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Abstract

In this note we show tha-scrolls over null curves in a 3-dimensional Lorentzian space form
M3 (c) are characterized as the only ruled surfaces with null rulings whose Gausstimaps
satisfy the conditiodAG = AG, A : X(M) — X(M) being a parallel endomorphism of
x(M).

1. Introduction

In [4], C. Baikoussis and D.E. Blair studied ruled surfaceRinsuch that their Gauss maps
satisfyAG = AG, whereA denotes the Laplace operator of the surface with respect to the induced
metric andA stands for a fixed endomorphism of the ambient sfRicel hey showed that the only
ones are planes and circular cylinders. Recently, S. M. Choi in [5] investigated the Lorentz version
of the above result and she essentially obtained the same result.

It is worth pointing out that all surfaces obtained above have diagonalizable shape operator.
However, it is possible that a self-adjoint linear operator on a Lorentzian plane is not diagonaliz-
able (see, for example, [1], [2] and [7], where that chief difference with regard to the Riemannian
case has been greatly exploited). To illustrate the current situation(debe a null curve in a
3-dimensional Lorentzian space forid}(c) and B(s) a null vector field alongy(s). Under a
certain hypothesis (see Example 1 for more details) the Wap(s,t) — ~(s) + tB(s) defines
a “ruled surface” inM;(c) whose shape operator has a minimal polynomial of degree two with
a double real eigenvalue, so that it is not diagonalizable. That surface is caltestell and
was introduced by L.K. Graves (see [8] and also [1]). The main purpose of [3] was to complete
Choi’s classification of ruled surfaceslit whose Gauss maps satisfy the conditiv@ = AG.
Actually, it was shown thaB-scrolls over null curves ifi.? are the only ruled surfaces I* with
null rulings satisfying the above condition.

In this note we extend the main result of [3] and show tRascrolls over null curves in a
3-dimensional Lorentzian space forid;(c) are characterized as the only ruled surfaces with
null rulings whose Gauss magé satisfy the conditiod\G = AG, A : X(M) — X(M) being
a parallel endomorphism 6¢(M). The important point to note here is the technique we have
used. The advantage of using Jacobi vector fields is that the characterization of such surfaces has
been obtained without viewind/; (c) as a hypersurface into the corresponding pseudo-Euclidean
space. Hence our proof provides a natural and intrinsic characterization of those surfaces.
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2. Setup

Let M;(c) be a 3-dimensional Lorentzian space form of constant curvatur@s usual,
M3 (c) is either the pseudo-Euclidean spatE or the pseudo-sphef (c) C R, or the pseudo-
hyperbolic spacél;(c) ¢ R, according tac = 0, ¢ > 0 or ¢ < 0, respectively. For the sake
of simplicity, and provided that we need explicitly mention neither curvaturer index, we will
simply write down)/ instead ofAM3 (c).

Leta : I C R — M be an immersed curve and IBtc X(«) be a vector field along in M.
Let us consider the ruled surfagé in M, generated by and B, which is naturally parametrized

by

X:Ix(—-a,a) — M,
(5,t) — X(s,t) = expqys) (tB(s)).

For each fixed, the curvey, defined byt — ~,(t) = X(s,t) is the geodesic of/ uniquely
determined by the initial conditiong (0) = «(s) and+.(0) = B(s). Let{Xs, X} be the frame
defined by

0

Xs(*sat) - dX(s,t) ((38

( t)) = (dexpys))tB(s) (@' (s) + tB'(s))

and

0
Xt(svt) = dX(s,t) <<9t

) = (dexpa(s))tB(s) (B(S)),

(s,t)

whereB’(s) stands for the covariant derivative Bf s) alonga. Observe that, dt= 0, X(s,0) =
o/(s) and Xy(s,0) = B(s), so thatX (s, t) will define a regular pseudo-Riemannian surface into
M whenever/(s) and B(s) are linearly independent and the plaie= span{c’(s), B(s)} is
non degenerate if/. According to the causal character«dfand B, there are four possibilities:

(1) o/ and B are non-null and linearly independent.

(2) & is null andB is non-null with(«/, B) # 0.

(3) @’ is non-null andB is null with (¢/, B) # 0.

(4) o/ and B are null with{(a/, B) # 0.

It is easy to see that, with an appropiate change of the eyreases (2) and (3) reduce to (1)
and (4), respectively (see [3] for details). We will pay attention to cases (3) and (4) which we aim
to characterize in terms of the Laplacian of their Gauss maps. Therefoid,beta ruled surface
in M whose directrixa(s) and rulingsB(s) both are null, and assume without loss of generality
that(o/, B)(s) = —1.

To compute the metric induced dd, we apply the Gauss lemma to get that

(Xs, Xi)(s,t) = (¢/ +tB',B)(s) = -1,
(X, Xi)(s,t) (B, B)(s) =0.

Note that, for each fixed, the vector field/; defined by.J,(t)
along~; with initial conditions.J;(0) = «&/(s) andJ.(0) = B'(s
curvature, we can write

= X;(s,t) is a Jacobi vector field
). As M is a space of constant

Js(t) = Ps(t) + tQS(t)a

2
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P,(t) andQs(t) being parallel translation vector fields along(t) of vectorsa/(s) and B'(s),
respectively. Then we have

(Xo, Xo)(s,8) = (Po, Po)(t) + 26(Ps, Qu) (1) + 1(Qs, Q) (1)
= (a/,a')(s) +2t(c/, B')(s) + t*(B', B')(s).

Hence the matrixXg;;) of the induced metric oi/ reads as follows:

2t(o/, B')(s) + t*(B', B')(s) -1
1 0o/

Assume now that we have chosen an orientationforThen a volume elementis determined on
M by the conditionu(X, Y, Z) = —1, for any positively oriented orthonormal franféX, Y, Z}.
Therefore, for any coupl& andY of tangent vectors td/, the vector producX A Y is the
unigue tangent vector t&/ such thatt X A Y, Z) = w(X,Y, Z) for any tangent vectoZ. It is
well known that the vector product of parallel vector fields also is a parallel vector field, so that
the Gauss maf¥ can be given in terms oX; A X getting

G(s,t) = Pu(t) AXy(s,t) 4+ tQs(t) A Xy(s,t)
= Dy(t) +tQs(t),

whereP,(t) andQ,(t) are parallel translation vector fields alomgt) of (¢/ A B)(s) and(B’ A
B)(s), respectively. Bearing in mind tha A Y, X AY) = (X,Y)? — (X, X)(Y,Y), we see
that(G, G) = 1.

If we put C(s) = (o’ A B)(s), then{c’, B,C} is a pseudo-orthonormal frame field bf
alonga. In this frame, we easily see th8 A B = —3B, (3 being the function defined ahby
B(s) = (2/, B' A B)(s). HenceQ,(t) is the parallel translation vector field ef3(s) B(s), so that

Qs(t) = —B(s)X;(s,t). Thus
G(S>t) = ps(t) - tﬁ(S)Xt(S,t).
We are going to compute the shape operatofo do that, a simple computation yields

DG DP, DX,
Sl = () = B)Xals 1) — t(5) 2 (s, )

= —B(s)X(s, 1),

where D /0t and D/dt stand for the covariant derivative il along M and~,, respectively.
Now observe that¥,(t) = G(s,t) is a Jacobi vector field along,(¢) with initial conditions
W(0) = C(s) andW/(0) = —(3(s)B(s), so that

Ws(t) = (deXpa(s))tB(s) (C(S) - t/B(S)B(S))

Then a straightforward computation leads to

D () Xa(s,1) — ({0 A BY(s) + 18 (5)) Xals, 1),
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where we have used théat (s) = —3(s)d/(s) — (¢/,a” A B)(s). So the shape operator writes

down as
. ( 5(s) 0 ) |
ta/(s) + (o, A B)(s) B(s)

On the other hand, the Laplacian of the Gauss map can be computed as follows:

DG
ot?

__;;_7;_ ! 1/ //@_ ! 9 PR
AG= =5 ~gigs ~ A B)+ B B} 57 — {260, B) + (B, BY)

A straightforward computation yields

D DG

5o o (1) = —F(5)Xi(s,1) = B5)Qs(),
D DG N D DG .

o os 00 = g a0

D DG

S50 = 0

Hence the Laplacian dF is given by

AG(s,t) = 2{B'(s) + B(s)((e/, B')(s) + t{B', B')(s))} Xs(s, 1) + 2(s5)Qs(1).

3. Main result

We start this section with a typical example.
Example 1. Let y(s) be a null curve inM with an associated Cartan frardel, B, C}, i.e.,
{4, B, C} is a pseudo-orthonormal frame of vector fields alofg)),

(A, A) = (B,B) =0, (A,B) = —1,
(A,C)y=(B,C)=0, (c,C) =1,
such that
Y(s) = Als),
C(s) = —hA(s)—k(s)B(s),

whereh is a nonzero constant akds) # 0 for all s. Then the mapX : (s,t) — v(s) + tB(s)
parametrizes a Lorentzian surface idtbwhich is called aB-scroll (see [1] and [6]).
It is not difficult to see that the Gauss m@&jis given by

G(s,t) = —htB(s) + C(s),

. X 0X .
and the shape operator, in the usual fra{r%s—, %t} writes down as
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Thus theB-scroll has a non-diagonalizable shape operator with the minimal polynétajal) =
(u— h)2. It has constant mean and Gaussian curvatilres h andK = ¢+ a2, respectively, and
satisfiesAG = 2KG.

Then it seems natural to pose the following questisr B-scroll the only ruled surface in/
with null rulings satisfying the equatioAG = AG? The answer is affirmative and can be stated
as follows.

Theorem 3.1 B-scrolls over null curves are the only ruled surfaces\ihwith null rulings satis-
fying the equatiolAG = AG, A being a parallel endomorphism o&(M).

Proof. Let M be a ruled surface i/ with null rulings satisfyingAG = AG. Without loss of
generality, we can assume that the directrix curye) is null and according to [1] we only have
to prove thaf3 is constant. Consider the dét= {s € I : 5(s)3'(s) # 0} and study the equation
AG = AG on the seU x (—a,a). Differentiating with respect towe have

28(s)(B’, B')(s) X(s,t) = —B(s)AX(s,1),

so we get thah = —2(B’, B’)(s) is an eigenvalue oh. It is not difficult to show thatB’(s) =
—{a/,B")(s)B(s) — B8(s)C(s) andC’(s) = —pB(s)d/(s) — (/,a” A B)(s)B(s) and so\ =
—26(s)?. Att = 0, a long and messy computation yieltigA)(s,0) = —(Ad/, B)(s) —
(AB,d')(s) + (AC,C)(s) = 3X and hence the gradient afis VA = (1/3)tr(VA) = 0. There-
fore A and(s) both are constant and the proof is complete.
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