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Abstract

We present Lancret-type theorems for general helices in the 3-dimensional Lorentzian space
forms. We show outstanding and deep differences with regard to non flat Riemannian space
forms as well as the classical Euclidean case. These will be pointed out when studying the
problem of solving natural equations. Indeed we give a geometric approach to this problem

and show that, for instance, general helices in the 3-dimensional Lorentz-Minkowski space

correspond with geodesics either of right general cylinders or oBflatrolls. In this sense,

the anti De Sitter and De Sitter worlds behave as the spherical and hyperbolic space forms,
respectively.
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1. Introduction

A curve of constant slope or general helix in Euclidean spiités defined by the property
that its tangent indicatrix is a planar curve. The straight line perpendicular to this plane is called
the axis of the general helix. A classical result stated by M.A. Lancret in 1802 and first proved by
B. de Saint Venant in 1845 (se®]] for details) is: “A necessary and sufficient condition in order
to a curve be a general helix is that the ratio of curvature to torsion be constant”.

For a given couple of one variable functions (eventually curvature and torsion parametrized
by arclength) one might like to get an arclength parametrized curve for which the couple works
as the curvature and torsion functions. This problem is usually referred as “the solving natural
equations problem”. The natural equations for general helices can be integrated, notR#ly in
but also in the 3-sphe&? (the hyperbolic space is poor in this kind of curves and only helices are
general helices). Indeed one uses the fact that general helices are geodesics either of right general
cylinders or of Hopf cylinders, according to the curve liesRihor S3, respectively (seed] for
further details).

In this note we deal with general helices in the 3-dimensional Lorentzian space forms. A
non-null curvey immersed inl.? is called a general helix if its tangent indicatrix is contained in
some plane, say, of 3. Sincer can be either degenerate or non-degenerate, then both cases
are distinguished by calling degenerate and non-degenerate general helices, respectively. Then we
give a sort of Lancret theorem for general helice&.#nwhich formally agrees with the classical
one. In fact we prove that “general helicedin correspond with non-null curves I for which
the ratio of curvature and torsion is constant”.

In spite of this, we will point out a remarquable and deep difference between the behaviour of
general helices in Euclidean and Lorentzian geometries. WhiRé greneral helices are geodesics
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in right general cylinders, as classically is shown, we will prove that general helide$ ame
geodesics in either right general cylinders or fiascrolls, according to the general helix is non-
degenerate or degenerate (see Theorems 4.2 and 4.3), respectively. This nice difference between
Euclidean and Lorentzian geometries (from the point of view of the behaviour of general helices)
confirms once more the important role of the notionB&croll (see ], [1], [2]) in Lorentzian
geometries.

To extend the concept of general helix to 3-dimensional De Sitter sjyaaed anti De Sitter
spaceH?, we use the concept of Killing vector field along a curve in a 3-dimensional real space
form, first introduced in §]. The Lancret theorem i3 and H; underlines deep differences
between the pseudospherical and pseudohyperbolic spaces. The pseudohyperbolic case is nicely
analogous to the Lorentz-Minkowskian case, whereas in the pseudospherical case there are no
nontrivial general helices. From this point of view, the roles played by the non flat Lorentzian
space formdl$ andS$ correspond with those played by the non flat Riemannian space ffms
andH?, respectively (seed]).

To point out the interest of general helices it should be mentioned that they arise in the con-
text of the interplay between geometry and integrable Hamiltonian systems7{saed] [9]).

In fact, the Betchov-Da Rios equation, also known as the localized induction equation (LIE),
% — 9 x 7, is a soliton equation for space curves;, ). It is a model for the behaviour

of thin vortex tubes in an incompressible, inviscid, three-dimensional fluid. Whem (s, t) is
arclength parametrized, that equation becomes the so-called vortex filament e(%%ia&onB.

If v evolves according to this equation, then the complex wave fundtiogiven by the Hasi-

moto transformation (se&][and [9], again), evolves according to the cubic nonlinear 8dhrger
equation. The filament equation is even more directly related to still another model, the continuum
limit of the classical Heisenberg cha%Z T x a L viathe tangentindicatrix — 7' = 83 By
asuming thaty is an elastlca with Frenet fram¥¢ N and B, Langer and Singei8] have shown
thatX = kB andY = (x> )\)T+ 2k’ N +2k7 B are Killing fields alongy. The simplest soliton
solutions for the flonX = m were elastic curves which evolve by rigid motions. Elastic curves
are also simple soliton solutions for the fldw_ <L, If v evolves according t&” = %Z, then

¥ evolves according to the modified Korteweg- de Vrles equation (mKdVR]lwe have found
parametrized solutions of the LIE in the 3-dimensional anti De Sitter space, so that the soliton
solutions are the null geodesics of the Lorentzian Hopf cylinders. Therefore there is a natural ge-
ometric evolution on general helices inducing a mKdV curvature evolution equation coming from
the LIE. The role of general helices here is probably similar to that of curves of constant torsion
or constant natural curvature (sé&@)|[

2. Setup

Let R"™2 be the(n 4 2)-dimensional pseudo-Euclidean space with intlerdowed with the
indefinite inner product given by

n+2
leyl+ Z ZiYj,
Jj=t+1
where(z1, . .., z,42) is the usual coordinate system. IS8t = {x € R?*2 : (x,2) = 1} and
HH = {x € R’,}ﬁ : (z,xz) = —1} be the unit pseudo-sphere and the unit pseudo-hyperbolic

n+2

space, respectively. They are pseudo-Riemannian hypersurfaces obimlé! > andR” iy
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respectively, with constant sectional curvatdre +1 andc = —1, respectively. Throughout this
paper,M will denoteS?, H or L3 according toc = +1, ¢ = —1 or ¢ = 0, respectively, and”
will stand for the pseudo-Euclidean space whiefés lying.

Let p be a point inM/ andv € T,,M atangent vector. Themis said to be spacelike, timelike
or null according ta(v, v) > 0, (v,v) < 0, or (v,v) = 0 andv # 0, respectively. Notice that the
vectorv = 0 is spacelike. The category into which a given tangent vector falls is called its causal
character. These definitions can be generalized for curves as follows. AcimM is said to be
spacelike if all of its velocity vectors’ are spacelike; similarly for timelike and null.

For a better understanding of the next construction we will bring back the notion of cross
product in the tangent spadg M at any pointp in M. There is a natural orientation ifi, \/
defined as follows: an ordered ba$i¥, Y, Z} in T, M is positively oriented if dgp XY Z] > 0,
where[pXY Z] is the matrix withp, X, Y, Z as row vectors. Now let be the volumen element
on M defined byw(X,Y, Z) = det[pXY Z]. Then givenX, Y € T,,M, the cross producX x Y’
is the unique vector iff;, M suchthat X x Y, Z) = w(X,Y, Z), foranyZ € T,M.

A non-null curvey(s) in M is said to be a unit speed curve(if (s),~7'(s)) = ¢ (¢ being+1
or —1 according toy is spacelike or timelike, respectively). A unit speed cuyye) in M, s being
the arclength parameter, is called a Frenet curve if it admits a Frenet framéfielcy’, N, B},
whereB =T x N, satisfying the Frenet equations

WTT = 8QI{N,
WTN = —EUﬂT—E:;TB,
?TB = EQTN,

whereeq, 2 andes denote the causal charactersigf N and B, respectively (in particulag; =
+1 andejese3 = —1), V is the semi-Riemannian connection dhandx = k(s) andr = 7(s)
are the curvature and the torsion functions/pfespectively.
The unit tangent vector field = +' defines a mapping fromto Q = {q € E : (q,q) = +1},
which is usually called theangent indicatrixof v and, from now on, it will be also denoted &Y
Now let a(s) be a null curve inM with Cartan frame{A, B,C'}, i.e., A, B, C are vector
fields tangent td/ alonga(s) satisfying the following conditions:

(A,A) = (B,B) =0, (A,B)=—1,

(A,C)=(B,C)=0, (C,C)=1,

and
& = A
A = pC,  p=p(s) #0,
B = ca+ wC, wp being a constant,
C = w()A + pB.

If we consider the immersioX : (s,t) — a(s) + tB(s), thenX defines a Lorentz surface, with
constant Gaussian curvature- w3, that L.K. Graves§] called aB-scroll. An easy computation
shows that the unit normal vector is given, up to the sigr§Byt) = wotB(s) + C(s).

3
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3. Killing fields

This section is taken from8]. Let ~(¢) be a non-null immersed curve in a 3-dimensional
Lorentzian space form/ with sectional curvature and letv(t) = |y/(¢)| be the speed of. Let
us consider a variation of, I' = I'(¢, z) : I x (—e,e) — M with T'(¢,0) = ~(¢). In particular
one can choose > 0 in such a way that alt-curves of the variation have the same causal
character as that of. Associated witl" there are two vector fields alodg V (¢,z) = ‘g—g(t, z)
andW(t, z) = %5(75, z). In particularV (t) = V(¢,0) is the variational vector field alongand
W (t, z) is the tangent vector fields of thecurves. We will use the notatioi = V (¢,z), v =
v(t, z), k = k(t, z), etc. with the obvious meanings. Alsosiflenotes the arclength parameter of
thet-curves, we will writev(s, z), V (s, z), k(s, z), etc. for the corresponding reparametrizations.
A straightforward but long computation allows us to obtain formulasgfdlt 0), (t 0)

and %TZ (t,0) which we collect, along with another standard identity, in the foIIowmg Iemma.

Lemma 3.1 With the above notation, the following assertions hold:
(1) [V, W] =0;

ov

(2) %(u 0) = —e1gv, withg = <§TV7 T);

2
3) 85;(15, O) = 2¢9 <V§V, VTT> + 4€1gl€2 + 2€2<R(V, T)T, VTT>;

or?

1_
E(t’ 0) = _2€2<EVBTV VTV +e1(eak + )VTV - 51 V TBY),

(4)

, . Ok
where(, ) denotes the Lorentzian metric df andx’ = yn

Without loss of generality we can assumeo be arclength parametrized. A vector fiélds)
along~, which infinitesimally preserves unit speed parametrization (that m?zré(ms{)) = 0 for

a V-variation of+) is said to be a Killing vector field along if this evolves in the direction o¥
whithout changing shape, only position. In other words, the curvature and torsion functipns of
remain unchanged as the curve evolves. Hence Killing vector fields glang characterized by
the equations

(t,0).

ov K2 o12
&(7570) = E(t,o) =5

and this is well defined in the sense that it does not depend di-treiation ofy one chooses to
compute the derivatives involved in equation (1). In fact, we use Lemma 3.1 and (1) to sie that
is a Killing vector field alongy if and only if it satisfies the following conditions:

a) (VrV,T)=0,
b) (VaV,N)+ slc<v N) = @)

(t7 0) =0, 1)

/

1
c) (EVSTV VTV+51(52/<+ )VTV—Elc SV, 7B) = 0.

In particular, the solutions of (2) constitute a 6-d|menS|onal linear space. N

Now when)M is simply connected, since the restrictiomtaf any Killing field V' of M is a
Killing vector field alongy, one concludes from a well known dimension argument, the following
lemma.
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Lemma 3.2 Let M be a complete, simply connected, Lorentzian space fornaadon-null
immersed curve in/. A vector fieldV on ~ is a Killing vector field alongy if and only if it
extends to a Killing field” on M.

4. General helices in the 3-dimensional Lorentz-Minkowski space

Following the classical terminology of the Euclidean geometry (see, for instab@dg we
will say thaty is ageneral helixin L3 if its tangent indicatrix lies in a plane @>. That means
that there exists a vectaer £ 0 in L3 which is orthogonal to the acceleration vector fielchof
The straight line generated s uniquely determined and we will refer to it as #vdasof . In
particular, we will say that a general helixdegenerat®r non-degenerataccording to its axis is
null or non-null, respectively.

It is obvious that non-null curves ih? with zero torsion are examples of non-degenerate
general helices. In fact, such a curve lies in a non-degengyatne inl.> and a unit vector ifi.>
orthogonal to this plane works as the axis of the general helix.

Now given a general helix in L2 with axisv, we can define a translation vector figldn L3
byV =, foranyp € L3. LetV beV restricted toy. ThenV defines a Killing vector field along
~ with constant length, i.e(V, V) is constant, and orthogonal to the acceleration vector field of

Assume now thatV is a Killing vector field along a non-null curve, with constant length
and orthogonal to its normal vector field. From (2a) we can writéV = o1 + bB, a andb
being constants. Now use (2b) to gé¢W = AN, where\ = e»(ax + br) is constant. Finally,
equation (2c) yields\r(7/k)" = 0. From here we consider the following cases.

() = = 0. Then~ is a a non-degenerate general helix. It is not difficult to seelthat B
(unlessy is a circle which will be considered next) and so it extends to a translation vector field
Win L3,

(i) £ and 7 both are constant Then~ is a helix. Now the Killing vector fieldV is not
uniquely determined. In fact, for any couple of contantndb, in the rectifying plane we define
the vector fieldW (s) = aT + bB, which works as a Killing vector field along. In spite of
that, we can determine a Killing vector field alongsayV (s), being parallel along and thus
it extends to a translation vector field(s) such thatl/ (s) = v € 3. Indeed just choose and
b such thatux + br = 0. Thereforey is a non-degenerate general helix, unless= 1 (which
means thatV is spacelike or the rectifying plane is Lorentzian anywhere)and+x, and then
~ is degenerate.

(i) A = 0. ThenW is a uniquely determined Killing vector field along Furthermore, it is
parallel alongy and extends to a translation vector fig¢ld such that’ = v € L3. Therefore,

~ is a general helix whose axisis(or W). And ~ is degenerate wheW is null, which yields
52 =1andr = %xk.
We will refer to curves in the first two classes as trivial general helices.
Summarizing we have the following.

Theorem 4.1 (The Lancret theorem inlL3) Let~ be a non-null immersed curve I? with cur-
vature and torsion functions andr, respectively. Then the following statements are equivalent:

(@) is a general helix irl.3;

(b) There exists a constant length Killing vector fidfdalong~ which is orthogonal to the
acceleration vector field of;

(c) There exists a constantsuch thatr = r«.

5
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Moreover a general helix is degenerate if and only if = +1 and its normal vector field
is spacelike. The Killing vector field in (b) is not uniquely determined-fis a helix ( and
both are constant); however, in this ca$écan be uniquely determined, up to constants, once it
is chosen parallel along (say otherwise, its extended Killing vector fieldli is a translation
vector field).

Theorem 4.2 (Solving natural equation for non-degenerate general helites/y be a non-null
immersed curve ifi.3. Theng is a non-degenerate general helix if and only if it is a geodesic in
some right cylinder whose directrix and generatrix are both non-null.

Proof. Let v be a unit vector ifl.3 anda a unit speed curve in a plane orthogonabtdhe Frenet
eqguations ofx are

VTT = 52EN,
WTN = —51%?,

(1)

where{T, N} is the Frenet frame along,  its curvature function and , 5, the causal characters
of T and N, respectively. Notice that the causal character isf—d; 5.

Let us consider the right cylindét,, ,, in L generated by andv, which is naturally parametrized
asX(s,t) = a(s) + tv. Itis well known that the geodesics 6f, , are the images unde¥ of
straight lines in thes, t)-plane. Choose such a geodes{e) = a(s) +msv, wherem is a certain
constant. Then the translation figidin L2 determined by induces a Killing vector field along
with constant length and orthogonal to the acceleration vecter) = o (s). Sincev is non-null,
Theorem 4.1 implies that is a non-degenerate general helix.

Conversely, supposeis a non-degenerate general helix. Then there exists a certain constant
r such thatr = r« (of coursex andr denote the curvature and torsion functiongspf One can
also choose a unit vector, saylying on the axis of3. We take a (non-degenerate) plaRén 13
which is orthogonal t@. Up to congruences i, there exists a unique curve ip, say«, with
curvature functiork = |3’|x andd, = e9 (notice that the causal charactgrof « is determined
by 4, and the causal character of. LetC,, , be the right cylinder generated lbyandv. Then
it is parametrized byX (s,t) = «(s) + tv. Finally we choose the geodesic ©f, , defined by
v(s) = a(s) +msv, wherem = §;e3r. Theny is a non-null geodesic, because= —1 provided
thatm? = 1. Finally, it is easy to see thatand have the same curvature and torsion functions,
as well as the same causal characters. This concludes the proof.

Theorem 4.3 (Solving natural equation for degenerate general helidest. 3 be a non-null im-
mersed curve ifi.3. Thens is a degenerate general helix if and only if it is a geodesic in some flat
B-scroll in L3,

Proof. Let a(s) be a null curve inL3 with Cartan frame{A, B,C} and S, g the flat B-scroll
(i.e.,wo = 0) parametrized byX (s,t) = «(s) + tB. We choose a non-null geodesic${ g, say

v(u) = a(s(u)) + t(u)B(s(u)). Then the translation field in L? determined by3 induces a
Killing vector field alongy, also denoted by3, with constant length and such that (u), B) =
—s'(u) is constant, because the geodesiis the image undeX of a straight line. Therefore,
from Theorem 4.1y is a degenerate general helixIiA.

To prove the converse, |gt be a degenerate general helix that we parametrize with constant

speed, sayp’, 3') = p constant. From the theorem of Lancret we know that the curvatared

6
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torsionk functions of3 agree (we can change orientation if necessary) and the acceleration vector
field of 3 is spacelike, i.e55 = 1. We define the following vector fields

i = Blan
B = —L(r-B),

B
C = N,

where{T, N, B} is the Frenet frame along, |#'| = \/e1p ande; denotes, as usual, the causal
character of3.

Let o be a curve irl.? with tangent vector fieldd, thena is a null curve inl3. Furthermore,
{4, B, C} is a Cartan frame along with wy = 0 andp = x|3’| (see Section 2). Let, g be the
corresponding flaB-scroll, which is parametrized h¥ (s, ¢t) = «(s) + tB. Finally, choose the
geodesic inS,, g given byy(s) = a(s) + msB, wherem = —p/2. Itis not difficult to see thay
andg have the same curvature and torsion functions, and also the same causal character, showing
that they are congruent in®.

5. General helices in non-flat 3-dimensional Lorentzian space forms

In order to generalize the notion of general helix to 3-dimensional Lorentzian spaces of nonzero
constant curvature, we profit by Theorem 4.1. A cuyva M is said to be a general helix if there
exists a Killing vector fieldl” along~ with constant length and orthogonal to the acceleration
vector field ofy. We will say thatl” is an axis of the general helix Obvious examples of general
helices inM are the following. Curves with torsion vanishing anywhere, where the unit binormal
works as an axis. Helices are also general helices, where any vector field chosen in the rectifying
plane having constant coordinates relativg'tand B runs as an axis.

We can follow notation and terminology usedIif to say that zero torsion curves are non-
degenerate general helices, because the & obviously non-null. As for curves with both
constant curvature and torsion we know that for any pair of consteartslb the vector field along
v given byV (s) = aT + bB is always a Killing vector field. Of course, whep = —1, i.e., the
rectifying plane is positive definite at any point, all Killing vector fieldgs) are non-null and we
will say that the general helix is non-degenerate. Howeves, i 1, i.e., the rectifying plane is
Lorentzian, we have Killing vector fields alongbeing either spacelike, or timelike, or null. It
does not allow us to decide if such a general helix is degenerate or not. However, we can determine
a unique Killing vector field along the helix by forcing it to be parallel alongrhe helix is said
to bedegenerat®r non-degenerataccording to is null or non-null, respectively.

Let v(s) be a general helix id/ with curvaturex > 0. Let V(s) be an axis and assume,
without loss of generality, thafl’, V') = ¢, wheree = —1,0,1. From equation (2a) we deduce
that

V(s) = fT(s) + hB(s), and &=-¢e,f>+e3h? (1)

for certain constantg andh. By using the Frenet equationspfve get
WTV = 62(f/€ + hT)N,

and
ﬁQTV = —e1e9k(fK + hT)T + ea(fK' + h7')N — e9e37(f K + h7)B.

7
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Now from equations (2b), (1) and (3) we deduce that+ hr' = 0 from which we get
T = bk + a,

for certain constantg andb. On the other hand, from (3), jointly with the Frenet equations,of
we obtain

VoV = —e18006'T — Ae1k2 + e372)N — e0e3 M7/ B,

where) stands for the constaific + h7. Now equation (2c), jointly with equations (1)—(5), yields
TAT'k — X' — chk') = 0,

and then
he'r(a® +¢) = 0.

In particular, the above equation shows that in the De Sitter sface: = +1), the only
general helices are the two classes described just before this discussion. So we have prove the
following result.

Theorem 5.1 (The Lancret theorem in the De Sitter space)A non-null immersed curvein S3
is a general helix if and only if either

(1) 7 = 0 and~ is a curve in some totally geodesic surfac&pfor

(2) v is a helix inS$ (i.e. curvaturex and torsionr constants).

Furthermore, general helices of the first type have only one axis (the binormal) which is par-
allel and so they are non-degenerate. In contrast, general helices of the second type have a plane
(the rectifying plane) of axes. However they only have a parallel axis. This axis is null, and so the
general helix is degenerate, if and onlyif = +1 (the normal vector is spacelike) and= +x;
otherwise the helix is non-degenerate.

In the anti De Sitter space, besides the two classes of trivial general helices, we have another
class. This kind of general helices can be characterized from equations (5) and (6); wherg
as the curves ifil whose curvature and torsion are related by

T=br 1,

for a certain constarit These general helices admit only one axis= fT+ h B, which is defined
by
f 1-7

L _p=
h K

The causal character of this axis is
—1)2
e = h? <51(T2) +53> .
K

In particular, a general helix of this type is degenerate if and only # 1 andb = +1.
Summarizing we have shown the following.

8
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Theorem 5.2 (The Lancret theorem in the anti De Sitter space)A non-null immersed curve
in H3 is a general helix if and only if either

(1) 7 = 0 and~ is a curve in some totally geodesic surfacelgf The curve admits only
one axis which agrees with its binormal, being parallel along the curve and non-null. The general
helix is non-degenerate; or

(2) v is a helix inH3. It admits a plane (the rectifying plane) of axes but only one is parallel
along~. This parallel axis is null, and s¢ is degenerate, if and only i, = +1 andr = £«.
Otherwisey is non-degenerate; or

(3) there exists a certain constabsuch that the curvature and the torsionr functions ofy
are related byr = bk + 1. The curve admits a unique axis which can not be parallel alpnigis
null, and soy is degenerate, if and only f= +1 and~ has spacelike normal vectoro = +1).

Remark 5.3 Compare Theorem 5.1 and Theorem 5.2 with Theorems 1 and3B ir§pectively.

Now we are going to solve the natural equations for general helicks in

In [4] we have just constructed a new class of submanifold&it-1) defined by means of
two semi-Riemannian submersions : H3(—1) — H2(—4), s = 0,1 (see details therein). By
pulling back viars a non-null curvey in H2(—4) we get the total horizontal lift of;, which is
an immersed flat surfackl, in H3(—1), that will be called thesemi-Riemannian Hopf cylinder
associated toy. Notice that ifs = 0, M, is a Lorentzian surface, whereassif= 1, M, is
Riemannian or Lorentzian, accordingide spacelike or timelike, respectively.

Lety : I — H2(—4) be a unit speed curve with Frenet frafiE, N'} and curvature function
. Let¥ be a horizontal lift ofy to H3(—1) with Frenet frame{T, N, B}, curvaturex = % o
and torsionr = 1. Recall thatB is nothing but the unit tangent vector field to the fibers algng
Then the Hopf Cylindef/, can be orthogonally parametrized by

X(t,z) = cos(2)7(t) + sin(z)B(t) whens = 0,
) cosh(z)7(t) + sinh(z)B(t) whens = 1.

Notice that a unit normal vector field ti., into H?(—1) is obtained from the complete hori-
zontal lift of N and it is, of course]N along each horizontal lift of. As a consequence we have
that M, is a flat surface with mean curvature functiers given byo = .

Theorem 5.4 (Solving natural equation for non-degenerate general helicEg (r1).) Let3 a
non-null immersed curve ill3. Theng is a non-degenerate general helix if and only if it is a
geodesic in some Hopf cylindaf, .

Proof. Let 3(s) be an arclength parametrized geodesidir, then there exists two constants
andb such that
T(s) = ('(s) = aXy + bX,,

with 142 + e3b> = 81, §; being the causal character 8f A direct computation shows that the
curvaturep and the torsion of § satisfy
p = £0a’K + 2ab,
= 52p2 —e1016p + 1.

9
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It is not difficult to see that = rp + 1, » = b/a, showing that3 is a general helix. Moreover, if
the normal vectolV is spacelike, then # 1 and thens is non-degenerate.

To prove the converse, I8tbe a non-degenerate general heli%lif{ —1) with curvaturep and
torsionr. Then there exists a constanfwith » # +1 if the normal vector t@ is spacelike) such
thatT = rp + 1. We choose; = +1 ands in {0, 1} in order tod; (s; — (—1)%r?) be positive,
81 being the causal character 6f Let v be the unique curve, up to motions, lif§ (—4) with
curvaturer = 6, ((—1)% — e172)p — 2¢1(—1)%r and causal character definedday Let o be the
geodesic in the Hopf cylindeY/, given bya(s) = X (as, bs) with

0
PR — and b = 1242,
€1 — (*1)5’1“2
It is easy to see that and o have the same curvature and torsion, and also the same causal
character, showing that they are congruent.

Theorem 5.5 (Solving natural equation for degenerate general helicé8{r-1).) Let 3 a non-
null immersed curve ifil3. Theng is a degenerate general helix if and only if it is a geodesic in
some flatB-scroll over a null curve.

Proof. Let 3(u) be a geodesic of some fl&tscroll S, g in H3 (—1) (i.e.,wo = +1) parametrized
by B(u) = a(s(u)) + t(u)B(s(u)). Then the normal vector t6 in H3(—1) is given by N (u) =
B(u) — a(s(u)) + C(s(u)). From here we obtain that; N = T + s'(u) pB. By using the Frenet
equations for we deduce that the vectét + ¢1x)T + e37B is null, wherex y 7 stand for the
curvature and torsion of, respectively. Therefor&/ is spacelike and = +¢1x + 1, which
proves thats is a degenerate general helix.

Conversely, leB be a curve iffl3 (—1) with curvatures and torsionr satisfying thatr = x+¢;
and the normal vector ¢f is spacelike (the other cases are similar). We define the null euive
H3(—1) by the equation

and the following vector fields

Als) = ~LsBls) + 5(T() + B(s)) + LsN(s),
B(s) = —ei(T(s) — B(s)),
Cls) = —%S(T(s)—B(s))—FN(S).

It is not difficult to see tha{ A, B, C'} is a Cartan frame along with wy = 1 andp = 7. Let
Sa.p be theB-scroll in H3(—1) parametrized byX (s,t) = a(s) + tB(s). Then itis clear that
B(s) = X (s, —%s) and so3 is a geodesic of thaB-scroll.

Remark 5.6 It is worth noting that in the “if” part in Theorems 8 and 9 we have only used the
existence of an axis, not necessarily parallel. Then i§ a helix inH3(—1) with Lorentzian
rectifying plane anywhere, it turns out have both null and non-null axes. Therefera geodesic

in a Hopf cylinder as well as in a flaB-scroll over a null curve.
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