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Abstract

We exhibit a criterion for a reduction of variables for Willmore-Chen submanifolds in confor-
mal classes associated with generalized Kaluza-Klein metrics on flat principal fibre bundles.
Our method relates the variational problem of Willmore-Chen with an elasticity functional
defined for closed curves in the base space. The main ideas involve the extrinsic conformal
invariance of the Willmore-Chen functional, the large symmetry group of generalized Kaluza-
Klein metrics and the Principle of Symmetric Criticality. We also obtain interesting families of
elasticae in both lens spaces and surfaces of revolution (Riemannian and Lorentzian). We give
applications to the contruction of explicit examples of isolated Willmore-Chen submanifolds,
discrete families of Willmore-Chen submanifolds and foliations whose leaves are Willmore-
Chen submanifolds.

1. Introduction

The Willmore-Chen variational problem is the natural extension to higher dimensions of the
well known Willmore variational problem. It is associated with the Willmore-Chen functional

n

W(N) = /N (0 — )5aV,

defined on the space of compaetimensional submanifold¥ of a given Riemannian or pseudo-
Riemannian manifoldP. The terms appearing in the integrand)of are the mean curvature
functiona and the extrinsic scalar curvatureof N in P, which measures the difference between
the scalar curvature @V and a part of the scalar curvature Bfalong N. The problem can be
sketched as follows:

1. Find the critical points o¥V, which we will call Willmore-Chen submanifolds.

2. Study the stability of critical points, which involves the determination of the minimal values
of W.

The importance of this problem partially comes from its invariance under conformal changes of the
metric in the ambient space (see [9]). TH¥smight also be called theonformal total curvature
functional. The classical Willmore functional corresponds with the ease2. Any (compact)

minimal surface in a standard sphere (in general, any zero mean curvature surface in a real pseudo-
Riemannian space form) is automatically a Willmore surface. Examples of non trivial Willmore
surfaces in standard spheres are given in [3], [7], [10], [14] and [17]). Examples of Willmore
surfaces in non standard spheres can be found in [1] and [8], as well as in spaces with a pseudo-
Riemannian global warped product structure in [2] and [4]. The first non trivial examples of
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Willmore-Chen submanifolds in standard spheres were given in [6], and later in [4] for conformal
structures associated with warped product metrics, and consequently on reducible spaces.

In this paper we deal with Willmore-Chen submanifolds in conformal classes associated with
the so called generalized Kaluza-Klein (Riemannian or pseudo-Riemannian) metrics on principal
fibre bundles endowed with a flat connection.

The contents of the article are as follows. In the next section we sketch a general method to
obtain all principal fibre bundles admitting a flat connection over a given manifold. It is based
on the following well known fact: The holonomy bundle, at any point of a flat principal fibre
bundle over a manifold/ is a regular covering space 8f. We also describe, as examples, the
flat principal fibre bundle over a lens space (see Proposition 2.2) and over a surface of revolution
embedded ifR? (see Propositions 2.4 and 2.5).

In Section 3 we study some properties of generalized Kaluza-Klein metrics on a principal
fibre bundleP (M, G), including, as a particular case, the Kaluza-Klein (also called bundle like)
metrics. A generalized Kaluza-Klein metric dh(M, G) is very rich in isometries. In fact the
natural action ofG on P, which yields M as orbit space, is carried out by isometries of any
generalized Kaluza-Klein metric af(M, G).

In Section 4 we state the main theorem of the paper, which, following Palais [16], gives an
example of reduction of variables for a variational problem. This theorem can be explained as
follows: The construction of Willmore-Chen submanifolds in conformal classes associated with
generalized Kaluza-Klein metrics dA(M, G) which do not break thé&-symmetry, is reduced,
via the principle of symmetric criticality, to the problem of finding closed curvef/iwhich are
critical points of a functional of the type

wherex denotes the curvature function of the closed cuyver a certain metric oM/ andr is

the dimension of>. We will refer to critical points of this functional asgeneralized elasticae
Whenr = 1, one has the classical notion of elastica, or free elastica (see [15]). We give interest-
ing examples of generalized elasticae in Section 5. We first exhibit, for any natural number
rational one parameter family efi-generalized closed elastic helices in any standard lens space
(see Corollary 5.2). Next we discuss elasticity for parallels in a surface of revolution embedded in
either the Euclidean 3-spa@ or Lorentz-Minkowskian 3-spadg? (in this case we take time-

like profile curves, so that parallels are always spacelike). In both cases we obtain the complete
classification of surfaces of revolution all of whose parallelsrargeneralized elasticae. Besides
right circular cylinders (all of whose parallels are geodesics and are hergeneralized elasti-
cae), there are Riemannian and Lorentzian trumpets of etdeee Propositions 5.3 and 5.4, also
Figures 1 and 2). The classical cage= 1 was studied in [5].

Finally, in the last section, we obtain some applications relative to the existet&@wériant
Willmore-Chen submanifolds of Kaluza-Klein conformal structures (see Corollaries 6.1 to 6.7).
We wish to point out the statements of Corollaries 6.5 and 6.7. For example, Corollary 6.5 shows
that on any flatG-principal fibre bundle equipped with a Lorentzian Kaluza-Klein metric over
the Lorentzian trumpets, there exists a codimension one foliation with constant mean curvature
spacelike leaves, which are Willmore-Chen hypersurfaces.
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2. Flat connections on a principal fibre bundle. Examples

Let M be a differentiable manifold and conside(M, G) a principal fibre bundle with base
spaceM and structure group:. Throughout this paper we will assume tl@atis compact. Let
I" denote a principal connection dn with connection 1-formv which takes values in the Lie
algebrag of G. The connectioril’, w) is said to be flat if and only if its curvature forfavanishes
identically. Then(I",w) and the canonical flat connection locally agree, and this equality globally
holds if the manifold is assumed to be simply connected. Said otherwigeissimply connected
and(T,w) is flat, thenP = M x G and(T",w) coincides (up to isomorphisms) with the canonical
flat connection onV/ x G.

The class of principal fibre bundles which admit a flat connection can be described as follows.
Let M be a non-trivial regular covering spacef and letp : M — M and H be the covering
map and the deck transformation group, respectively. It is well known, [13, vol. |, p. 61], that
M (M, H) is a principal fiore bundle which admits a trivial flat connection, By, wo). We
choose a monomorphismfrom H into a Lie groupG and extend the transition functiofigy, :
U,NU; — H} of M(M, H), througho, to obtain{vyy, = ¢ o Y, : Up,NU, — G}. These
functions can be used as transition functions to define a principal fibre birdle G) and¢ can
be extended to a monomorphigiirom M to P which mapg Ty, wp) into a flat connection o,

[13, vol. I, p. 79].

The converse is also true. Indeed, giveV/, G) and a flat connectio(I’, w) on P, then the
holonomy bundleP,,, through a point,, € P is a regular covering space 8f, [13, vol. I, p. 93],
and it allows us to obtai® (M, G) as above.

Next we give some examples for later use.

Example 2.1 (Principal fibre bundles with flat connections over a lens space
Let S?"~! ¢ C" be the(2n — 1)-dimensional sphere of radius one, i.e.,

n
S ={z=(21,...,2) €C" ¢ [2P =) |z =1}
j=1

For any natural numbet, lete = ¢2™/" be a primitiver-th root of unity and{s, . . ., s,,} integers
which are relatively prime to. We define an action &, = {1,¢,¢2,...,e"1} onS*"~! by

e (21, 2n) = (%21, ...,e%2y).

The orbit space is denoted by(r, s1,...,s,) and it will be called aens space The natural
projectionp : S**»~! — L(r,s1,...,s,) gives the universal covering of this space. Hefige
is not only the fundamental group éf(r, s1, ..., sy,), but also the deck transformation group of
this covering space. The classical case appears wher2 and L(r, 1, s) is usually denoted by
L(r,s). In particular,L(2, 1) is just the real projective spaéer?.

Let {4} andwy be the transition functions &°(L(r, s), Z,) and the connection 1-form of
its canonical flat principal connection, respectively. For any compact Lie gebepdowed with
a bi-invariant metrialo?, we choose an arbitrary closed geodesic through the identity, sy
B(t) = exp(tA), whereA € g. We define a monomorphisey : Z, — G by identifyingZ, with
the group of primitiver-th roots of unity and then using that the exponential mapping defines an
isomorphism betwee! and3. We may then extendly,,} via ¢ to obtain a set of7-valuated
functions which can be used to construct a principal fibre bufdle(r, s), G). Furthermoregg
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is extended to get a monomorphissy : S* — P which mapswy into a flat connection orP.
Summing up, we have obtained the following result.

Proposition 2.2 Let G be a compact Lie group. Then there exist& grincipal fibre bundle
P(L(r,s), ) over the lens spack(r, s) which admits a principal flat connection with holonomy
subbundle isomorphic to the 3-sphere, thaSi{,L(r, s), Z,.).

This proposition is also true ify is not compact and the construction can also be generalized to
lens spaces of higher dimensions.

Example 2.3 (Principal fibre bundles with flat connections over a surface of revoljition

The fundamental group (M) of a surface of revolution\/ embedded ifR? is free abelian
with one or two generators according to whether the profile cuni& d§ not closed or closed,
respectively. We will discuss both cases separately.

2.1. Non-closed profile curve£,(M) = 7Z)

Let M be a regular covering space df. Unless)M is the universal covering af/, there
exists an integek such that the deck transformation grolipof p : M — M is Z;. Hence, given
a compact Lie grougs, a similar argument to that used in Example 2.1 can be used to obtain
examples ofG-principal fibre bundles oved/ endowed with a principal flat connection whose
holonomy is isomorphic td/.

Let us assume tha¥/ is the universal covering af/, so it is diffeomorphic to the plan&?.
The groupH = Z certainly acts as structure group of the principal fibre budig\/, Z). Let
n be a real number such thatm ¢ Q (the set of rational numbers), then the map: Z — St
given by ¢, (k) = ¢ defines a monomorphism betweéf, +) andS! C C regarded as a
multiplicative group. Since every compact Lie group admits closed geodesics, we cangxtend
to a monomorphism, also called, fromZ to G. Then, by applying the method established at the
beginning of this section, we can obtain the following result.

Proposition 2.4 Let M be a non-compact surface of revolution embeddekfimand letG be any
compact Lie group. Then the following assertions hold:

(1) For any natural numbek, there exists & -principal fibre bundIePk(MlG) which admits
a principal flat connection whose holonomy subbundle is isomorphic 7, Zy,).

(2) For any real number) such that)/7 ¢ Q, there exists @ '-principal fibre bundleP, (M, G)
which admits a principal flat connection whose holonomy subbundle is isomori¢id, Z).

2.2. Closed profile curve {1 (M) = Z x Z)

Let M be a regular covering space &f, then the deck transformation gro@pis (up to isomor-
phisms) eithef;, @ Z,, or Z ® Z, or Z ® Z, where the last case appears whéfris the universal
covering.

Proposition 2.5 Let M be a compact surface of revolution embedde®iand letG be any
compact Lie group with dint; > 1. For any pair of natural numberg and ¢ there exists a
G-principal fibre bundlePy, (M, G) which admits a principal flat connection whose holonomy
subbundle is isomorphic to either
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(1) A torus if the holonomy subgroup is finite, thati,= Z; ® Z,,

(2) A right circular cylinder if the holonomy subgroup is free abelian with one generator, that
is,H=7Z®Z; (k=0),0r

(3) A plane if the holonomy subgroup is free abelian with two generators, that is,Z ® Z
(k=1¢=0).

Proof. We write H = H; ® H5 to unify the three cases. Given any compact Lie graydim G >

1) we are going to construct a monomorphismH — G. To do this, let; = §,(t) = exp(tA4,),

A; € g, be a closed one parameter subgroup @tdrhen we map; (via ¢1) monomorphically

into §; as we did in the last subsection. Now choose another closed one parameter subgroup
do = 02(s) = exp(sda), A2 € g, such thatd; and A, are linearly independent. The existence of

09 is guaranteed, because we can consdgdemdd, as geodesics of a certain bi-invariant metric
onG. As before, we mayiis (via ¢2) monomorphically intad,. Finally, we moved; (¢) through

the image ofp,, that is, takeps(he) - 91(t) for all he € Hs. Thus we obtain a family of integral
curves, associated with a left invariant vector fielddgrwhich can be parametrized ovBg. Itis

now clear that this allows us to define a monomorphismH — G and the proof is finished.

3. The generalized Kaluza-Klein structures and the
Willmore-Chen variational problem

Let (I",w) be a principal connection on a principal fibre bun#le\/, G), G being a compact
Lie group endowed with a bi-invariant metrie?. We denote byM andF .. the spaces of pseudo-
Riemannian metrics and smooth positive functionsidnrespectively, and letM denote the
space of all pseudo-Riemannian metricsfarFore € {—1,+1}, let®. : M x F; — M be the
mapping defined by

®.(h,u) = 7(h) + e(u o m)2w*(do?),

wherer : P — M stands for the projection map of the principal fibre bundle.

A pseudo-Riemannian metrice M is called ageneralized Kaluza-Klein metran P(M, G, w)

(or on P, provided that there is no confusion) if it belongs to the image of the map defined above,
that is,h = ®.(h,u), for a certain metrié. and some positive functiom.

By identifying each fibre ofP with the structure groug- (including metrics), a generalized
Kaluza-Klein metric onP can be viewed as a local warped product metric (see, for example, [11]
and [18]). In particular, those generalized Kaluza-Klein metrics obtained from constant functions
w in F4 are called Kaluza-Klein metrics or “bundle like” metrics.

It is obvious thatr : (P,h) — (M, h) is a pseudo-Riemannian submersion whose leaves are
the fibres, and so they are diffeomorphic to the structure géaupis also evident that the natural
action of G on P is carried out by isometries ¢, h).

For any pseudo-Riemannian metficon P, the Willmore-Chen variational problem can be
stated as follows. Lel be a compact smooth manifold of dimensient+ 1 and denote by the
space of immersions a¥ into P. Then consider the submanifald; of A" defined by

N; = {¢ € N'| ¢*(h) is nondegeneraje
The Willmore-Chen functionalV : \; — R is defined by

W@=AM—@zm,
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« andr, being the mean curvature and the extrinsic scalar curvature functiehgespectively,
anddwv stands for the volume element of the induced meitigh) on N. The critical points oV

are called Willmore-Chen submanifolds and they only depend, as does Willmore-Chen variational
problem, on the conformal claggh) of h.

4. The main theorem

In this section we deal with the Willmore-Chen variational problem associated with the con-
formal clasC(h) of a generalized Kaluza-Klein metric= ®_(h,u) on P(M, G, w). Our main
theorem can be viewed as a variable reduction method for Willmore-Chen submanifolds. This
argument gives a strong relation between this variational problem and a variational problem for
closed curves itiM, u=2h).

For our purposes it is convenient to make the following conformal chang®,in). Define
h = (uo )~ 2h, so that

h =7 (u"2h) 4+ w* (do?).

It is easy to show that the projection map (P, 71) — (M, u2h) has the following important
properties:

(1) = is a pseudo-Riemannian submersion and has totally geodesic fii@giin
(2) The natural action ofy on P is carried out by isometries ¢, h).

(3) The submanifolds\;, and\; are the same, and the Willmore-Chen submanifoldsoh)
and(P, h) agree.

(4) For anyy € N (N standing for eitheA;, or ;) anda € G, we haveW(¢ - a) = W(¢),
that is,W is G-invariant.

¢ From now on we will denote hy the submanifold of\" given by
S={peN|¢p-a=¢forallac G},

that is,S consists of those immersions which &fenvariant. We also write dowk and X to
mean the set of critical points ®¥ (i.e., the Willmore-Chen submanifolds) ahd|s, respectively.
Then we can apply the principle of symmetric criticality, [16], to obt@in S = Y. Therefore,
in order to obtain Willmore-Chen submanifolds(iR, C(h)) which do not break th&'-symmetry
of the problem, we computg, then the restriction ofY on S and then we proceed in due course.
Let v be a closed curve immersed M. ThenN, = 7~ !(v) is an(m + 1)-dimensional
submanifold inP which is G-invariant,m being the dimension af;. The converse also holds.
In fact, for any(m + 1)-dimensional compact submanifold of P which is G-invariant, there
exists a closed curvg immersed inM such thatV = N,. Furthermore, the submanifolty,
is embedded if and only i has no self-intersections ih/. Therefore, we have the following
identification

S={N,=n"'(y) : yisaclosed curve immersed inld}.

We now compute the restriction ) to S. Sincer : (P, h) — (M, u"2h) has totally geodesic
fibres, it is, in particular, a harmonic submersion. Then the following relationship between the
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mean curvature functioa of N, in (P, ) and the curvature functiom of ~ in (M, u~2h) holds
(see [1])
1
2 _ 2
“ = (m+1)2 (x

As for the extrinsic scalar curvature of IV, we define a mapping : [0, L] x G — N, by

U(s,a) =7(s)-a,

L > 0 being the length of; in (M, u~2h), wherey denotes a horizontal lift of to (P, 71). This
certainly defines an isometry and allows us to define a global frame of unit vector fields. on

First, we choosé V1, ..., V,,} to be the fundamental vector fields fhassociated to a frame
of unit of left-invariant vector fields iiG, do?). They span the vertical distribution &f and give
an orthonormal frame on the fibre through every poinPofNow let 1, be the horizontal lift of
v'(s). Itis clear thatl} is tangent to the horizontal lifts of. Hence{V;, V1, ..., V,,} provides a
global frame of unit vector fields ol.,.

Let K and K be the sectional curvature functions/@f and (P, 71), respectively, restricted to
the Grassmannian of 2-planes tangen¥to Then we have

o).

m

1

.= ——— KV, Vi) — K(Vi, V3)).
o= T ijZ:(J( (Vi Vy) = K(Vi, V)
It is easy to see thak'(Vo, V;) = 0, j = 1,..., m, because of the pseudo-Riemannian product
structure ofN,. Furthermore, by using the flatness(@f, w), it is not difficult to show thati’
vanishes over mixed (also called ‘vertizontal’, [19]) sections, thdtid/p,V;) =0, =1,...,m
(see also [12]). Hence we have

1 “ .
e = ——— K(V;, V) — K(Vi, Vj)).
Te = D) MZ_l( (Vi, Vi) = K(Vi, V)

Now it should be noticed that each fibre is totally geodesic not onqyjjlfn) but also inV,,. Thus
we may combine both Gauss equations to deducerthatnishes identically. Then we have

W(N,) :/ (02)™ ds dA,
YxG
dA being the volume element 66, do?), so that
_ vol(G, do?) g\ m+1
W(N’Y)_WW/Y(K/ ) 2 dS.

The above computations suggests that we study the functional

acting on closed curves in a Riemannian manifold. The variational problem associate8@"with

has been considered in [4]. In particular, the Euler-Lagrange equations characterizing the critical
points of 77, calledr-generalized elasticaevere computed there. It should be noticed that 1-
generalized elasticae are nothing but the classical free elastica curves (see, for instance, [15]).
Summing up we have shown the following result.

7
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Theorem 4.1 LetG be anm-dimensional compact Lie group endowed with a bi-invariant metric.
Let (T',w) be a flat principal connection on a principal fibre bundi®M, G). Leth = ®.(h,u)

be a generalized Kaluza-Klein metric d¥(M, G,w) and C(h) its conformal class. Given an
immersed closed curvein M, thenN, is a Willmore-Chen submanifold i, C(h)) if and only

if v is anm-generalized elastica inM, u=2h).

5. Some examples of generalized elasticae

The Euler-Lagrange equations associated with the functiBffalvere computed in [4]. When
the ambient space is a real space form, they implystiggneralized elasticae must be contained
in a totally geodesic submanifold with dimension less than or equal to 3. To obtain examples
of r-generalized elasticae in the standard 3-sphere, the authors used the nice geometry of closed
helices. In particular, we obtained the following.

Proposition 5.1 ([4]) For any natural numbern, there exists a one parameter family,,, ,},
g being a non-zero rational humber, of closed helices in the standard 3-sphere which-are
generalized elasticae.

Let L(r, s) be a lens space and denotejbyS? — L(r, s) the natural covering mapping. $f is
endowed with its canonical metric, then we can define a metrit(ens) such thap becomes a
Riemannian covering. In this sense we can talk about standard or canonical lens spaces. Now the
above mentioned family af.-generalized elasticae ¥ can be projected ontd(r, s) to obtain

the following.

Corollary 5.2 For any natural numbern, there exists a rational one parameter family,, .},
g € Q — {0}, of m-generalized closed elastic helices in any standard lens space.

Next we consider a surface of revolution and discuss when its parallels are generalized elasti-
cae. Let us considé?® endowed with the metrig. = dx? +dy? +edz?, ¢ = +1, where{z,y, z}
stand for the usual rectangular coordinates. Notice(fRatg.) is just the Euclidean 3-spad
or the Lorentzian 3-spade?, according to whether = +1 ore = —1 holds, respectively.

In the zz-plane we take an arclength parametrized cyti® = (z(s),0,2(s)),a < s < b.
Let us assume(s) > 0 and(G'(s), #'(s)) = €. Let Ss be the surface of revolution obtained by
rotating the profile curves around thez-axis, which is Riemannian or Lorentzian according to
whethers = +1 ore = —1 holds, respectively. Each point gfdescribes a parallel(6), 6 being
the rotation angle, which is always spacelike. It is not difficult to see that the curvature function
ks Of 7, into Sg and the Gaussian curvatukeof Sz along~, satisfy

(s(0))2 ey d K(s0) =

respectively.
On the other hand, we use the Euler-Lagrange equations associate@'Wifd], to deduce
that a parallely, of Sg is anm-generalized elastica if and only if

k2™ (emk? + (m 4+ 1)K) = 0.

This equation implies that each geodesic parallel is alwaysiageneralized elastica, for any
natural numbern. This is also true for any closed geodesic. In this sense, these solutions will

8
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RTy LTy
Figure 1: Trumpets of order 1
be called trivial critical points or triviain-generalized elastic curves. Therefore the non-trivial
m-generalized elastic parallels are characterized by the following ordinary differential equation
(m + Da(s)z”(s) —m(2(s))? = 0.
By using standard arguments, we can integrate that equation to obtain
z(s) = As™1 A being a certain constant

where we have chosen the arclength parametrization to avoid the inclusion of unnecessary con-
stants. Next we usg¥ (s), 5'(s)) = e to compute the-coordinate of the profile curve,

2(s) = /OS V1 —e(m+ 1)2A2¢2mqt.

The surface of revolution whose profile curve is given by (1) and (2) will be called a Rie-
mannian or a Lorentzian ‘trumpet’ of ordet according to whether = +1 ore = —1 holds,
respectively. We will denote them t§T,,, and LT,,,, respectively (see Figures 1 and 2). Then we
have

Proposition 5.3 (Riemannian case)A surface of revolution into the Euclidean 3-spdtéhas
the property that all its parallels are:-generalized elastica if and only if it is either

(1) A right circular cylinder, or

(2) A Riemannian trumpet of orde.

Proposition 5.4 (Lorentzian case)A surface of revolution into the Lorentzian 3-spacehas the
property that all its parallels aren-generalized elastica if and only if it is either

(1) A right circular cylinder, or

(2) A Lorentzian trumpet of order.
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RT» LTy

Figure 2: Trumpets of order 2

In view of the above results, we may study how the non-triwviadjeneralized elastic parallels
are distributed on the surface. A general analysis presents major difficulties, as one can see from
[5], where a detailed study of this question has been madenfee 1. For our purposes, it
is enough to know that we can find surfaces of revolution in fibtandL? with qualitatively
different distributions of theirm-generalized elastic parallels. As an example, let us consider
the circle of radius- centered at the poir(z, 0,0) € E3 (¢ > 7). We rotate it around the-
axis to obtain a torus of revolution. The region of hyperbolic points on this torus is given by
B(t) = (a — Vr? —t2,t), wheret € (—r,r). Itis not difficult to see that there exist exactly two
non geodesic parallels which aregeneralized elastica, for any natural numberFurthermore,
these two parallels are symmetric with respect toithlane.

6. Some applications

In this section we will obtain non trivial examples of Willmore-Chen submanifolds for Kaluza-
Klein conformal structures on fibre bundles endowed with flat connections.

6.1. Flat principal fibre bundles on lens spaces

Let g be the standard metric on the 3-sph&tef radius 1 and project it to a lens spake-, s)
to obtain its standard metric. Thusp : (S3,g9) — (L(r,s),h) is a Riemannian covering map.
The following result can be proved by combining Proposition 2.2, Theorem 4.1 and Corollary 5.2.

Corollary 6.1 Let G be anm-dimensional compact Lie group. Then the following assertions
hold:

10
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(1) There exists aG-principal fibre bundleP(L(r,s),G) over the lens spacé(r, s) which
admits a principal flat connectiofl’, w) with holonomy subbund®&*(L(r, s), Z,).

(2) Letdo? be a bi-invariant metric orG and leth. be the Kaluza-Klein metric o® defined
by
he = 7*(h) + ew* (do?),
7 being the standard projection associated with Then for any natural numbern there
exists a rational one parameter famifyV,,,}, ¢ € Q — {0}, of (m + 1)-dimensional
submanifolds int@” satisfying the following properties:

(2.1) They are diffeomorphic 8! x G,
(2.2) They have constant mean curvature i h.),

(2.3) They are Willmore-Chen submanifolds(iR, C(h.)).
Let us mention one interesting consequence of this corollary.

Corollary 6.2 LetP be any@l-principal fibre bundle oveL(r, s) endowed with a flat connection
(T',w). Consider the metrié. = 7*(h) + ew*(dt?). Then there exists a rational one parameter
family of Willmore tori in(P,C(h)) which have constant mean curvature(i, k.. ).

Remark 6.3 Our method of proof allows us to construct Willmore tori in teprincipal fibre
bundle(P, h) defined above with non constant mean curvature. This construction works as fol-
lows. LetS? be a unit 2-sphere totally geodesic(i#’, g) and considelS = p(S?), which is a
totally geodesic surface in the lens spdce, s). In [15] Langer and Singer have shown that, up to
rigid motions inS?, the family of closed free elasticae consists of a geodgsisay the equator,

and a two parameter familyy,, | 0 < a < b, a,b € Z}, wherey, ;, means that the curve closes

up aftera periods and trips around the equatoey. Therefore the surfac€ has plenty of free
elasticae, which can be obtained by projectingvihe above family of free elasticae$3. Then

Nap =7 H(p(7a,p)) is @ Willmore torus with non constant mean curvaturéfnh).

6.2. Flat principal fibre bundles over surfaces of revolution

Given anm-dimensional compact Lie grou, Proposition 2.4 guarantees the existence of two
families of G-principal fibre bundles over a surface of revolutiSradmitting a flat connection.
When S is chosen to be a trumpet (Riemannian or Lorentzian) of ondeendowed with its
standard metric, then the associated Kaluza-Klein structure has nice properties which are detailed
in the next statements.

Corollary 6.4 LetG be anym-dimensional compact Lie group endowed with a bi-invariant met-
ric do? and conside(RT,,, G) a G-principal fibre bundle which admits a principal flat connec-
tion (T',w). Leth be the Kaluza-Klein metric given By= 7*(h) + w*(do?), h andr standing

for the standard metric o7, and the projection associated wifh, respectively. Then there
exists a codimension one foliation &f whose leaves have constant mean curvaturéAm,).
Furthermore, they are Willmore-Chen hypersurfaces {RoC(h)).

Proof. Pick a pointz in P and consider the parallgl. in RT,, throughr(x). It follows easily that
{N, = 77 1(7.)}.ep defines a codimension one foliation &h Sincer : (P, h) — (RTy,, h) is
a Riemannian submersion with totally geodesic fibres, (1) implies that eaclV}eads constant
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mean curvature ifP, h). Furthermore, Theorem 4.1 and Proposition 5.3 imply that the leaves are
Willmore-Chen hypersurfaces int@, C(h)).

To understand the Lorentzian case better, we write doyvio denote the standard Lorentzian
metric onLT,,. Leth; be the associated Kaluza-Klein metric & that is,h;, = 7*(hr) +
w*(do?), which is a Lorentzian metric.

Corollary 6.5 Let P(LT,,, G) be aG-principal fibre bundle over a Lorentzian trumpet of order
m which admits a principal flat connection. Then there exists a codimension one foliatidn of
whose leaves are constant mean curvature spacelike hypersurfacBship). Moreover, these
leaves are Willmore-Chen hypersurfaceg i C(hy)).

Remark 6.6 The same method still works when we consider right circular cylinders (Rieman-
nian or Lorentzian) instead of trumpets. In both cases parallels are spacelike geodesics and so
(P, h) admits a codimension one foliation whose leaves are spacelike and minimal. Furthermore
they are non-trivial Willmore-Chen hypersurfaces, because minimality implies the Willmore-Chen
condition only when the ambient space is of constant curvature.

To finish this section we are going to give an application which can be considered representa-
tive of the kind of consequences that we can obtain in the compact case. Bearing in mind Proposi-
tion 2.5, let us assume is a torus, so that it contains a pairafgeneralized elastic parallels for
any natural numbet. Then the following result is clear.

Corollary 6.7 There exists a pair of Willmore-Chen hypersurfaces of constant mean curvature in
the Kaluza-Klein conformal structure on any principal fibre bundle, endowed with a flat connec-
tion, over a torus of revolution.
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