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Abstract

In this paper we find out explicit solutions of the Betchov-Da Rios soliton equation in a principal circle
bundler : P — M on a surface\/. If P is endowed with a generalized Kaluza-Klein megig we
show that the complete lift of any curveis a solution of the Betchov-Da Rios equation if and only if
the functionu restricted toy is just the curvature of. Some interesting applications are given.

1. Introduction

The first model to get the natural unification of gauge fields and gravitation goes back to the
classical model of Kaluza (1921) and Klein (1926). This is a 5-dimensional model to unificate
gravitiy and electromagnetism. In this note the space fithis 2-dimensional with gravity deter-
mined by a pseudo-Riemannian metgicThen, we consider &(1) = S! principal fibre bundle
P on M, endowed with a gauge potential (of electromagnetism)The metrics that we con-
sider onP are conformal to the so called Kaluza-Klein metrics, where the conformal factor is
constant along the fibres. In some sense, these metrics are locally warped products with warping
function defined by the conformal factor. The aim of this note is to obtain geometric solutions
of the Betchov-Da Rios equation, also called localized induction equation (LIE), in these models.
Some applications and examples are obtained. In particular, one of them relates the solution with
the theory of elasticae. We also obtain an irrational one-parameter family of gauge potentials (all
of them with the same holonomy) producing models which are foliated by solutions of LIE. The
algorithms exhibited here can be applied to construct solutions of LIE in other models.

2. Setup

Letr : P — M be a principal bundle with structure gro§p on a surface\/ and letw be
the connection 1-form of a principal connection Bn For any metricy on M and any positive
smooth function: on M, we define

Gu = 7(g) + e3(uom)2w* (dt?),

wheree; = =+1 stands for the causal character of the fibres. Then(P,g,) — (M,g) is
a pseudo-Riemannian submersion &idacts by isometries ofP, g,,). Let~ be a curve inM
and lety be any horizontal lift ofy. Then# is arclength parametrized just takingarclength
parametrized. The tutE, = 7~1(v) is the complete lift ofy and can be parametrized by

W(s,t) = eq(s).

=
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In order to compute thg,-induced metric orT’, we have

‘115 — eii&,—yl(s)7
U, = ie"y(s) = V(s 1),

V being the tangent vector field to the fibres. Then the induced metric is given by
( <\1187\IIS> <\I/S7\I/t> > — < 81 0 )
<\I’ta\1js> <\Ijt7\1’t> 0 53(Uo7‘l’)2 ’
where we have used thitis the fundamental vector fieldt, so thatv(V') = 1. For the sake of
simplicity we will write u by «.
The Betchov-Da Rios equation in 3-dimensional hydrodynamics,
o, 5 oV _ v
9s " Tes0s ot
is a soliton equation for space curvés$s,t), D being the Levi-Civita connection of the space.
This can be rewritten a§; = B (the filament equation), whereand B stand for the curvature
and the unit binormal o¥, respectively. The evolution af governed by this equation of motion

can be viewed as an idealization of the motion of a thin vortex cylinder (see [4] and [5] for details).
The first interesting result states as follows.

Lemma 2.1 Lety be a curve in(M, g). Thent—!(v) = ¥(s,t) is a solution of the Betchov-Da
Rios equation in{ P, g,) if and only ifu?(y(s)) = x2(s).

Proof. It is easy to see that B 4
Dy, U, = g9 R(s)N(s),

€9 standing for the causal character of the unit normal. Then we have

U, A Dy, U, = eai(s)e’ (¥ (s) A N(s)) = e2i(s)e™ B(s),

which finishes the proof.

3. Main results and applications

The first applications arise by choosing cylindrical coordinaté&’inWe consider the follow-
ing subsets

P = {(w,2)=(z,y,2) €ER3:2? +y* #0} = C* x R,
H = {(z,y,2) €R*:y=0 and z>0}.

ThenP = H x S'. Letw : P — H be the canonical projection, which can be viewed as a
S'-bundle with the action ‘ '
e(w, z) = (e"w, 2).

We have on this bundle an obvious connection associated to the horizontal distribution defined by
H.
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Figure 3: Elasticae in the Euclidean plaRé

3.1. The Euclidean case

Let g be the Euclidean metric o and letu : H — R be the positive function defined by
u(zx,0,z) = x, x > 0, which measures the distance to thaxis. Thery,, is the Euclidean metric
on P providedes = +1.

Our main theorem states as follows.

Theorem 3.1 Lety be a curve in(H, g). The tuber—!(y) = ¥(s,t) is a congruence solution of
the Betchov-Da Rios soliton equation(iR, g,,) if and only ify is an elastica i H, g).

Proof. Letv(s) = (z(s),0, 2(s)), z(s) > 0, be an arclength parametrized curve H, g) . From
Lemma 2.1 we see thdl(s,t) is a solution of the Betchov-Da Rios equation(i, g,,) if and
only if u(v(s)) = k(s) = z(s), wherex stands for the curvature function®f On the other hand,
k(s) = (=22 + 2'2")(s), that jointly with 22 + "2 = 1 yield

2 = —z2, (1)

2= xa. (2
A first integral of (2) gives

Z=a+ %1‘2, 3)

for a certain constant. We now combine the equations (1) and (3) to obtain

1 .
x/'+§x3+ax:0.
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This equation shows that(s) = x(s) is a solution of the Euler-Lagrange equation of the elastica
in the Euclidean plane (see [6]) with Lagrange multipies —2a. That means that is a critical
point of the functionayﬁy(f@2 — 2a)ds acting on curves which satisfy certain first order boundary
data inR2. The converse is a result due to H. Hasimoto [3] (see also [4]).

In Figure 3 we sketch some examples of elastiga@ R? giving congruence solutioris, of
the Betchov-Da Rios equation R?.
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Figure 4: Spacelike elasticae in the Lorentzian plahe

3.2. The Lorentzian case

Let g = dz? — dz2* be a Lorentz metric o and choose. € C°(H) as above. Thep,
gives a Lorentzian metric off provideds; = +1. Given any curvey in (H, g) we observe that
7~ 1(v) is just the surface of revolution obtained by rotatinground thez-axis. Ases = +1,
for the sake of simplicity we will writee = ¢, to denote the causal characteroflf ¥(s,t) =
(z(s)cost,z(s)sint, z(s)) is a solution of the Betchov-Da Rios equation, the curvature function
k(s) = (22 — 2/2")(s) of v(s) must be equal ta:(s). From here and the unit speed condition
(z')? — (2')? = £ on~ we get the following system of differential equations
2 = exd, 5)

2 = exd. (6)

In order to find spacelike solutions of the Betchov-Da Rios equation we must takie
Then a first integral of (6) gives

1
7 =a+ 5.%'2, (7)
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a being a constant. By combining equations (5) and (7) we have

" — %w:s —ax = 0.

This equation proves thatis an elastica if.? with Lagrange multipliet\ = 2a (see [2]). Said
otherwise,y is a critical point of the functionafv(m2 + 2a)ds acting on curves which satisfy
certain first order boundary datalis¥ (see [2] for details).

In Figure 4 we exhibit some examples of spacelike elasticael.? which provide spacelike
congruence solutioris, of the Betchov-Da Rios equation Ir?.

Furthermore, we can also find interesting examples of Lorentzian congruence solutions of the
Betchov-Da Rios equation ib® shaped on timelike elasticaeli?. These are obtained by solving
the system

1
noo_ - 2
x 230 ax,
1
o 2
zZ = 293 + a,

whereq is again a constant related to the constrained length of curves on which the elastic energy
functional is defined. In Figures 5 and 6 we sketch some of these curves and their corresponding
congruence solutions.

Figure 5: Timelike elasticae in the Lorentzian pldrre

3.3. Non standard 3-spheres

Letr : S* — S? be the usual Hopf fibration. Lgtbe the standard metric &1 of constant cur-
vature 1 and ley be the standard one 61 of constant curvature 4. Thus: (S?,g) — (S?, g) be-

5
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Figure 6: Revolution timelike surface I with a = —1.

comes a totally geodesic pseudo-Riemannian submersion whose fibres are isor§étrBit@n

any smooth functiom : S? — R*, conside, = 7*(g)+e(uon)?w* (dt?), wherew stands for the
natural connection associated to the horizortaldrthogonal to the fibres) distribution. It is obvi-

ous that(S3, g,,) has Lorentzian causal character provided —1. Then{r : (S3,g,) — (S%,g)}

defines a class of pseudo-Riemannian submersions with the same horizontal distribution. Further-
more, such a submersion is totally geodesic if and onlyig a constant function. If this is the
caseS?, g,) has constant scalar curvature.

Lety be an immersed curve i{$?, g) and assume that has positive curvature function. By
Lemma 2.1 we takes € C°(S?) such thatu(y(s)) = x(s). Then the tubell, = 7~1(v),
naturally parametrized by fibres and horizontal lifts, provides a solution of the Betchov-Da Rios
soliton equation infS?, g,,).

To exhibit examples of this kind of solutions we propose the following algorithm.

First step(see [7]). Conside$? as the set of unit quaterniofg € H : ¢-g = 1} andS? as the
2-sphere of radius 1/2 in the subspapen{1,i,j} C H. Letq — ¢ be the skew-automorphism
of H that fixes 1,/ andk, but sends to —i. Thenr : S* — S? is given byr(q) = 3G - ¢.

Second stepGiven any poinp = (A, 0, B, C) in S?, the fibrer—1(p) is given by

ol =

1
7r1(p)—{(Dcosa,Dsina,D(Bcosa—Csina), (Bcosa—i—C'sina) :ae]R},

whereD =

Third step Let~(s) = (A(s),0, B(s),C(s)) be an arc length parametrized curveSih A
straightforward but long computation shows that any horizonta It  to (S?, g,,) is given by

1+2A
5 -

(s) = (M(s) cosa, M(s)sina, N(s)cosa — P(s)sina, P(s)cosa+ N(s)sina),

6
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whereM (s) = /1 + 2A(s)/v2, N(s) = V2B(s)/\/1 + 2A(s), P(s) = v2C(s)/+/1 + 2A(s),

and C()B/(s) — B(s)C'(s)
a(s):2/ 1+ 2A(s) ds.

Fourth step The natural parametrization of the Hopf tube= 7~'(v) is just given by

U(s,t) = e"(s) = costy(s) + i sinty(s),

where?y(s) stands for a fixed horizontal lift of. Notice that in the last formula the quaternions
are identified withC? so asi = v/—1.

An application of the algorithm can be seen in the following example.

Example. A rectangular torus as a Hopf surface

A rectangular torus itiS*, ) is associated with a small circles) = (a,0,7 cosZ,r sin 2)
of radiusr in S, a being a suitable constant. We now apply the first three steps to dhtéin =
V2(1+2a)/2, N(s) = (v/2r/v/1+ 2a)coss/r, P(s) = (v/2r/v/1+ 2a)sins/r, anda(s) =
—(2r/1+ 2a)s.

The fourth step yields to the parametrization of the rectangular torus considered as a Hopf tube
given by

1+ 2a 2r 1+ 2a 2r
U(s,t) = (4 t— in(t —
S < 5 sl — e T st )

14 2a 9 1+2a>
S .

in(¢
2r 5); 1+2a7‘sm(—|— 2r

rcos(t +

1+ 2a

As a consequence of our method the parametrizalion ¢) gives a congruence solution of

the Betchov-Da Rios soliton equation(i&?*, g,,) for any positive smooth function in S?, which
is the constant/1 — 472 /r along~y. Notice thatr < 1/2 becaus&? is of radius 1/2.

3.4. Metrics which admit a foliation with leaves being solutions of LIE

In this section we are going to show that any principabundle over a surface of revolution
(in R? or L?) admits a pseudo-Riemannian metric which is foliated and whose leaves are solutions
of LIE. To do that, it is enough to find vector fields, sly in any surface of revolution having
neither zeroes nor inflexion points. We sketch the argument for a surface of revautioiR?
parametrized byX (s, u) = (f(s)cosu, f(s)sinu, g(s)) (a similar argument holds ih3). The
profile curve is assumed to be arc-length parametrized, softhat> 0 anywhere andf’)? +
(¢')? = 1. Atrivial case occurs provided that the parallelsSafiever are geodesics (for example a
bugle surface), since in this case we choGsgenerating the parallel flow. Otherwise, we locally
deformate this flow around any critical point 6f Therefore, writed/(s) = a(s)Xs + b(s) Xy,
with a? 4 f2b? = 1. Supposef’(sg) = 0 is a local minimum forf (other possibilities admit
similar computations), so that there exists- 0 such thatf(s) > f(so) for |s — so| < . We set
a(s) = cos ¢(s) and f(s)b(s) = sin ¢(s), then

1
f

(fsin @) (—sin X5 + MXU),

DyV = 7
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whereD denotes the Levi-Civita connection on the surface. Now we chgdsde an increasing
differentiable function orfsy — ¢, so + ¢) satisfying

(1) o(s) = —5if s <sp—¢,
(2) ¢(s0) =0,
(3) ¢(s) =5 if s > 509 +e.

To illustrate this idea we exhibit another algorithm to get a Betchov-Da Rios foliation over a
principalS*-bundle endowed with a principal flat connection on a surface of revoli$tiee [1]

for details). For the sake of simplicity we assume that the profile curve is not closed (for example
a catenary), in this case the fundamental groug ffree abelian with one generator.

First step Let S be the universal covering &, so it is diffeomorphic tdR2. The group
7 works as structure group of the principal fibre bundle: S — S and admits a trivial flat
connection, sayy.

Second stepLetn be a real number sualyw ¢ Q (the set of rational numbers). The map
¢y : Z — S* given by ¢, (k) = " defines a monomorphism betwegh, +) andS! c C
regarded as a multiplicative group.

Third step The transition functions of, : S — S can be extended, vig,, to obtainS'-
functions which can be chosen as transition functions of a prinSipaundler : P — S. Fur-
thermorep,, can be extended to a monomorphism frSro P which mapsy in a flat connection,
sayw, on P.

Forth step We choose, as above, a vector fiédon S having neither zeroes nor inflexion
points. Let{~; : s € I} be the flow ofV/, I being the domain of the profile curve 8f We define
a positive smooth function on S by u(p) = x(p), wherex is the curvature of thé -integral
curve throughp. Then{r~1(~;) : s € I} defines a Betchov-Da Rios foliation ¢#, g,,), where
g is the metric ofS.
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Figure 7: Revolution surfaces R?.
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