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Abstract

We exhibit a criterion for a reduction of variables for Willmore-Chen submanifolds in confor-
mal classes associated with generalized Kaluza-Klein metrics on flat principal fibre bundles.
Our method relates the variational problem of Willmore-Chen with an elasticity functional
defined for closed curves in the base space. The main ideas involve the extrinsic conformal
invariance of the Willmore-Chen functional, the large symmetry group of generalized Kaluza-
Klein metrics and the Principle of Symmetric Criticality. We also obtain interesting families of
elasticae in both lens spaces and surfaces of revolution (Riemannian and Lorentzian). We give
applications to the contruction of explicit examples of isolated Willmore-Chen submanifolds,
discrete families of Willmore-Chen submanifolds and foliations whose leaves are Willmore-
Chen submanifolds.

1. Introduction

The Willmore-Chen variational problem is the natural extension to higher dimensions of the
well known Willmore variational problem. It is associated with the Willmore-Chen functional

W(N) =
∫

N
(α2 − τe)

n
2 dV,

defined on the space of compactn-dimensional submanifoldsN of a given Riemannian or pseudo-
Riemannian manifoldP . The terms appearing in the integrand ofW are the mean curvature
functionα and the extrinsic scalar curvatureτe of N in P , which measures the difference between
the scalar curvature ofN and a part of the scalar curvature ofP alongN . The problem can be
sketched as follows:

1. Find the critical points ofW, which we will call Willmore-Chen submanifolds.

2. Study the stability of critical points, which involves the determination of the minimal values
of W.

The importance of this problem partially comes from its invariance under conformal changes of the
metric in the ambient space (see [9]). ThusW might also be called theconformal total curvature
functional. The classical Willmore functional corresponds with the casen = 2. Any (compact)
minimal surface in a standard sphere (in general, any zero mean curvature surface in a real pseudo-
Riemannian space form) is automatically a Willmore surface. Examples of non trivial Willmore
surfaces in standard spheres are given in [3], [7], [10], [14] and [17]). Examples of Willmore
surfaces in non standard spheres can be found in [1] and [8], as well as in spaces with a pseudo-
Riemannian global warped product structure in [2] and [4]. The first non trivial examples of
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Willmore-Chen submanifolds in standard spheres were given in [6], and later in [4] for conformal
structures associated with warped product metrics, and consequently on reducible spaces.

In this paper we deal with Willmore-Chen submanifolds in conformal classes associated with
the so called generalized Kaluza-Klein (Riemannian or pseudo-Riemannian) metrics on principal
fibre bundles endowed with a flat connection.

The contents of the article are as follows. In the next section we sketch a general method to
obtain all principal fibre bundles admitting a flat connection over a given manifold. It is based
on the following well known fact: The holonomy bundle, at any point of a flat principal fibre
bundle over a manifoldM is a regular covering space ofM . We also describe, as examples, the
flat principal fibre bundle over a lens space (see Proposition 2.2) and over a surface of revolution
embedded inR3 (see Propositions 2.4 and 2.5).

In Section 3 we study some properties of generalized Kaluza-Klein metrics on a principal
fibre bundleP (M, G), including, as a particular case, the Kaluza-Klein (also called bundle like)
metrics. A generalized Kaluza-Klein metric onP (M,G) is very rich in isometries. In fact the
natural action ofG on P , which yieldsM as orbit space, is carried out by isometries of any
generalized Kaluza-Klein metric onP (M, G).

In Section 4 we state the main theorem of the paper, which, following Palais [16], gives an
example of reduction of variables for a variational problem. This theorem can be explained as
follows: The construction of Willmore-Chen submanifolds in conformal classes associated with
generalized Kaluza-Klein metrics onP (M,G) which do not break theG-symmetry, is reduced,
via the principle of symmetric criticality, to the problem of finding closed curves inM which are
critical points of a functional of the type

Fr(γ) =
∫

γ
(κ2)

r+1
2 ds,

whereκ denotes the curvature function of the closed curveγ for a certain metric onM andr is
the dimension ofG. We will refer to critical points of this functional asr-generalized elasticae.
Whenr = 1, one has the classical notion of elastica, or free elastica (see [15]). We give interest-
ing examples of generalized elasticae in Section 5. We first exhibit, for any natural numberm, a
rational one parameter family ofm-generalized closed elastic helices in any standard lens space
(see Corollary 5.2). Next we discuss elasticity for parallels in a surface of revolution embedded in
either the Euclidean 3-spaceE3 or Lorentz-Minkowskian 3-spaceL3 (in this case we take time-
like profile curves, so that parallels are always spacelike). In both cases we obtain the complete
classification of surfaces of revolution all of whose parallels arem-generalized elasticae. Besides
right circular cylinders (all of whose parallels are geodesics and are hencem-generalized elasti-
cae), there are Riemannian and Lorentzian trumpets of orderm (see Propositions 5.3 and 5.4, also
Figures 1 and 2). The classical casem = 1 was studied in [5].

Finally, in the last section, we obtain some applications relative to the existence ofG-invariant
Willmore-Chen submanifolds of Kaluza-Klein conformal structures (see Corollaries 6.1 to 6.7).
We wish to point out the statements of Corollaries 6.5 and 6.7. For example, Corollary 6.5 shows
that on any flatG-principal fibre bundle equipped with a Lorentzian Kaluza-Klein metric over
the Lorentzian trumpets, there exists a codimension one foliation with constant mean curvature
spacelike leaves, which are Willmore-Chen hypersurfaces.

2



Manuel Barros, Angel Ferrández, Pascual Lucas and Miguel Angel Meroño, A criterion to reduce variables into the Willmore-Chen variational problem and its
applications

2. Flat connections on a principal fibre bundle. Examples

Let M be a differentiable manifold and considerP (M, G) a principal fibre bundle with base
spaceM and structure groupG. Throughout this paper we will assume thatG is compact. Let
Γ denote a principal connection onP with connection 1-formω which takes values in the Lie
algebrag of G. The connection(Γ, ω) is said to be flat if and only if its curvature formΩ vanishes
identically. Then(Γ, ω) and the canonical flat connection locally agree, and this equality globally
holds if the manifold is assumed to be simply connected. Said otherwise, ifM is simply connected
and(Γ, ω) is flat, thenP = M ×G and(Γ, ω) coincides (up to isomorphisms) with the canonical
flat connection onM ×G.

The class of principal fibre bundles which admit a flat connection can be described as follows.
Let M̃ be a non-trivial regular covering space ofM and letp : M̃ → M andH be the covering
map and the deck transformation group, respectively. It is well known, [13, vol. I, p. 61], that
M̃(M, H) is a principal fibre bundle which admits a trivial flat connection, say(Γ0, ω0). We
choose a monomorphismφ from H into a Lie groupG and extend the transition functions{ψk` :
Uk ∩U` → H} of M̃(M, H), throughφ, to obtain{ψ̄k` = φ ◦ ψk` : Uk ∩U` → G}. These
functions can be used as transition functions to define a principal fibre bundleP (M, G) andφ can
be extended to a monomorphism̄φ from M̃ to P which maps(Γ0, ω0) into a flat connection onP ,
[13, vol. I, p. 79].

The converse is also true. Indeed, givenP (M, G) and a flat connection(Γ, ω) onP , then the
holonomy bundlePu0 through a pointu0 ∈ P is a regular covering space ofM , [13, vol. I, p. 93],
and it allows us to obtainP (M,G) as above.

Next we give some examples for later use.

Example 2.1 (Principal fibre bundles with flat connections over a lens space)
Let S2n−1 ⊂ Cn be the(2n− 1)-dimensional sphere of radius one, i.e.,

S2n−1 = {z = (z1, . . . , zn) ∈ Cn : |z|2 =
n∑

j=1

|zj |2 = 1}.

For any natural numberr, let ε = e2πi/r be a primitiver-th root of unity and{s1, . . . , sn} integers
which are relatively prime tor. We define an action ofZr = {1, ε, ε2, . . . , εr−1} onS2n−1 by

ε · (z1, . . . , zn) = (εs1z1, . . . , ε
snzn).

The orbit space is denoted byL(r, s1, . . . , sn) and it will be called alens space. The natural
projectionp : S2n−1 → L(r, s1, . . . , sn) gives the universal covering of this space. HenceZr

is not only the fundamental group ofL(r, s1, . . . , sn), but also the deck transformation group of
this covering space. The classical case appears whenn = 2 andL(r, 1, s) is usually denoted by
L(r, s). In particular,L(2, 1) is just the real projective spaceRP 3.

Let {ψk`} andω0 be the transition functions ofS3(L(r, s),Zr) and the connection 1-form of
its canonical flat principal connection, respectively. For any compact Lie groupG endowed with
a bi-invariant metricdσ2, we choose an arbitrary closed geodesic through the identity ofG, say
β(t) = exp(tA), whereA ∈ g. We define a monomorphismφβ : Zr → G by identifyingZr with
the group of primitiver-th roots of unity and then using that the exponential mapping defines an
isomorphism betweenS1 andβ. We may then extend{ψk`} via φβ to obtain a set ofG-valuated
functions which can be used to construct a principal fibre bundleP (L(r, s), G). Furthermore,φβ

3



Trans. Amer. Math. Soc. 352 (2000), 3015–3027

is extended to get a monomorphism̄φβ : S3 → P which mapsω0 into a flat connection onP .
Summing up, we have obtained the following result.

Proposition 2.2 Let G be a compact Lie group. Then there exists aG-principal fibre bundle
P (L(r, s), G) over the lens spaceL(r, s) which admits a principal flat connection with holonomy
subbundle isomorphic to the 3-sphere, that is,S3(L(r, s),Zr).

This proposition is also true ifG is not compact and the construction can also be generalized to
lens spaces of higher dimensions.

Example 2.3 (Principal fibre bundles with flat connections over a surface of revolution)
The fundamental groupπ1(M) of a surface of revolutionM embedded inR3 is free abelian
with one or two generators according to whether the profile curve ofM is not closed or closed,
respectively. We will discuss both cases separately.

2.1. Non-closed profile curve (π1(M) = Z)

Let M̃ be a regular covering space ofM . UnlessM̃ is the universal covering ofM , there
exists an integerk such that the deck transformation groupH of p : M̃ → M isZk. Hence, given
a compact Lie groupG, a similar argument to that used in Example 2.1 can be used to obtain
examples ofG-principal fibre bundles overM endowed with a principal flat connection whose
holonomy is isomorphic tõM .

Let us assume that̃M is the universal covering ofM , so it is diffeomorphic to the planeR2.
The groupH = Z certainly acts as structure group of the principal fibre bundleM̃(M,Z). Let
η be a real number such thatη/π 6∈ Q (the set of rational numbers), then the mapφη : Z → S1

given by φη(k) = eikη defines a monomorphism between(Z, +) andS1 ⊂ C regarded as a
multiplicative group. Since every compact Lie group admits closed geodesics, we can extendφη

to a monomorphism, also calledφη, fromZ to G. Then, by applying the method established at the
beginning of this section, we can obtain the following result.

Proposition 2.4 LetM be a non-compact surface of revolution embedded inR3 and letG be any
compact Lie group. Then the following assertions hold:

(1) For any natural numberk, there exists aG-principal fibre bundlePk(M, G) which admits
a principal flat connection whose holonomy subbundle is isomorphic toM̃(M,Zk).

(2) For any real numberη such thatη/π 6∈ Q, there exists aG-principal fibre bundlePη(M, G)
which admits a principal flat connection whose holonomy subbundle is isomorphic toR2(M,Z).

2.2. Closed profile curve (π1(M) = Z× Z)

Let M̃ be a regular covering space ofM , then the deck transformation groupH is (up to isomor-
phisms) eitherZk ⊗ Z`, orZ⊗ Z` orZ⊗ Z, where the last case appears whenM̃ is the universal
covering.
Proposition 2.5 Let M be a compact surface of revolution embedded inR3 and letG be any
compact Lie group with dimG > 1. For any pair of natural numbersk and ` there exists a
G-principal fibre bundlePk`(M, G) which admits a principal flat connection whose holonomy
subbundle is isomorphic to either
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(1) A torus if the holonomy subgroup is finite, that is,H = Zk ⊗ Z`,

(2) A right circular cylinder if the holonomy subgroup is free abelian with one generator, that
is, H = Z⊗ Z` (k = 0), or

(3) A plane if the holonomy subgroup is free abelian with two generators, that is,H = Z ⊗ Z
(k = ` = 0).

Proof. We writeH = H1⊗H2 to unify the three cases. Given any compact Lie groupG (dim G >
1) we are going to construct a monomorphismφ : H → G. To do this, letδ1 ≡ δ1(t) = exp(tA1),
A1 ∈ g, be a closed one parameter subgroup intoG. Then we mapH1 (via φ1) monomorphically
into δ1 as we did in the last subsection. Now choose another closed one parameter subgroup
δ2 ≡ δ2(s) = exp(sA2), A2 ∈ g, such thatA1 andA2 are linearly independent. The existence of
δ2 is guaranteed, because we can considerδ1 andδ2 as geodesics of a certain bi-invariant metric
on G. As before, we mapH2 (via φ2) monomorphically intoδ2. Finally, we moveδ1(t) through
the image ofφ2, that is, takeφ2(h2) · δ1(t) for all h2 ∈ H2. Thus we obtain a family of integral
curves, associated with a left invariant vector field onG, which can be parametrized overH2. It is
now clear that this allows us to define a monomorphismφ : H → G and the proof is finished.

3. The generalized Kaluza-Klein structures and the
Willmore-Chen variational problem

Let (Γ, ω) be a principal connection on a principal fibre bundleP (M,G), G being a compact
Lie group endowed with a bi-invariant metricdσ2. We denote byM andF+ the spaces of pseudo-
Riemannian metrics and smooth positive functions onM , respectively, and letM denote the
space of all pseudo-Riemannian metrics onP . Forε ∈ {−1, +1}, letΦε : M×F+ →M be the
mapping defined by

Φε(h, u) = π∗(h) + ε(u ◦ π)2ω∗(dσ2),

whereπ : P → M stands for the projection map of the principal fibre bundle.
A pseudo-Riemannian metric̄h ∈M is called ageneralized Kaluza-Klein metriconP (M, G,ω)

(or onP , provided that there is no confusion) if it belongs to the image of the map defined above,
that is,h̄ = Φε(h, u), for a certain metrich and some positive functionu.

By identifying each fibre ofP with the structure groupG (including metrics), a generalized
Kaluza-Klein metric onP can be viewed as a local warped product metric (see, for example, [11]
and [18]). In particular, those generalized Kaluza-Klein metrics obtained from constant functions
u in F+ are called Kaluza-Klein metrics or “bundle like” metrics.

It is obvious thatπ : (P, h̄) → (M,h) is a pseudo-Riemannian submersion whose leaves are
the fibres, and so they are diffeomorphic to the structure groupG. It is also evident that the natural
action ofG onP is carried out by isometries of(P, h̄).

For any pseudo-Riemannian metrich̃ on P , the Willmore-Chen variational problem can be
stated as follows. LetN be a compact smooth manifold of dimensionm + 1 and denote byN the
space of immersions ofN into P . Then consider the submanifoldNh̃ of N defined by

Nh̃ = {φ ∈ N | φ∗(h̃) is nondegenerate}.
The Willmore-Chen functionalW : Nh̃ → R is defined by

W(φ) =
∫

N
(α2 − τe)

m+1
2 dv,

5



Trans. Amer. Math. Soc. 352 (2000), 3015–3027

α andτe being the mean curvature and the extrinsic scalar curvature functions ofφ, respectively,
anddv stands for the volume element of the induced metricφ∗(h̃) onN . The critical points ofW
are called Willmore-Chen submanifolds and they only depend, as does Willmore-Chen variational
problem, on the conformal classC(h̃) of h̃.

4. The main theorem

In this section we deal with the Willmore-Chen variational problem associated with the con-
formal classC(h̄) of a generalized Kaluza-Klein metric̄h = Φε(h, u) on P (M, G, ω). Our main
theorem can be viewed as a variable reduction method for Willmore-Chen submanifolds. This
argument gives a strong relation between this variational problem and a variational problem for
closed curves in(M, u−2h).

For our purposes it is convenient to make the following conformal change in(P, h̄). Define
h̃ = (u ◦ π)−2h̄, so that

h̃ = π∗(u−2h) + ω∗(dσ2).

It is easy to show that the projection mapπ : (P, h̃) → (M,u−2h) has the following important
properties:

(1) π is a pseudo-Riemannian submersion and has totally geodesic fibres in(P, h̃).

(2) The natural action ofG onP is carried out by isometries of(P, h̃).

(3) The submanifoldsNh̄ andNh̃ are the same, and the Willmore-Chen submanifolds of(P, h̄)
and(P, h̃) agree.

(4) For anyφ ∈ N (N standing for eitherNh̄ orNh̃) anda ∈ G, we haveW(φ · a) = W(φ),
that is,W is G-invariant.

¿From now on we will denote byS the submanifold ofN given by

S = {φ ∈ N | φ · a = φ for all a ∈ G},

that is,S consists of those immersions which areG-invariant. We also write downΣ andΣG to
mean the set of critical points ofW (i.e., the Willmore-Chen submanifolds) andW|S , respectively.
Then we can apply the principle of symmetric criticality, [16], to obtainΣ∩S = ΣG. Therefore,
in order to obtain Willmore-Chen submanifolds in(P, C(h̄)) which do not break theG-symmetry
of the problem, we computeS, then the restriction ofW onS and then we proceed in due course.

Let γ be a closed curve immersed inM . ThenNγ = π−1(γ) is an (m + 1)-dimensional
submanifold inP which isG-invariant,m being the dimension ofG. The converse also holds.
In fact, for any(m + 1)-dimensional compact submanifoldN of P which is G-invariant, there
exists a closed curveγ immersed inM such thatN = Nγ . Furthermore, the submanifoldNγ

is embedded if and only ifγ has no self-intersections inM . Therefore, we have the following
identification

S = {Nγ = π−1(γ) : γ is a closed curve immersed intoM}.

We now compute the restriction ofW to S. Sinceπ : (P, h̃) → (M,u−2h) has totally geodesic
fibres, it is, in particular, a harmonic submersion. Then the following relationship between the
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mean curvature functionα of Nγ in (P, h̃) and the curvature functionκ of γ in (M,u−2h) holds
(see [1])

α2 =
1

(m + 1)2
(κ2 ◦ π).

As for the extrinsic scalar curvatureτe of Nγ , we define a mappingΨ : [0, L]×G → Nγ by

Ψ(s, a) = γ̄(s) · a,

L > 0 being the length ofγ in (M,u−2h), whereγ̄ denotes a horizontal lift ofγ to (P, h̃). This
certainly defines an isometry and allows us to define a global frame of unit vector fields onNγ .

First, we choose{V1, . . . , Vm} to be the fundamental vector fields inP associated to a frame
of unit of left-invariant vector fields in(G, dσ2). They span the vertical distribution ofP and give
an orthonormal frame on the fibre through every point ofP . Now letV0 be the horizontal lift of
γ′(s). It is clear thatV0 is tangent to the horizontal lifts ofγ. Hence{V0, V1, . . . , Vm} provides a
global frame of unit vector fields onNγ .

Let K andK̃ be the sectional curvature functions ofNγ and(P, h̃), respectively, restricted to
the Grassmannian of 2-planes tangent toNγ . Then we have

τe =
1

m(m + 1)

m∑

i,j=0

(K(Vi, Vj)− K̃(Vi, Vj)).

It is easy to see thatK(V0, Vj) = 0, j = 1, . . . , m, because of the pseudo-Riemannian product
structure ofNγ . Furthermore, by using the flatness of(Γ, ω), it is not difficult to show thatK̃
vanishes over mixed (also called ‘vertizontal’, [19]) sections, that is,K̃(V0, Vj) = 0, j = 1, . . . , m
(see also [12]). Hence we have

τe =
1

m(m + 1)

m∑

i,j=1

(K(Vi, Vj)− K̃(Vi, Vj)).

Now it should be noticed that each fibre is totally geodesic not only in(P, h̃) but also inNγ . Thus
we may combine both Gauss equations to deduce thatτe vanishes identically. Then we have

W(Nγ) =
∫

γ×G
(α2)

m+1
2 ds dA,

dA being the volume element of(G, dσ2), so that

W(Nγ) =
vol(G, dσ2)
(m + 1)m+1

∫

γ
(κ2)

m+1
2 ds.

The above computations suggests that we study the functional

Fr(γ) =
∫

γ
(κ2)

r+1
2 ds

acting on closed curves in a Riemannian manifold. The variational problem associated withFr

has been considered in [4]. In particular, the Euler-Lagrange equations characterizing the critical
points ofFr, calledr-generalized elasticae, were computed there. It should be noticed that 1-
generalized elasticae are nothing but the classical free elastica curves (see, for instance, [15]).
Summing up we have shown the following result.
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Theorem 4.1 LetG be anm-dimensional compact Lie group endowed with a bi-invariant metric.
Let (Γ, ω) be a flat principal connection on a principal fibre bundleP (M, G). Let h̄ = Φε(h, u)
be a generalized Kaluza-Klein metric onP (M, G, ω) and C(h̄) its conformal class. Given an
immersed closed curveγ in M , thenNγ is a Willmore-Chen submanifold in(P, C(h̄)) if and only
if γ is anm-generalized elastica in(M,u−2h).

5. Some examples of generalized elasticae

The Euler-Lagrange equations associated with the functionalFm were computed in [4]. When
the ambient space is a real space form, they imply thatr-generalized elasticae must be contained
in a totally geodesic submanifold with dimension less than or equal to 3. To obtain examples
of r-generalized elasticae in the standard 3-sphere, the authors used the nice geometry of closed
helices. In particular, we obtained the following.

Proposition 5.1 ([4]) For any natural numberm, there exists a one parameter family{γm,q},
q being a non-zero rational number, of closed helices in the standard 3-sphere which arem-
generalized elasticae.

Let L(r, s) be a lens space and denote byp : S3 → L(r, s) the natural covering mapping. IfS3 is
endowed with its canonical metric, then we can define a metric onL(r, s) such thatp becomes a
Riemannian covering. In this sense we can talk about standard or canonical lens spaces. Now the
above mentioned family ofm-generalized elasticae inS3 can be projected ontoL(r, s) to obtain
the following.

Corollary 5.2 For any natural numberm, there exists a rational one parameter family{γ̄m,q},
q ∈ Q− {0}, of m-generalized closed elastic helices in any standard lens space.

Next we consider a surface of revolution and discuss when its parallels are generalized elasti-
cae. Let us considerR3 endowed with the metricgε = dx2 +dy2 +εdz2, ε = ±1, where{x, y, z}
stand for the usual rectangular coordinates. Notice that(R3, gε) is just the Euclidean 3-spaceE3

or the Lorentzian 3-spaceL3, according to whetherε = +1 or ε = −1 holds, respectively.
In thexz-plane we take an arclength parametrized curveβ(s) = (x(s), 0, z(s)), a < s < b.

Let us assumex(s) > 0 and〈β′(s), β′(s)〉 = ε. Let Sβ be the surface of revolution obtained by
rotating the profile curveβ around thez-axis, which is Riemannian or Lorentzian according to
whetherε = +1 or ε = −1 holds, respectively. Each point ofβ describes a parallelγs(θ), θ being
the rotation angle, which is always spacelike. It is not difficult to see that the curvature function
κs of γs into Sβ and the Gaussian curvatureK of Sβ alongγs satisfy

(κs(θ))2 =
(x′(s))2

x(s)2
and K(s, θ) = −ε

x′′(s)
x(s)

,

respectively.
On the other hand, we use the Euler-Lagrange equations associated withFm, [4], to deduce

that a parallelγs of Sβ is anm-generalized elastica if and only if

κ2m
s (εmκ2

s + (m + 1)K) = 0.

This equation implies that each geodesic parallel is always anm-generalized elastica, for any
natural numberm. This is also true for any closed geodesic. In this sense, these solutions will
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RT1 LT1

Figure 1: Trumpets of order 1

be called trivial critical points or trivialm-generalized elastic curves. Therefore the non-trivial
m-generalized elastic parallels are characterized by the following ordinary differential equation

(m + 1)x(s)x′′(s)−m(x′(s))2 = 0.

By using standard arguments, we can integrate that equation to obtain

x(s) = Asm+1, A being a certain constant,

where we have chosen the arclength parametrization to avoid the inclusion of unnecessary con-
stants. Next we use〈β′(s), β′(s)〉 = ε to compute thez-coordinate of the profile curve,

z(s) =
∫ s

0

√
1− ε(m + 1)2A2t2mdt.

The surface of revolution whose profile curve is given by (1) and (2) will be called a Rie-
mannian or a Lorentzian ‘trumpet’ of orderm according to whetherε = +1 or ε = −1 holds,
respectively. We will denote them byRTm andLTm, respectively (see Figures 1 and 2). Then we
have

Proposition 5.3 (Riemannian case)A surface of revolution into the Euclidean 3-spaceE3 has
the property that all its parallels arem-generalized elastica if and only if it is either
(1) A right circular cylinder, or
(2) A Riemannian trumpet of orderm.

Proposition 5.4 (Lorentzian case)A surface of revolution into the Lorentzian 3-spaceL3 has the
property that all its parallels arem-generalized elastica if and only if it is either
(1) A right circular cylinder, or
(2) A Lorentzian trumpet of orderm.
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RT2 LT2

Figure 2: Trumpets of order 2

In view of the above results, we may study how the non-trivialm-generalized elastic parallels
are distributed on the surface. A general analysis presents major difficulties, as one can see from
[5], where a detailed study of this question has been made form = 1. For our purposes, it
is enough to know that we can find surfaces of revolution in bothE3 andL3 with qualitatively
different distributions of theirm-generalized elastic parallels. As an example, let us consider
the circle of radiusr centered at the point(a, 0, 0) ∈ E3 (a > r). We rotate it around thez-
axis to obtain a torus of revolution. The region of hyperbolic points on this torus is given by
β(t) = (a −√r2 − t2, t), wheret ∈ (−r, r). It is not difficult to see that there exist exactly two
non geodesic parallels which arem-generalized elastica, for any natural numberm. Furthermore,
these two parallels are symmetric with respect to thexy-plane.

6. Some applications

In this section we will obtain non trivial examples of Willmore-Chen submanifolds for Kaluza-
Klein conformal structures on fibre bundles endowed with flat connections.

6.1. Flat principal fibre bundles on lens spaces

Let g be the standard metric on the 3-sphereS3 of radius 1 and project it to a lens spaceL(r, s)
to obtain its standard metrich. Thusp : (S3, g) → (L(r, s), h) is a Riemannian covering map.
The following result can be proved by combining Proposition 2.2, Theorem 4.1 and Corollary 5.2.

Corollary 6.1 Let G be anm-dimensional compact Lie group. Then the following assertions
hold:
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(1) There exists aG-principal fibre bundleP (L(r, s), G) over the lens spaceL(r, s) which
admits a principal flat connection(Γ, ω) with holonomy subbundleS3(L(r, s),Zr).

(2) Let dσ2 be a bi-invariant metric onG and leth̄ε be the Kaluza-Klein metric onP defined
by

h̄ε = π∗(h) + εω∗(dσ2),

π being the standard projection associated withP . Then for any natural numberm there
exists a rational one parameter family{Nmq}, q ∈ Q − {0}, of (m + 1)-dimensional
submanifolds intoP satisfying the following properties:

(2.1) They are diffeomorphic toS1 ×G,

(2.2) They have constant mean curvature in(P, h̄ε),
(2.3) They are Willmore-Chen submanifolds in(P, C(h̄ε)).

Let us mention one interesting consequence of this corollary.

Corollary 6.2 LetP be anyS1-principal fibre bundle overL(r, s) endowed with a flat connection
(Γ, ω). Consider the metric̄hε = π∗(h) + εω∗(dt2). Then there exists a rational one parameter
family of Willmore tori in(P, C(h̄)) which have constant mean curvature in(P, h̄ε).

Remark 6.3 Our method of proof allows us to construct Willmore tori in theS1-principal fibre
bundle(P, h̄) defined above with non constant mean curvature. This construction works as fol-
lows. LetS2 be a unit 2-sphere totally geodesic in(S3, g) and considerS = p(S2), which is a
totally geodesic surface in the lens spaceL(r, s). In [15] Langer and Singer have shown that, up to
rigid motions inS2, the family of closed free elasticae consists of a geodesicγ0, say the equator,
and a two parameter family{γa,b | 0 < a < b, a, b ∈ Z}, whereγa,b means that the curve closes
up aftera periods andb trips around the equatorγ0. Therefore the surfaceS has plenty of free
elasticae, which can be obtained by projecting viap the above family of free elasticae inS2. Then
Na,b = π−1(p(γa,b)) is a Willmore torus with non constant mean curvature in(P, h̄).

6.2. Flat principal fibre bundles over surfaces of revolution

Given anm-dimensional compact Lie groupG, Proposition 2.4 guarantees the existence of two
families ofG-principal fibre bundles over a surface of revolutionS admitting a flat connection.
When S is chosen to be a trumpet (Riemannian or Lorentzian) of orderm, endowed with its
standard metric, then the associated Kaluza-Klein structure has nice properties which are detailed
in the next statements.

Corollary 6.4 LetG be anym-dimensional compact Lie group endowed with a bi-invariant met-
ric dσ2 and considerP (RTm, G) a G-principal fibre bundle which admits a principal flat connec-
tion (Γ, ω). Let h̄ be the Kaluza-Klein metric given bȳh = π∗(h) + ω∗(dσ2), h andπ standing
for the standard metric onRTm and the projection associated withP , respectively. Then there
exists a codimension one foliation ofP whose leaves have constant mean curvature in(P, h̄).
Furthermore, they are Willmore-Chen hypersurfaces into(P, C(h̄)).

Proof. Pick a pointx in P and consider the parallelγx in RTm throughπ(x). It follows easily that
{Nx = π−1(γx)}x∈P defines a codimension one foliation onP . Sinceπ : (P, h̄) → (RTm, h) is
a Riemannian submersion with totally geodesic fibres, (1) implies that each leafNx has constant
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mean curvature in(P, h̄). Furthermore, Theorem 4.1 and Proposition 5.3 imply that the leaves are
Willmore-Chen hypersurfaces into(P, C(h̄)).

To understand the Lorentzian case better, we write downhL to denote the standard Lorentzian
metric onLTm. Let h̄L be the associated Kaluza-Klein metric onP , that is, h̄L = π∗(hL) +
ω∗(dσ2), which is a Lorentzian metric.

Corollary 6.5 Let P (LTm, G) be aG-principal fibre bundle over a Lorentzian trumpet of order
m which admits a principal flat connection. Then there exists a codimension one foliation ofP
whose leaves are constant mean curvature spacelike hypersurfaces in(P, h̄L). Moreover, these
leaves are Willmore-Chen hypersurfaces in(P, C(h̄L)).

Remark 6.6 The same method still works when we consider right circular cylinders (Rieman-
nian or Lorentzian) instead of trumpets. In both cases parallels are spacelike geodesics and so
(P, h̄) admits a codimension one foliation whose leaves are spacelike and minimal. Furthermore
they are non-trivial Willmore-Chen hypersurfaces, because minimality implies the Willmore-Chen
condition only when the ambient space is of constant curvature.

To finish this section we are going to give an application which can be considered representa-
tive of the kind of consequences that we can obtain in the compact case. Bearing in mind Proposi-
tion 2.5, let us assumeS is a torus, so that it contains a pair ofm-generalized elastic parallels for
any natural numberm. Then the following result is clear.

Corollary 6.7 There exists a pair of Willmore-Chen hypersurfaces of constant mean curvature in
the Kaluza-Klein conformal structure on any principal fibre bundle, endowed with a flat connec-
tion, over a torus of revolution.
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