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Abstract

We present Lancret-type theorems for general helices in the 3-dimensional Lorentzian space
forms. We show outstanding and deep differences with regard to non flat Riemannian space
forms as well as the classical Euclidean case. These will be pointed out when studying the
problem of solving natural equations. Indeed we give a geometric approach to this problem
and show that, for instance, general helices in the 3-dimensional Lorentz-Minkowski space
correspond with geodesics either of right general cylinders or of flatB-scrolls. In this sense,
the anti De Sitter and De Sitter worlds behave as the spherical and hyperbolic space forms,
respectively.
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1. Introduction

A curve of constant slope or general helix in Euclidean spaceR3 is defined by the property
that its tangent indicatrix is a planar curve. The straight line perpendicular to this plane is called
the axis of the general helix. A classical result stated by M.A. Lancret in 1802 and first proved by
B. de Saint Venant in 1845 (see [11] for details) is: “A necessary and sufficient condition in order
to a curve be a general helix is that the ratio of curvature to torsion be constant”.

For a given couple of one variable functions (eventually curvature and torsion parametrized
by arclength) one might like to get an arclength parametrized curve for which the couple works
as the curvature and torsion functions. This problem is usually referred as “the solving natural
equations problem”. The natural equations for general helices can be integrated, not only inR3,
but also in the 3-sphereS3 (the hyperbolic space is poor in this kind of curves and only helices are
general helices). Indeed one uses the fact that general helices are geodesics either of right general
cylinders or of Hopf cylinders, according to the curve lies inR3 or S3, respectively (see [3] for
further details).

In this note we deal with general helices in the 3-dimensional Lorentzian space forms. A
non-null curveγ immersed inL3 is called a general helix if its tangent indicatrix is contained in
some plane, sayπ, of L3. Sinceπ can be either degenerate or non-degenerate, then both cases
are distinguished by calling degenerate and non-degenerate general helices, respectively. Then we
give a sort of Lancret theorem for general helices inL3 which formally agrees with the classical
one. In fact we prove that “general helices inL3 correspond with non-null curves inL3 for which
the ratio of curvature and torsion is constant”.

In spite of this, we will point out a remarquable and deep difference between the behaviour of
general helices in Euclidean and Lorentzian geometries. While inR3 general helices are geodesics
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in right general cylinders, as classically is shown, we will prove that general helices inL3 are
geodesics in either right general cylinders or flatB-scrolls, according to the general helix is non-
degenerate or degenerate (see Theorems 4.2 and 4.3), respectively. This nice difference between
Euclidean and Lorentzian geometries (from the point of view of the behaviour of general helices)
confirms once more the important role of the notion ofB-scroll (see [5], [1], [2]) in Lorentzian
geometries.

To extend the concept of general helix to 3-dimensional De Sitter spaceS3
1 and anti De Sitter

spaceH3
1, we use the concept of Killing vector field along a curve in a 3-dimensional real space

form, first introduced in [8]. The Lancret theorem inS3
1 andH3

1 underlines deep differences
between the pseudospherical and pseudohyperbolic spaces. The pseudohyperbolic case is nicely
analogous to the Lorentz-Minkowskian case, whereas in the pseudospherical case there are no
nontrivial general helices. From this point of view, the roles played by the non flat Lorentzian
space formsH3

1 andS3
1 correspond with those played by the non flat Riemannian space formsS3

andH3, respectively (see [3]).
To point out the interest of general helices it should be mentioned that they arise in the con-

text of the interplay between geometry and integrable Hamiltonian systems (see [7] and [9]).
In fact, the Betchov-Da Rios equation, also known as the localized induction equation (LIE),
∂γ
∂t = ∂γ

∂s × ∂2γ
∂s2 , is a soliton equation for space curvesγ(s, t). It is a model for the behaviour

of thin vortex tubes in an incompressible, inviscid, three-dimensional fluid. Whens → γ(s, t) is
arclength parametrized, that equation becomes the so-called vortex filament equation∂γ

∂t = κB.
If γ evolves according to this equation, then the complex wave functionΨ, given by the Hasi-
moto transformation (see [7] and [9], again), evolves according to the cubic nonlinear Schrödinger
equation. The filament equation is even more directly related to still another model, the continuum
limit of the classical Heisenberg chain,∂T

∂t = T× ∂2T
∂s2 , via the tangent indicatrixγ → T = ∂γ

∂s . By
asuming thatγ is an elastica, with Frenet frameT , N andB, Langer and Singer [8] have shown
thatX = κB andY = (κ2−λ)T +2κ′N +2κτB are Killing fields alongγ. The simplest soliton
solutions for the flowX = ∂γ

∂t were elastic curves, which evolve by rigid motions. Elastic curves

are also simple soliton solutions for the flowY = ∂γ
∂t . If γ evolves according toY = ∂γ

∂t , then
Ψ evolves according to the modified Korteweg-de Vries equation (mKdV). In [2] we have found
parametrized solutions of the LIE in the 3-dimensional anti De Sitter space, so that the soliton
solutions are the null geodesics of the Lorentzian Hopf cylinders. Therefore there is a natural ge-
ometric evolution on general helices inducing a mKdV curvature evolution equation coming from
the LIE. The role of general helices here is probably similar to that of curves of constant torsion
or constant natural curvature (see [7]).

2. Setup

LetRn+2
t be the(n + 2)-dimensional pseudo-Euclidean space with indext endowed with the

indefinite inner product given by

〈x, y〉 = −
t∑

i=1

xiyi +
n+2∑

j=t+1

xjyj ,

where(x1, . . . , xn+2) is the usual coordinate system. LetSn+1
ν = {x ∈ Rn+2

ν : 〈x, x〉 = 1} and
Hn+1

ν = {x ∈ Rn+2
ν+1 : 〈x, x〉 = −1} be the unit pseudo-sphere and the unit pseudo-hyperbolic

space, respectively. They are pseudo-Riemannian hypersurfaces of indexν in Rn+2
ν andRn+2

ν+1 ,
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respectively, with constant sectional curvaturec = +1 andc = −1, respectively. Throughout this
paper,M will denoteS3

1, H3
1 or L3 according toc = +1, c = −1 or c = 0, respectively, andE

will stand for the pseudo-Euclidean space whereM is lying.
Let p be a point inM andv ∈ TpM a tangent vector. Thenv is said to be spacelike, timelike

or null according to〈v, v〉 > 0, 〈v, v〉 < 0, or 〈v, v〉 = 0 andv 6= 0, respectively. Notice that the
vectorv = 0 is spacelike. The category into which a given tangent vector falls is called its causal
character. These definitions can be generalized for curves as follows. A curveγ in M is said to be
spacelike if all of its velocity vectorsγ′ are spacelike; similarly for timelike and null.

For a better understanding of the next construction we will bring back the notion of cross
product in the tangent spaceTpM at any pointp in M . There is a natural orientation inTpM
defined as follows: an ordered basis{X, Y, Z} in TpM is positively oriented if det[pXY Z] > 0,
where[pXY Z] is the matrix withp, X, Y , Z as row vectors. Now letω be the volumen element
onM defined byω(X, Y, Z) = det[pXY Z]. Then givenX, Y ∈ TpM , the cross productX × Y
is the unique vector inTpM such that〈X × Y, Z〉 = ω(X,Y, Z), for anyZ ∈ TpM .

A non-null curveγ(s) in M is said to be a unit speed curve if〈γ′(s), γ′(s)〉 = ε (ε being+1
or−1 according toγ is spacelike or timelike, respectively). A unit speed curveγ(s) in M , s being
the arclength parameter, is called a Frenet curve if it admits a Frenet frame field{T = γ′, N,B},
whereB = T ×N , satisfying the Frenet equations

∇T T = ε2κN,

∇T N = −ε1κT − ε3τB,

∇T B = ε2τN,

whereε1, ε2 andε3 denote the causal characters ofT , N andB, respectively (in particular,εi =
±1 andε1ε2ε3 = −1), ∇ is the semi-Riemannian connection onM andκ = κ(s) andτ = τ(s)
are the curvature and the torsion functions ofγ, respectively.

The unit tangent vector fieldT = γ′ defines a mapping fromγ to Q = {q ∈ E : 〈q, q〉 = ±1},
which is usually called thetangent indicatrixof γ and, from now on, it will be also denoted byT .

Now let α(s) be a null curve inM with Cartan frame{A,B, C}, i.e., A, B, C are vector
fields tangent toM alongα(s) satisfying the following conditions:

〈A,A〉 = 〈B,B〉 = 0, 〈A,B〉 = −1,

〈A,C〉 = 〈B,C〉 = 0, 〈C, C〉 = 1,

and

α̇ = A,

Ȧ = ρC, ρ = ρ(s) 6= 0,

Ḃ = cα + w0C, w0 being a constant,

Ċ = w0A + ρB.

If we consider the immersionX : (s, t) → α(s) + tB(s), thenX defines a Lorentz surface, with
constant Gaussian curvaturec + w2

0, that L.K. Graves [6] called aB-scroll. An easy computation
shows that the unit normal vector is given, up to the sign, byξ(s, t) = w0tB(s) + C(s).
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3. Killing fields

This section is taken from [8]. Let γ(t) be a non-null immersed curve in a 3-dimensional
Lorentzian space formM with sectional curvaturec and letv(t) = |γ′(t)| be the speed ofγ. Let
us consider a variation ofγ, Γ = Γ(t, z) : I × (−ε, ε) → M with Γ(t, 0) = γ(t). In particular
one can chooseε > 0 in such a way that allt-curves of the variation have the same causal
character as that ofγ. Associated withΓ there are two vector fields alongΓ, V (t, z) = ∂Γ

∂z (t, z)
andW (t, z) = ∂Γ

∂t (t, z). In particularV (t) = V (t, 0) is the variational vector field alongγ and
W (t, z) is the tangent vector fields of thet-curves. We will use the notationV = V (t, z), v =
v(t, z), κ = κ(t, z), etc. with the obvious meanings. Also, ifs denotes the arclength parameter of
thet-curves, we will writev(s, z), V (s, z), κ(s, z), etc. for the corresponding reparametrizations.

A straightforward but long computation allows us to obtain formulas for∂v
∂z (t, 0), ∂κ2

∂z (t, 0)
and ∂τ2

∂z (t, 0) which we collect, along with another standard identity, in the following lemma.

Lemma 3.1 With the above notation, the following assertions hold:

(1) [V, W ] = 0;

(2)
∂v

∂z
(t, 0) = −ε1gv, with g = 〈∇T V, T 〉;

(3)
∂κ2

∂z
(t, 0) = 2ε2〈∇2

T V,∇T T 〉+ 4ε1gκ2 + 2ε2〈R(V, T )T,∇T T 〉;

(4)
∂τ2

∂z
(t, 0) = −2ε2〈1

κ
∇3

T V − κ′

κ2
∇2

T V + ε1(ε2κ +
c

κ
)∇T V − ε1

cκ′

κ2
V, τB〉,

where〈, 〉 denotes the Lorentzian metric ofM andκ′ =
∂κ

∂t
(t, 0).

Without loss of generality we can assumeγ to be arclength parametrized. A vector fieldV (s)
alongγ, which infinitesimally preserves unit speed parametrization (that means∂v

∂z (t, 0) = 0 for
aV -variation ofγ) is said to be a Killing vector field alongγ if this evolves in the direction ofV
whithout changing shape, only position. In other words, the curvature and torsion functions ofγ
remain unchanged as the curve evolves. Hence Killing vector fields alongγ are characterized by
the equations

∂v

∂z
(t, 0) =

∂κ2

∂z
(t, 0) =

∂τ2

∂z
(t, 0) = 0, (1)

and this is well defined in the sense that it does not depend on theV -variation ofγ one chooses to
compute the derivatives involved in equation (1). In fact, we use Lemma 3.1 and (1) to see thatV
is a Killing vector field alongγ if and only if it satisfies the following conditions:

a) 〈∇T V, T 〉 = 0,

b) 〈∇2
T V, N〉+ ε1c〈V, N〉 = 0, (2)

c) 〈1
κ
∇3

T V − κ′

κ2
∇2

T V + ε1(ε2κ +
c

κ
)∇T V − ε1c

κ′

κ2
V, τB〉 = 0.

In particular, the solutions of (2) constitute a 6-dimensional linear space.
Now whenM is simply connected, since the restriction toγ of any Killing field Ṽ of M is a

Killing vector field alongγ, one concludes from a well known dimension argument, the following
lemma.
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Lemma 3.2 Let M be a complete, simply connected, Lorentzian space form andγ a non-null
immersed curve inM . A vector fieldV on γ is a Killing vector field alongγ if and only if it
extends to a Killing field̃V onM .

4. General helices in the 3-dimensional Lorentz-Minkowski space

Following the classical terminology of the Euclidean geometry (see, for instance, [10]) we
will say thatγ is ageneral helixin L3 if its tangent indicatrix lies in a plane ofL3. That means
that there exists a vectorv 6= 0 in L3 which is orthogonal to the acceleration vector field ofγ.
The straight line generated byv is uniquely determined and we will refer to it as theaxisof γ. In
particular, we will say that a general helix isdegenerateor non-degenerateaccording to its axis is
null or non-null, respectively.

It is obvious that non-null curves inL3 with zero torsion are examples of non-degenerate
general helices. In fact, such a curve lies in a non-degenerate2-plane inL3 and a unit vector inL3

orthogonal to this plane works as the axis of the general helix.
Now given a general helixγ in L3 with axisv, we can define a translation vector fieldṼ in L3

by Ṽ = v, for anyp ∈ L3. Let V beṼ restricted toγ. ThenV defines a Killing vector field along
γ with constant length, i.e.,〈V, V 〉 is constant, and orthogonal to the acceleration vector field ofγ.

Assume now thatW is a Killing vector field along a non-null curveγ, with constant length
and orthogonal to its normal vector fieldN . From (2a) we can writeW = aT + bB, a andb
being constants. Now use (2b) to get∇T W = λN , whereλ = ε2(aκ + bτ) is constant. Finally,
equation (2c) yieldsλτ(τ/k)′ = 0. From here we consider the following cases.

(i) τ ≡ 0. Thenγ is a a non-degenerate general helix. It is not difficult to see thatW = B
(unlessγ is a circle which will be considered next) and so it extends to a translation vector field
W̃ in L3.

(ii) k and τ both are constant. Thenγ is a helix. Now the Killing vector fieldW is not
uniquely determined. In fact, for any couple of contantsa andb, in the rectifying plane we define
the vector fieldW (s) = aT + bB, which works as a Killing vector field alongγ. In spite of
that, we can determine a Killing vector field alongγ, sayV (s), being parallel alongγ and thus
it extends to a translation vector field̃V (s) such thatṼ (s) = v ∈ L3. Indeed just choosea and
b such thataκ + bτ = 0. Thereforeγ is a non-degenerate general helix, unlessε2 = 1 (which
means thatN is spacelike or the rectifying plane is Lorentzian anywhere) andτ = ±κ, and then
γ is degenerate.

(iii) λ = 0. ThenW is a uniquely determined Killing vector field alongγ. Furthermore, it is
parallel alongγ and extends to a translation vector field̃W such that̃W = v ∈ L3. Therefore,
γ is a general helix whose axis isv (or W ). And γ is degenerate whenW is null, which yields
ε2 = 1 andτ = ±κ.

We will refer to curves in the first two classes as trivial general helices.
Summarizing we have the following.

Theorem 4.1 (The Lancret theorem inL3) Letγ be a non-null immersed curve inL3 with cur-
vature and torsion functionsκ andτ , respectively. Then the following statements are equivalent:

(a)γ is a general helix inL3;
(b) There exists a constant length Killing vector fieldV along γ which is orthogonal to the

acceleration vector field ofγ;
(c) There exists a constantr such thatτ = rκ.
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Moreover a general helixγ is degenerate if and only ifr = ±1 and its normal vector field
is spacelike. The Killing vector fieldV in (b) is not uniquely determined ifγ is a helix (κ andτ
both are constant); however, in this case,V can be uniquely determined, up to constants, once it
is chosen parallel alongγ (say otherwise, its extended Killing vector field inL3 is a translation
vector field).

Theorem 4.2 (Solving natural equation for non-degenerate general helices.)Let β be a non-null
immersed curve inL3. Thenβ is a non-degenerate general helix if and only if it is a geodesic in
some right cylinder whose directrix and generatrix are both non-null.

Proof. Let v be a unit vector inL3 andα a unit speed curve in a plane orthogonal tov. The Frenet
equations ofα are

∇T T = δ2κN,

∇T N = −δ1κT ,
(1)

where{T , N} is the Frenet frame alongα, κ its curvature function andδ1, δ2 the causal characters
of T andN , respectively. Notice that the causal character ofv is−δ1δ2.

Let us consider the right cylinderCα,v inL3 generated byα andv, which is naturally parametrized
asX(s, t) = α(s) + tv. It is well known that the geodesics ofCα,v are the images underX of
straight lines in the(s, t)-plane. Choose such a geodesicγ(s) = α(s)+msv, wherem is a certain
constant. Then the translation field̃V in L3 determined byv induces a Killing vector field alongγ
with constant length and orthogonal to the acceleration vectorγ′′(s) = α′′(s). Sincev is non-null,
Theorem 4.1 implies thatγ is a non-degenerate general helix.

Conversely, supposeβ is a non-degenerate general helix. Then there exists a certain constant
r such thatτ = rκ (of courseκ andτ denote the curvature and torsion functions ofβ). One can
also choose a unit vector, sayv, lying on the axis ofβ. We take a (non-degenerate) planeP in L3

which is orthogonal tov. Up to congruences inP , there exists a unique curve inP , sayα, with
curvature functionκ = |β′|κ andδ2 = ε2 (notice that the causal characterδ1 of α is determined
by δ2 and the causal character ofv). Let Cα,v be the right cylinder generated byα andv. Then
it is parametrized byX(s, t) = α(s) + tv. Finally we choose the geodesic ofCα,v defined by
γ(s) = α(s)+msv, wherem = δ1ε3r. Thenγ is a non-null geodesic, becauseδ2 = −1 provided
thatm2 = 1 . Finally, it is easy to see thatγ andβ have the same curvature and torsion functions,
as well as the same causal characters. This concludes the proof.

Theorem 4.3 (Solving natural equation for degenerate general helices.)Let β be a non-null im-
mersed curve inL3. Thenβ is a degenerate general helix if and only if it is a geodesic in some flat
B-scroll inL3.

Proof. Let α(s) be a null curve inL3 with Cartan frame{A,B, C} andSα,B the flatB-scroll
(i.e.,w0 = 0) parametrized byX(s, t) = α(s) + tB. We choose a non-null geodesic ofSα,B, say
γ(u) = α(s(u)) + t(u)B(s(u)). Then the translation field̃B in L3 determined byB induces a
Killing vector field alongγ, also denoted byB, with constant length and such that〈γ′(u), B〉 =
−s′(u) is constant, because the geodesicγ is the image underX of a straight line. Therefore,
from Theorem 4.1,γ is a degenerate general helix inL3.

To prove the converse, letβ be a degenerate general helix that we parametrize with constant
speed, say〈β′, β′〉 = p constant. From the theorem of Lancret we know that the curvatureτ and
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torsionκ functions ofβ agree (we can change orientation if necessary) and the acceleration vector
field of β is spacelike, i.e.,ε2 = 1. We define the following vector fields

A =
|β′|
2

(T + B),

B = − ε1

|β′|(T −B),

C = N,

where{T, N,B} is the Frenet frame alongβ, |β′| =
√

ε1p andε1 denotes, as usual, the causal
character ofβ.

Let α be a curve inL3 with tangent vector fieldA, thenα is a null curve inL3. Furthermore,
{A,B,C} is a Cartan frame alongα with w0 = 0 andρ = κ|β′| (see Section 2). LetSα,B be the
corresponding flatB-scroll, which is parametrized byX(s, t) = α(s) + tB. Finally, choose the
geodesic inSα,B given byγ(s) = α(s) + msB, wherem = −p/2. It is not difficult to see thatγ
andβ have the same curvature and torsion functions, and also the same causal character, showing
that they are congruent inL3.

5. General helices in non-flat 3-dimensional Lorentzian space forms

In order to generalize the notion of general helix to 3-dimensional Lorentzian spaces of nonzero
constant curvature, we profit by Theorem 4.1. A curveγ in M is said to be a general helix if there
exists a Killing vector fieldV alongγ with constant length and orthogonal to the acceleration
vector field ofγ. We will say thatV is an axis of the general helixγ. Obvious examples of general
helices inM are the following. Curves with torsion vanishing anywhere, where the unit binormal
works as an axis. Helices are also general helices, where any vector field chosen in the rectifying
plane having constant coordinates relative toT andB runs as an axis.

We can follow notation and terminology used inL3 to say that zero torsion curves are non-
degenerate general helices, because the axisB is obviously non-null. As for curves with both
constant curvature and torsion we know that for any pair of constantsa andb the vector field along
γ given byV (s) = aT + bB is always a Killing vector field. Of course, whenε2 = −1, i.e., the
rectifying plane is positive definite at any point, all Killing vector fieldsV (s) are non-null and we
will say that the general helix is non-degenerate. However, ifε2 = 1, i.e., the rectifying plane is
Lorentzian, we have Killing vector fields alongγ being either spacelike, or timelike, or null. It
does not allow us to decide if such a general helix is degenerate or not. However, we can determine
a unique Killing vector field along the helix by forcing it to be parallel alongγ. The helix is said
to bedegenerateor non-degenerateaccording toV is null or non-null, respectively.

Let γ(s) be a general helix inM with curvatureκ > 0. Let V (s) be an axis and assume,
without loss of generality, that〈V, V 〉 = ε, whereε = −1, 0, 1. From equation (2a) we deduce
that

V (s) = fT (s) + hB(s), and ε = ε1f
2 + ε3h

2, (1)

for certain constantsf andh. By using the Frenet equations ofγ we get

∇T V = ε2(fκ + hτ)N,

and
∇2

T V = −ε1ε2κ(fκ + hτ)T + ε2(fκ′ + hτ ′)N − ε2ε3τ(fκ + hτ)B.
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Now from equations (2b), (1) and (3) we deduce thatfκ′ + hτ ′ = 0 from which we get

τ = bκ + a,

for certain constantsa andb. On the other hand, from (3), jointly with the Frenet equations ofγ,
we obtain

∇3
T V = −ε1ε2λκ′T − λ(ε1κ

2 + ε3τ
2)N − ε2ε3λτ ′B,

whereλ stands for the constantfκ+hτ . Now equation (2c), jointly with equations (1)–(5), yields

τ(λτ ′κ− λκ′τ − chκ′) = 0,

and then

hκ′τ(a2 + c) = 0.

In particular, the above equation shows that in the De Sitter spaceS3
1, (c = +1), the only

general helices are the two classes described just before this discussion. So we have prove the
following result.

Theorem 5.1 (The Lancret theorem in the De Sitter space)A non-null immersed curveγ in S3
1

is a general helix if and only if either
(1) τ ≡ 0 andγ is a curve in some totally geodesic surface ofS3

1; or
(2) γ is a helix inS3

1 (i.e. curvatureκ and torsionτ constants).

Furthermore, general helices of the first type have only one axis (the binormal) which is par-
allel and so they are non-degenerate. In contrast, general helices of the second type have a plane
(the rectifying plane) of axes. However they only have a parallel axis. This axis is null, and so the
general helix is degenerate, if and only ifε2 = +1 (the normal vector is spacelike) andτ = ±κ;
otherwise the helix is non-degenerate.

In the anti De Sitter space, besides the two classes of trivial general helices, we have another
class. This kind of general helices can be characterized from equations (5) and (6), wherec = −1,
as the curves inH3

1 whose curvature and torsion are related by

τ = bκ± 1,

for a certain constantb. These general helices admit only one axisV = fT +hB, which is defined
by

f

h
= −b =

1− τ

κ
.

The causal character of this axis is

ε = h2

(
ε1

(τ − 1)2

κ2
+ ε3

)
.

In particular, a general helix of this type is degenerate if and only ifε2 = 1 andb = ±1.
Summarizing we have shown the following.
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Theorem 5.2 (The Lancret theorem in the anti De Sitter space)A non-null immersed curveγ
in H3

1 is a general helix if and only if either
(1) τ ≡ 0 and γ is a curve in some totally geodesic surface ofH3

1. The curve admits only
one axis which agrees with its binormal, being parallel along the curve and non-null. The general
helix is non-degenerate; or

(2) γ is a helix inH3
1. It admits a plane (the rectifying plane) of axes but only one is parallel

alongγ. This parallel axis is null, and soγ is degenerate, if and only ifε2 = +1 andτ = ±κ.
Otherwiseγ is non-degenerate; or

(3) there exists a certain constantb such that the curvatureκ and the torsionτ functions ofγ
are related byτ = bκ± 1. The curve admits a unique axis which can not be parallel alongγ. It is
null, and soγ is degenerate, if and only ifb = ±1 andγ has spacelike normal vector (ε2 = +1).

Remark 5.3 Compare Theorem 5.1 and Theorem 5.2 with Theorems 1 and 3 in [3], respectively.

Now we are going to solve the natural equations for general helices inM .
In [4] we have just constructed a new class of submanifolds inH3

1(−1) defined by means of
two semi-Riemannian submersionsπs : H3

1(−1) → H2
s(−4), s = 0, 1 (see details therein). By

pulling back viaπs a non-null curveγ in H2
s(−4) we get the total horizontal lift ofγ, which is

an immersed flat surfaceMγ in H3
1(−1), that will be called thesemi-Riemannian Hopf cylinder

associated toγ. Notice that ifs = 0, Mγ is a Lorentzian surface, whereas ifs = 1, Mγ is
Riemannian or Lorentzian, according toγ be spacelike or timelike, respectively.

Let γ : I → H2
s(−4) be a unit speed curve with Frenet frame{T , N} and curvature function

κ. Let γ be a horizontal lift ofγ toH3
1(−1) with Frenet frame{T,N,B}, curvatureκ = κ ◦ πs

and torsionτ = 1. Recall thatB is nothing but the unit tangent vector field to the fibers alongγ.
Then the Hopf CylinderMγ can be orthogonally parametrized by

X(t, z) =





cos(z)γ(t) + sin(z)B(t) whens = 0,

cosh(z)γ(t) + sinh(z)B(t) whens = 1.

Notice that a unit normal vector field toMγ intoH3
1(−1) is obtained from the complete hori-

zontal lift of N and it is, of course,N along each horizontal lift ofγ. As a consequence we have
thatMγ is a flat surface with mean curvature functionα is given byα = 1

2κ.

Theorem 5.4 (Solving natural equation for non-degenerate general helices inH3
1(−1).) Let β a

non-null immersed curve inH3
1. Thenβ is a non-degenerate general helix if and only if it is a

geodesic in some Hopf cylinderMγ .

Proof. Let β(s) be an arclength parametrized geodesic inMγ , then there exists two constantsa
andb such that

T (s) = β′(s) = aXt + bXz,

with ε1a
2 + ε3b

2 = δ1, δ1 being the causal character ofβ. A direct computation shows that the
curvatureρ and the torsionτ of β satisfy

ρ = ε2a
2κ + 2ab,

τ2 = ε2ρ
2 − ε1δ1κρ + 1.
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It is not difficult to see thatτ = rρ ± 1, r = b/a, showing thatβ is a general helix. Moreover, if
the normal vectorN is spacelike, thenr 6= 1 and thenβ is non-degenerate.

To prove the converse, letβ be a non-degenerate general helix inH3
1(−1) with curvatureρ and

torsionτ . Then there exists a constantr (with r 6= ±1 if the normal vector toβ is spacelike) such
thatτ = rρ ± 1. We chooseε1 = ±1 ands in {0, 1} in order toδ1(ε1 − (−1)sr2) be positive,
δ1 being the causal character ofβ. Let γ be the unique curve, up to motions, inH2

1(−4) with
curvatureκ = δ1((−1)s − ε1r

2)ρ − 2ε1(−1)sr and causal character defined byε1. Let α be the
geodesic in the Hopf cylinderMγ given byα(s) = X(as, bs) with

a2 =
δ1

ε1 − (−1)sr2
and b2 = r2a2.

It is easy to see thatβ and α have the same curvature and torsion, and also the same causal
character, showing that they are congruent.

Theorem 5.5 (Solving natural equation for degenerate general helices inH3
1(−1).) Let β a non-

null immersed curve inH3
1. Thenβ is a degenerate general helix if and only if it is a geodesic in

some flatB-scroll over a null curve.

Proof. Let β(u) be a geodesic of some flatB-scrollSα,B inH3
1(−1) (i.e.,w0 = ±1) parametrized

by β(u) = α(s(u)) + t(u)B(s(u)). Then the normal vector toβ in H3
1(−1) is given byN(u) =

β(u)−α(s(u)) + C(s(u)). From here we obtain that∇T N = T + s′(u)ρB. By using the Frenet
equations forβ we deduce that the vector(1 + ε1κ)T + ε3τB is null, whereκ y τ stand for the
curvature and torsion ofβ, respectively. ThereforeN is spacelike andτ = ±ε1κ ± 1, which
proves thatβ is a degenerate general helix.

Conversely, letβ be a curve inH3
1(−1) with curvatureκ and torsionτ satisfying thatτ = κ+ε1

and the normal vector ofβ is spacelike (the other cases are similar). We define the null curveα in
H3

1(−1) by the equation

α(s) = β(s)− 1
2
s(T (s)−B(s)),

and the following vector fields

A(s) = −ε1

2
sβ(s) +

1
2
(T (s) + B(s)) +

ε1

2
sN(s),

B(s) = −ε1(T (s)−B(s)),

C(s) = −1
2
s(T (s)−B(s)) + N(s).

It is not difficult to see that{A,B, C} is a Cartan frame alongα with w0 = 1 andρ = τ . Let
Sα,B be theB-scroll inH3

1(−1) parametrized byX(s, t) = α(s) + tB(s). Then it is clear that
β(s) = X(s,− ε1

2 s) and soβ is a geodesic of thatB-scroll.

Remark 5.6 It is worth noting that in the “if” part in Theorems 8 and 9 we have only used the
existence of an axis, not necessarily parallel. Then ifγ is a helix inH3

1(−1) with Lorentzian
rectifying plane anywhere, it turns out have both null and non-null axes. Thereforeγ is a geodesic
in a Hopf cylinder as well as in a flatB-scroll over a null curve.
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[1] L. J. Alı́as, A. Ferŕandez and P. Lucas. 2-type surfaces inS3
1 andH3

1. Tokyo J. Math., 17
(1994), 447–454.
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[4] M. Barros, A. Ferŕandez, P. Lucas and M. A. Meroño. Solutions of the Betchov-Da Rios
soliton equation in the anti-De Sitter 3-space. En ‘New Approaches in Nonlinear Analysis’,
ed. Th. M. Rassias, Hadronic Press Inc., Palm Harbor, Florida, pp. 51–71, 1999. ISBN: 1-
57485-042-3/pbk.
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