact, it is known that Hopf dualities preserve the area of the horizons and
hence they also preserve the black hole entropies. Now we have

Corollary 7.1 The conformal structure associated with the string-frame in the near horizon limit
of any non dilatonic black hole i = 5 and D = 4 admits a rational one parameter family of

four dimensional Willmore-Chen submanifolds which have constant mean curvature in the original
string metric. Moreover, in the case that there are only NS-NS charges, the invariance of these
Willmore-Chen submanifolds is preserved, while this is decreased when R-R charges are carried.

Remark 7.2 Dilatons and axions are constant in the solutions and for simplicity we have consid-
ered them to be zero. Otherwise we could have started from original soluidfis x 83/Zn,

for the type IIB low-energy effective action. It should be pointed out that the string metric of any
near horizon limit is always homogeneous and have constant scalar curvature. For example, by
considering that dilatons and axions are zero and applying Hegdiality on theU (1)-fibres of

S?, the following possibilities could appear:

1. There are only R-R charges, th&his untwisted td&? x S!.

2. There are only NS-NS charges, th&hbecomes a cyclic lens spag/Z, with its round
metric andp being the magnetic NS-NS charge.

3. In the generic case, with both NS-NS and R-R char§ésiot only become§?/Z,, but it
is also squashed, with a squashing parameter that is related to the values of the charges. In
other words, the metric o&*/Z,, is covered by a metric of* which may be realized as a
distance spher@n the complex projective plane or its symmetric dual (the complex hyper-
bolic plane) according to the squashing parameter is less than or greater than 1, respectively.
The squashing parameter equal to 1 corresponds with the round metric.

Most of the near horizon limits are not simply connected. Only those solutions with dilatons
and axions being zero of the type |IB Lagrangian are simply connected. Since Corollary 2.9 holds
for anyW,,., one can obtain an analogous to Corollary 7.1 for any functiBvial Consequently,
we combine this argument with the first reduction of symmetry phase to obtain the following
result.

Corollary 7.3 Let AdS3 x N be any near horizon limit and choose a monomorphism from the
fundamental groupr; (V) in a compact Lie group endowed with a bi-invariant mettic. Then

1. There exists a principal fibr&-bundler : P — AdSs x N which admits a principal flat
connectiornw.

2. There exists a rational one parameter family of Willmore-Chen submanifold®,ifg]),
whereg = 7*(g) + w*(do?), g being the string metric, which have non zero constant mean
curvature in(P, g), and are(G ® H)-invariant, whereH is the group of isometries a¥.
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This result works, in particular, along the oxidation process of the involved metribs 40 10
andD = 11. Consequently, we have ample families of solution¥\)f.-dynamics (in particular
equivariant Willmore-Chen submanifolds) in the oxidiged= 10 metricsAdSs; x S?* x T* and
AdSs x S? x K3 of type 1IB string theory. Also in the dualdd Sz x S? x S' x T#, AdS3 x S? x
St x K3, AdS5 x S® x T*, AdS3 x S3 x K3, AdSs x (S3/Z,) x T* andAdSs x (S3/Z,) x K3
Type lIA theories. Finally the result applies to the oxidiged= 11 metricsAdS3 x S? x T° and
AdSs x S? x K3 x S' of M-theory.

8. Higher-dimensional theories

The Type IlA string can be obtained by compactifying fhe= 11 supermembrane on a circle.
An obvious question is whether Type IIB string also admits a higher-dimensional explanation. The
appearance of Majorana-Weyl spinors and self-dual tensors in both the twelve-dimensional and
Type |IB theories supplied evidence in favour of a corresponding and natural conjecture posed in
[71.

Despite of all the objections one might raise to a world with two time dimensions, associated
with the idea of &2, 2) object moving in 10, 2) spacetime, it has been revived in the context
of the F-theory [42]. This involves Type IIB compactification where the axion and dilaton from
R-R sector are allowed to vary on the internal manifold. In general, given a manifdttht has
the structure of a fiber bundle , with fib&? = S' x S!, on some manifold., then [F-theory on
M]=[Type 1IB theory onL]. Of course, the most conservative point of view is that the twelfth
dimension is merely a mathematical artifact and so the F-theory should be considered as a clever
way of compactifying the Type I1IB string [39]. However, time will tell [13].

Consequently in this section we will investigate the following general framework)Aeé an
F-bundle associated with a certain principalbundleQ(L, H), whereH is a compact Lie group
and the fibreF' is a homogeneous space with dimensiohetp : M — L be the projection map,
a gauge potential of (L, H) andda? an H-invariant metric or¥'. In this setting, given any metric
g’ on L, one can find a unique metricon M such thap : (M,g) — (L,¢’) is a Riemannian
submersion with totally geodesic fibres isometri¢#da?) and horizontal distribution associated
with 0 [44]. As above, the manifold of thel+1)-dimensional H -invariant compact submanifolds
in (M, g) can be identified with the set of complete lifts of closed curves.irOnce more, the
search for symmetric configurations which are solutions ofthe-dynamics oM, g) is reduced
to that of solutions of the dynamics associated with the restriction of the adtjprio the space
of symmetric submanifolds. This restriction has been computed in [2] and is formally similar to
that obtained in section 5, that is

vol (F, da?)

Wbr(p_l(’Y)) = (d + 1)7~

[+ vy,

wherex denotes de curvature ofin (L, ¢’) and is defined on the unit tangent bundle(df, ¢)

to measure, up to a constant involvibgthe difference between the Ricci curvature 6f¢’) in

a direction and the Ricci curvature @/, g) in the corresponding horizontal direction. Therefore
we formally have the same Theorem 5.1, though in a more general context
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Theorem 8.1 p~!(v) belongs tox" in (M, g) if and only ify is a critical point of the elastic
energy functional

Fly) = / (K2 + $(y/))2ds,

0
defined on closed curves (i, ¢').

As above, most of the important applications of this result occur when the poténisal
constant. In this case we will use again the term of generalized elastica to name a critical point of
F. An obvious sufficient condition to guarantee this constanay isfto assume that both/, g)
and(L, ¢') are Einstein. In this case, fand)\’ denote the corresponding cosmological constants
theny = b(dfjl)()\’ — A). This condition is not sufficient as the squashing method shows.

Although the list of examples satisfying that condition is too large, we have chosen some of

them as an illustration.

First example

It is known that the field equations df = 11 supergravity describe a 4-dimensional space-
time with negative cosmological constant and a compact 7-dimensional Einsteir{ 8pagewith
positive scalar curvature. Many of these spaces can be regarded as principdl-borelles over
certain spacedl, ¢’) and the Einstein metri¢is obtained from the Kaluza-Klein mechanism, i.e.,

g =p '(g") + 6*(da?). Consequently, Theorem 8.1 can be directly applied to most of the stable
vacuum states in the Freund-Rubin spontaneous compactificatiba dfl supergravity.

On the other hand, if we squash an Einstein methi€ g) by scaling the size of fibres, we
still obtain Riemannian submersions providing constant potentials. Therefore, if we consider the
canonical variation of the quaternion Hopf fibrati¢p : (S7, ;) — (S* ¢');t > 0}, we can
find exactly two values of, namelyt = 1 (the round metric) and = 1/5 (the squashed metric)
providing Einstein metrics. It is known that generalized elasticae in a round 4-sphere yield in a
totally geodesic 3-sphere, as well as the existence, for any pair of potentiaJof a rational
one parameter family of closed helicés,, = {v;}, in a round 3-sphere, which are generalized
elasticae [2]. Therefore, for arty> 0, we obtain a rational one parameter family ' (v);v €
Q, .} of critical points of W, in (S7, g;). This family of critical points can be projected down to
the lens spac8”/Z, = L7(¢,1,1,1), which is also obtained in the list of solutions fér= 11
supergravity given in [10], a ggggiggg and/ is the number of times that a simple loop in the
U(1) of the denominator winds around th&1) in the numerator. We will also denote lgythe
round metric orS”/Z, and use the already recalled way to generate the principal fibre bundles
admitting a flat connection to obtain

Corollary 8.2 LetG be any compact Lie group endowed with a bi-invariant metrié and ¢ a
monomorphism fror, in G. Then

1. There exists a principal fibr&-bundler : P — S7/Z, which admits a principal flat
connectiorw.

2. There exists a rational one parameter family of Willmore-Chen submanifolds in the confor-
mal Kaluza-Klein structurég), g = 7*(g)+w*(do?) on P which are(G® SU (2))-invariant
and have non zero constant mean curvaturémg).
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Second example

In [9], the spacesVc = %XUU(%) were studied, where, b andc € Z characterize the
embedding ofU (1) x U(1) in SU(3) x U(1). These spaces can be viewed as principal fibre
SU(2)-bundles onCP?2. Using the Kaluza-Klein inverse mechanism and the squashing method,
one can see that these spaces, except Whea b, admit exactly two different Einstein metrics
which make the above fibration a Riemannian submersion with totally geodesic fibres and the
baseCP? endowed with the Fubini-Study metric (see also [35]). We denoté\sy°, ¢) the above
Castellani-Romans Einstein Riemannian manifolds. On the other hand, for any couple of constants
r, %) one can find a rational one parameter family of closed helic&Pthwhich are generalized
elasticae [2]. Therefore, for arbitraby » one can get rational one parameter families of critical
points forWj,. in each(N?¢, g) which areSU (2)-invariant and have non-zero constant mean
curvature. To avoid Riemannian product in the next result, we will congidgr0 (otherwise,
N0 s simply connected) and the embeddingl&fl) x U(1) in SU(3) x U(1) is carried out
by mapping a simple loop of thé(1) in the denominator to wind times around thé/(1) in the
numerator. In this case the fundamental groupvéf¢ is Z, and we have

Corollary 8.3 LetG be any compact Lie group with a bi-invariant metide? and¢ a monomor-
phism fromZ, in G. Then

1. There exists a principal fibor€-bundler : P — N which admits a principal flat connec-
tion w.

2. There exists a rational one parameter family of Willmore-Chen submanifold®,ifg]),
g = 7%)g) + w*(do?), which are(G ® SU(2))-invariant and have non zero constant mean
curvature.

Remark 8.4 We can obtain similar results in other spaces giving solutiong ferl1 supergrav-
ity, such as the spaces of Witt@f®¢ = %, which can be viewed as circle bundles on
CP? x S2.

Since our result works for associated bundles (not necessarily principal), it can be applied, for
instance, to certain Penrose twistor spaces. Namely, to the twistor spa&‘eamafCP? to obtain
examples of immersions B [2].

The method that we have developed in this paper can be applied to other backgrounds different
from those considered here. It is also open to be extended to other contexts.

9. Conclusions

In this paper we have considered a two-parameter class of acfidns,: a,r € R}, defined
on the space of immersions of a given smooth manifgléh a pseudo-Riemannian manifold
(L, ds?). This constitutes a natural variation of the conformal total tension action, also known as
the Willmore-Chen functional, whose importance is due in part to its invariance under conformal
changes in the surrounding metede?. This class also includes the popular Willmore action,
so as the Canham-Helfrich bending energy of fluid membranes and lipid vesicles, as well as the
Polyakov extrinsic action in the bosonic string theory. Roughly speaking, given a uniyerse)
and a Lie group?, which acts onZ, through isometries ofL, ds?), the “best” worlds to live in
this universe are those submanifolds which satisfy the following properties
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1. They areG-invariant configurations. That means that they have a natural degeejeriuiri
statedGG-symmetry.

2. They are solutions of the isoperimetric area-volume problem, in particular they must have
constant mean curvature (tension) i ds?).

3. They are extremes for some tension acfti®l. and so solutions of the corresponding mo-
tion equations.

Along this section, we will use the teri@,,-configuration to name those submanifolds in
(L, ds?) which areG-invariant, critical points of somV,, and have constant mean curvature in
(L,ds?).

The existence of+,,.-configurations is investigated in string theories, M-theory and F-theory
(even in higher-dimensional theories) on backgrounds of the &% x M, wherel is some
principal U (1)-bundle.

Recall that string theory, emerging as a candidate for the unification of the fundamental forces
in the nature, has a main objection. In fact, there are five different, but consistent, ten dimen-
sional string theories which are all distinct in their perturbative spectra. The understanding of the
problems derivated from this ambiguity has undergone a great improvement with the appearance
of dualities. String dualities are, in some sense, the statements one has to relate all five different
perturbative superstrings. It is tempting then to imagine that they are the expansion of a single and
more powerful eleven dimensional, non-perturbative, unified theory (known as M-theory and that
contains theD = 11 supergravity as low energy limit) around five different sets of perturbative
variables. A very important ingredient to account for these dualities are those properties (encoded
in the Physics or in the Geometry of the theory) which remain invariant along the duality chains.
When the compactifying spac¥ is a principalU(1)-bundle, one can define a natural kind of
T-duality [14, 15]. These Hopf T-dualities relate different black holes preserving entropies [15].
Therefore, the black holes entropies provide a nice invariant along duality chains.

In this paper we have shown that
The existence of wide families 6f,,.-configurations, for arbitrary, r and suitable choices 6f,
is also an invariant along any duality chain

However, this general statement is actually a series of results that were obtained as conclusions
from a general program of breaking symmetry which was developed in section 2. The method
exhibited there is mainly based on a formulation due to R.S.Palais [36] of the so-called principle of
symmetric criticality. This method allows one to break thesymmetry by reducing the number
of variables in the study ofV,..-variational problems. Furthermore, the constancy of the mean
curvature function remains invariant through this process.

To conclude, we summarize the main points in the above series of invariants. The first natural
problem, that we solved, corroborates once more the important rolelththgeometry plays in
these theories and specially the group manifdldlSs. It corresponds with the case where the
transverse spacg@l/, g) is a G-homogeneous one. IAdS, x Mp_,, we consider the metric
%9, + g, wheref is any smooth positive function alf. Given a curvey in AdS, one can evolve
the transverse spadé throughy to generate the tubg, = v x M with the metricf2dt? + g. It
is obvious thafl’, is G-invariant and so it seems natural to ask whefhigis aG,.-configuration.

The method we exhibited here allows us to reduce this problem to one ifothe AdS part.
Using the nice geometry oldS, we are able to get not only the characterizatiorf’pfto be a
G--configuration, but also the complete classification of these solutions. This provides us the

25



Nuclear Phys. B 584 (2000), 719-748

moduli space of~,,.-configurations with dimensio® — p + 1. These moduli spaces must be
understood, up to isometries ¢fg, + ¢, except in the case of the Willmore-Chen action, where
we can relax to conformal transformationsf3fy, + g. In this context, we can also obtai,, -
configurations with dimension greater thBn- p + 1, however we do not know the moduli spaces
and this can be regarded as an open problem.

Other solutions in this paper are directly obtained in the transverse space. For example, if we
start from Type |IB theory orAdSs x Ms, where M5 is a principalU (1)-bundle over, say3,
then we have the duality chain [Type IIB theory didS; x M5]—[Type IIA theory onAdSs x
B x S']—[M-theory on AdSs x B x T?]. Then we use our method of breaking symmetry
to reduce the search fa¥,,.-configurations, wheré& is now an internal gauge group, in these
backgrounds to that for certain elastic curves in the base sBadeiving explicit examples of
elasticae, for example, i6P? or in the complex quadri§), = S? x S?, we get wide families of
G--configurations along the above duality chain.

The method also works on theories that carry both NS-NS and R-R electric and magnetic
charges. Therefore, we showed the existence of ample families of solutions in the near horizon
limit of any non-dilatonic black hole i = 5 and D = 4. The degree of symmetry of these con-
figurations is preserved only when NS-NS charges appear, while that is decreased if R-R charges
are carried. Higher-dimensional theories, such as F-theory, are also investigated in relation with
the existence of7,,.-configurations
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