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Abstract

In this paper we introduce a reference along a null curve im-dimensional Lorentzian space

with the minimun number of curvatures. That reference generalizes the reference of Bonnor
for null curves in Minkowski space-time and it is called the Cartan frame of the curve. The as-
sociated curvature functions are called the Cartan curvatures of the curve. We characterize the
null helices (that is, null curves with constant Cartan curvatures)dimensional Lorentzian

space forms and we obtain a complete classification of them in low dimensions.

2000 Mathematics Subject Classificati@3C50, 53205, 53A35.

1. Introduction

The general theory of curves in a Riemannian manifadlchave been developed a long time
ago and now we have a deep knowledge of its local geometry as well as its global geometry.
When M is a proper semi-Riemannian manifold (that is, the indef the metric of M satisfies
1 < v <dim(M)—1) there exist three families of curves (spacelike, timelike, and null or lightlike
curves) depending on their causal characters. It is well-known[1] that the study of timelike curves
has many analogies and similarities with that of spacelike curves. However, the fact that the
induced metric on a null curve is degenerate leads to a much more complicated study and also
different from the non-degenerate case, even sometimes the geometry of a lightlike hypersurface
in a semi-Euclidean space can be investigated by using the geometry of the hypersurface as a
Riemannian hypersurface in a Euclidean space[2].

In the geometry of null curves difficulties arise because the arc length vanishes, so that it is not
possible to normalize the tangent vector in the usual way. A method of proceeding is to introduce a
new parameter called the pseudo-arc (already used by Vessiot[3]) which normalizes the derivative
of the tangent vector. This was the point of view followed by W.B. Bonnor[4] which defined two
curvaturesks and K5 in terms of the pseudo-arc and a third curvatirewhich takes only two
values, 0 and 1, according as the null curve is a straight line or otherwise without any points of
inflexion (see also the work by M. Castagnino[5]). J.L. Synge[6] follows a different procedure by
supposing that in addition to the equation of the null cuy{e), a null vectorp parallel toy' (w)
is also given. Then there exists a unique paramegerch thap = +/(u), and this new parameter
allows us to study the geometry of the curve. From a physical point of view, this corresponds to
specify both the world-line and the momentum of a photon.

The importance of the study of null curves and its presence in the physic theories is clear
from the fact that the classical relativistic string is a surface or world-sheet in Minkowski space
which satisfies the Lorentzian analogue of the minimal surface equations[7]. The string equations
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simplify to the wave equation, plus a couple of extra simple equations, and by solving the 2-
dimensional wave equation it turns out that strings are equivalent to pairs of null curves, or a single
null curve in the case of an open string (see also [8, 9, 10, 11, 12]). Recently, A. Nersessian and E.
Ramos[13] show that there exists a geometrical particle model based enterely on the geometry of
the null curves in Minkowskian 4-dimensional spacetime which under quantization yields the wave
eqguations corresponding to massive spinning particles of arbitrary spin. The same authors[14]
consider the simplest geometrical particle model associated with null curves in 3-dimensional
Lorentz-Minkowski space and show that under quantization the action, which is proportional to
the pseudo-arc length, yields tf&+ 1)-dimensional anyonic field equation supplemented with a
Majorana-like relation on mass and spin, i.e. maspin = o2, with « the coupling constant in

front of the action.

Motivated by the growing importance of null curves in mathematical physics, A. Bejancu[15]
initiated an ambitious program for the general study of the differential geometry of null curves in
Lorentzian manifolds and, more generally, in semi-Riemannian manifolds. From a complementary
vector subbundle to the tangent bundle of a null curve, he obtains the Frenet equations (with respect
to a general Frenet frame) and proves certain theorems of existence and uniqueness for null curves
in Lorentzian manifolds (see also his book[16]).

In this paper we generalize the results of Bonnor in a double sense. First, for a null curve in
ann-dimensional Lorentzian space form we introduce a Frenet frame with the minimun number
of curvature functions (which we call the Cartan frame), and then we study the null helices in
those spaces, that is, null curves with every constant curvatures. Secondly, we find a complete
classification of these curves in the Lorentzian space forms of low dimensions: the 5-dimensional
Lorentz-Minkowski spac®?, the 4-dimensional De Sitter space-ti§igand the 4-dimensional
anti-De Sitter space-tim#;. The main theorems of this paper (Theorems 4.8, 5.4 and 6.12) state
that in IR} there are 3 different families of helices, $ there is only one type of helices and,
surprisingly, inH} we can find up to nine distinct types of helices. The importance of helices and
generalized helices in physical theories is also well known, as one can see, for example, in the
previous work of the authors[17] and references therein.

2. Preliminaries

Let (M, g) be a prope(m + 2)-dimensional semi-Riemannian manifold of indgand let us
considerC' a smooth curve i/ locally parametrized by : I ¢ R — M. The curveC is said to
benull or lightlike if the tangent vectos/(¢) to C at any point is a null vector.

The following concepts are taken from [16]. L& denote the tangent bundle 6f and
define, as in the non-generate case, the buridlé by

TC = U TPCL; TPCL = {gp €TpM: 9(5107 Vp) =0},
peC

whereV, is a null vector tangent t6' atp. It is well known thatl'C* is of rankm + 1. SinceV,,
is a null vector, it easily follows thafC is a vector subbundle &FC+ of rank 1. Then we may
consider a complementary vector subbung&C) to TC in TC* such that

TCH =TCLS(TCH),
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where | means orthogonal direct sum. It is known that the subbuSigleC4), called thescreen
vector bundleof C, is non-degenerate and of dimensian Note that, in contrast with the non-
degenerate case, the tangent bundle is contained in the normal bundle, and the screen bundle is not
unigue. These two properties leads to a much more difficult and also different geometry of null
curves with respect to non-degenerate (spacelike or timelike) curves.

SinceS(TC*) is non-degenerate, we have the decomposition

TM|c = S(TCHLS(TCH)*,

where S(TC+)+ is the complementary orthogonal vector bundleSt@’C~*) in TM|c. The
following result is well-known[15].

Theorem 2.1 LetC be a null curve of a semi-Riemannian manifohd, g) and consideS(TC+)
a screen vector bundle @f. Then there exists a unique vector bunfll@ver C', of rank 1, such
that on each coordinate neighbourhobdc C' there is a unique sectioN € I'(E|¢) satisfying

(), N) =1

and
(N,N)=(N,X)=0, forall X cI'(S(TCY)|p).

The above vector bundIE will be denoted byt (C') and it is called theaull transversal bundle
of C with respect taS(T'C+). The vector fieldV is called thenull transversal vector fieldf C
with respect toy’(¢). We define the transversal vector bundlefir(C), as the vector bundle

tr(C) = ntr(C)LS(TCH),
and then we have
TM|c =TC ®tr(C) = (TC ®ntr(C))LS(TCH),
from which the following result easily follows[16].

Proposition 2.2 Let C be a null curve of a semi-Riemannian manif¢ld, g) of indexq. Then
any screen vector bundle 6f is semi-Riemannian of index— 1. Hence, ifM is a Lorentzian
manifold, then any screen vector bundle is Riemannian.

Let M7 be an orientable Lorentzian manifold and considex null curve locally parametrized
by~ :ICR— M Assume tha{+’,~”,...,7™} is alinearly independent family and define
E; = span{«',~",...,7/D},i =1,...,n. We denote by;" the complementary vector bundle
to E;in E; 1, thatis,F;,1 = E; L Ef Now we are going to construct a Frenet frameldn
alongC.

Todothat, letl. € Ey, sothaty’ = k; L, for a certain functior;. SinceE, = E; @ spar{y”},
we have

dim Ef* = dim Ey — dim E; + dim(Rad Ey) N Ey) = 1 + day,

where we writed;; = dim(Rad E;) N E;). Itis easy to see thaty; = 1 and thenElL = Fy,

so that we can choose a unit spacelike veétar satisfying £, = sparf L, W;}. Now, since
E3 = By @spar{y®} we obtain thals, = 0 and thenEy = E;. SinceFEjs is a Lorentzian
subspace of,,, then there exists only one null vectdrsuch that L, N) = 1, (W, N) = 0 and
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E5 = spaf{ L, N,W;}. In general, fori = 2,...,n — 3, we can find orthonormal spacelike vec-
tors {Wy, ..., W;} such thatF;,, = spaf{L, N,W,, ..., W;} and the basi§y’,~",...,7(t?)}
and{L, N,W1,...,W;} have the same orientation. Finally, the vect®f,, m = n — 2, is
chosen in order that the basid, N,W1,...,W,,} is positively oriented. The vector bundle

spaq{ W1, "y 7Wml is a screen vector bundle 6f. An easy computation shows that there exist
functions{ky, ..., kn+3} such that the following equations hold (compare with [15])
’7/ = ElL,

L' = koL + k3W,
N' = —koN + ksW + ksWo,
W{ = —k4L — k3N,
W4 = —ksL + keWs3,
()

W! = —kiysWi1 + kipaWisa,

/

1 = —kmt2Wm—2 + km+3Wmn,

ern = *km+3Wm71-
Tfhe setf’ = {L,N,W,...,W,,} satisfying the above equations is called ﬂ'[enet frgmeon
M along C' with respect to the screen vector bundle §p&p};. The functions{k:l, e km+3}

are called theurvature function®f C with respect toF’. Those equations are called theenet
equationof C' with respect taF'.

3. The Cartan frame of a null curve

The goal of this section is to find a Frenet frame with the minimal number of curvatures and
such that they are invariant under Lorentzian transformations. Without loss of generality we may
assume thaf is parametrized by the pseudo-arc parameter, thatfsy”) = 1. Now choose
L =+ andW; = ~", so thatk; = 1, ko = 0 andks = 1.

It is not difficult to show that the null transversal bundle is generated by the section

N=—® - % (1,4,

and then the forth curvature is given by
e — (N W = L (43 @
B = (N W) = 5 (49,4).
From the equation
ksWa = N — kqWy = —@ — <7(4),7(3)> Y - <7(3),7(3)> v,

we easily deduce

s = £/ (79,10 — (43, 4@)?,

Wa = HF]:E) (Y9 + (4,71} "+ (18,4 7).

4
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A diregt compgtation shovys that] = —ksL — ksN. After rename the curvature functions
(k1 = ky4, ko = ks andks = kg), the first four Frenet equations write down as follows:

L'=wy,

N' = kg Wy + koWo,
W/ = —kiL — N,
Wi = —koLL + kW

If the dimension is greater than 5, then by a similar reasoning we have the following Frenet equa-
tions

Wi/ =—kWi_1 + kiraWiq, (S {37 seey M — 1} )
W?é@ = _kam—la m=n-—2.

Then we have shown the following theorem.

Theorem 3.1 Lety : I — M7, n = m + 2, be a null curve parametrized by the pseudo-arc
such that{~'(t),~"(t),...,7™(t)} is a basis off},;, M} for all t. Then there exists only one
Frenet frame satisfying the equations

L' =Wy,
N' = Iqg Wi + koW,
W! = kL — N,
Wi = —kolL + kW,
W = kWit + ki Wisa i€ {3,...,m—1},
Wr/n = —kmnWmn-1,

®3)

and verifying

) For2<i<m—1,{y,7",....7/0D} and{L, N,W1,...,W;} have the same orienta-
tion.

iy {L,N,Wy,...,W,,} is positively oriented.

Definition 3.2 A null curve inM7* satisfying the conditions of the above theorem is call€a&ean
curve The above Frenet frame and curvaturgs, ko, . . ., k,,, } are called theCartan reference
and theCartan curvaturesespectively, of the curve

Let A andB denote the referencds/, v, ...,v™} and{L, N, W, Ws,..., W,,}, respec-
tively, and writeA and B for the matrices of the metric with respecttoand3, respectively. Let
D, denote the-th order main determinant of the matu that is,

&y Gy (A 9)
b <’7”, ’Y/> <’7”, ’Y”> . <,>//7 ,y(z)>
R IR GO SR (MOIPM O
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Proposition 3.3 Lety : I — M7 be a Cartan curve. Then the Cartan curvatufés, k2, ks, . . ., km }
are given by

1 D;D,
b= (19,9®), B =-Dy, =21

2 ’ D?,,
Moreoverky < 0, k; > O0forall i € {3,...,m — 1}, andk,, > 0 or k,,, < 0 according toA is

positively or negatively oriented, respectively.

Proof. The formula fork; (old k4) was computed in (1). After a straightforward computation, it
is not difficult to see that

y 1 0 0 0 0 0 0 L
ol 0 0 1 0 0 0 0 N
®) —k -1 0 0 0 0 0 Wi
&) —k 0 2k —ky O 0 0 Wa
A6 | = * * * x  —koks 0 0 W3
7(6) * * * * * —kokaky 0 Wy
() * * * * * * voo —koks... kpy Wi

If we denote byP the above matrix, then from = P!BP, P! standing for the transpose matrix,
we get
det A = (det P)?det B = —kZ Kk} ... ka" 2.

On the other hand, a direct computation leads to

D3 = —1,
Dy = _k%>
D5 = k2K,

Dg = —k3k3KS,
D; = —k2 kb 4 K207,

Do = —K2 K4, k2D,
Now the result is clear by using Theorem 3.1.

Corollary 3.4 The Cartan curvatures of a curv& in M7 are invariant under Lorentzian trans-
formations.

Definition 3.5 A curve is said to be &elix if it has constant Cartan curvatures.

A long and messy computation shows that ifs a helix then it satisfies the following differ-
ential equation

A = a19" + agy® + o+ agy™ Y, if nis evenn = 2s,
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and
A = a19" + agy@® + -+ a7V, if nisodd,n = 2s + 1,

where the coefficients are given by

1.2 E 2 k2 — E 2 k2
ai = k3 kjl k]s—i—l 2k k]l k]sfi
4<j1<<Js—i—1<n—2 3 < <Js—i<n—2
jr_j'r71>2 vr jr_jrfl>2 vr
2 2 L _
— E k‘jl...k‘js—i-kl’ Z—l,...,S 2,

3N < <Js—it1<n—2
jr*jr—l?Z Vr

n—2
2 E : 2 E / 2 1.2
Qg1 — k;2 - 2]§1 k] - k]l kj27
7j=3 3§j1<jz§n—2
J2—i122

n—2
as=—2k — Y K.
j=3

Bonnor[4] study and classify helicesR{. In this paper we are going to extend his results to
R?, ST andH;.
4. Null curves inR?

Definition 4.1 A basisB = {Ly, N1,..., Ly, N,, Wy, ..., Wy} of R, with 2r < 2¢ < n and
m = n — 2r, is said to bgseudo-orthonormai it satisfies the following equations:
<Li7 Woc> = <N17 Wa> = 07 <Wa7 Wﬁ> = Ea(saﬂv

wherei,j € {1,...,r}, a, 8 € {1,....m}, eq = —1if1 < a < ¢g—rande, = 1Iif
g—r+1<asm.

Lemma4.2 LetB = {L1,N1,..., Ly, No, W1, ..., Wy, } be a basis oR?, with2r < 2¢ < n
andm = n — 2r. Consider3’ = {Vi,...,V,, Vg41,..., Vs } where

1 .
E(LZ—NZ) 221,...,T
W, =41,

Vv, = 117" Z T+ q
E(Li_q—'_Ni_q) Z:q+1,...,q+7'
W, _op i1=q+r+1,...,n

The following conditions are equivalent:

(i) Bis a pseudo-orthonormal basis.

(i) B is an orthonormal basis.
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(i) B’ satisfies

q n
= VaiVaj+ > VeV = nyj.

a=1 B=q+1
(iv) B satisfies
T q—r m
> (LaiNaj + LajNai) = > WailWsi+ > WeilWg; = ny;.
a=1 /=1 O0=q—r+1

HereV,x, Lk, Ny, andW,,, stand for the components of vectdis L,, N, andW,, respectively,
and (n;;) denotes the matrix of the canonical metric in the standard coordinates.

Proof. (i) < (ii) It is obvious.
(i) < (iii) Consider the matrice¥” = (V;;), B = (b;;) andC = (c;;) in My, (R) given by

bij = (Vi, Vj) ,
q n
ci ==Y VaiVaj+ > VaiV.
a=l1 p=q+1

Put
v A A . B= By Bs and € — C1 O ’
Ag Ay Bs By C3 (4

whereA;, B; andC} are matrices in\,4(RR). Consider the complex matrix

A, iA
A= 7Y ") € Musn(O).
—’LA3 A4

Then a straightforward computation shows that

B B _ .
AAT = [ TBU B g qrg (TG TR
183 By —iC3 Cy
ThenB' is orthonormal if and only it”, = —1I, Cy = I andCy = C3 = 0, and that concludes the

proof.
(i) < (iv) From (1) we have

1 1

LQZE(VOH_(]"—V&) and Nazﬁ(va_,_q—va), OCE{].,...,T},

and then
LaiNaj + NaiLaj = _Vaivaj + Vv(a+q)i‘/(a+q)j, a € {1, R ,’I”} , 1,] € {1, .. ,n} s

which finishes the proof.]



Angel Ferrandez, Angel Giménez y Pascual Lucas, Null helices in Lorentzian space forms

Theorem 4.3 Letky, ko, ..., kn, : [—¢,e] — R be differentiable functions witk, < 0 andk; >
0fori € {3,...,m — 1}. Letpbe apointinR}, n = m+2, and considef{ L°, N, W, ... . W2}
a positively oriented pseudo-orthonormal basi®@t Then there exists a unique Cartan curye
in RY, withy(0) = p, whose Cartan referencel, N, W1, ..., W), } satisfies
L(0) = L°, N(0) = N°, W;(0) = W), ie{l,....,m}.
Proof. According to the general theory of differential equations, there exists a unique solution
{L,N,W1,...,W,} of (2), defined on an intervél-¢, <], and satisfying the initial conditions of
the theorem. A straightforward computation, bearing in mind (2), leads to

d G -

- (LiNj + L;N; + ; Wa,;Waj> =0, i,je{l,....,n}

Since{L(0), N(0), W1(0),...,W,,(0)} is a pseudo-orthonormal basis, then the above equation
jointly with Lemma 4.2 implies

Li(t)N;(t) + Li()Ni(t) + Y Wai(t)Waj(t) = mij,  Vt € [—£,¢].

a=1

Then by using again Lemma 4.2 we deduce fatN, Wy, ..., W,,} is a pseudo-orthonormal
basis for allt, and this concludes the prodail

The following result shows that the Cartan curvatures determine curves satisfying the nonde-
generacy conditions stated in Theorem 3.1.

Theorem 4.4 If two Cartan curveg” andC' in R} have Cartan curvature$ky, . . ., k,, }, where
ki : [-e,e] — R are differentiable functions, then there exists a Lorentzian transformation of
RT which maps”' into C.

4.1. Null helices inR?

The goal of this section is to classify the family of null heliceskip Before to do that, we
present some examples. From the general equation, we know that a null Hefsatisfies the
following differential equation

O 4 (2ky + k)Y — (k2 — 2k1k2)y" =0,
which will help us to find the examples.

Example 4.5 [Helices of Type 1] Letv, o andh be three non-zero constants such tjf%K h? <
5 andlety, ,p, : R — Ri’ be the curve defined by

® htl h202 —1 . tl h2c2 — 1 tl\/m. ;
= , =\ —5—F Sslnwt, —\/ —5——5 COSwt, —{/ —5——5 SInot,
Yw,o,h w o2 — W2 w g2 — W2 o 0% — w?

1 [1- h2w? t)
—4/—=—cosot | .
oV 02 —w?
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Then itis easy to see that, , 5, is a helix with curvatures given by
1
ki = (a +w?(1—0’h?)),
k3 = —w?o? (w2h2 — 1) (02h2 — 1) )
k3 = wio’h?.

Example 4.6 [Helices of Type 2] Letw, o and h be three non-zero constants such that
h*w? < 1 and lety, .., : R — R} be the curve defined by

1 /14 h202 1 /1 h2 2 1 — h2 2
Yo.oh(t) = ( % sinh wt, — + g —5 5 coshwt, \ / W sin ot,
” wV w +o w

1 /1 — h2w?
— w COS O't, ht | .
g w

Then~y,, .1, is a helix with curvatures given by
1
ki = (02 —w (1+02h2))
kg_—w o® (W?h?* —1) (e?h* +1),
k3 = wia’h?.

Example 4.7 [Helices of Type 3] Letr andh be two non-zero constants such that 2h? < 1
and lety, , : R — R? be the curve defined by

1 —2h? 1 s h 1 —2h? 1
You(t) = (3 (> t+ —h%t 43 —t2,§ () t— R+ 13

2\ o2p2 6 V2 2\ o2h? 6
V1 — 2h? V1 —2h?
————sinot, ——5——cosat | .

o o

Thenn, 4 is a helix with curvatures given by
1 2 2
klzia (1—2h ),
k3 = 20'h* (1 —2h%)
k3 = 202h2.
Theorem 4.8 Let v be a null curve fully immersed iR}. Then~ is a helix if and only if it is
congruent to a helix either of type 1, or type 2 or type 3.

Proof. Let k1, ko andks be the constant curvaturesp$uch thak, £ 0 # k3. By the Congruence
Theorem 4.4 it suffices to find a helix (of one of the above types) with these curvatures.

Case 1. Assume that2k; + k3) > \/(2k1 — k3)% + 4k3. Take the helixy, .5 of type 1
determined by

1 1

2

WP = 5 (2 + ) — 520 — )2 + 413,
1 1

0% = 5 (21 + 1) + 5/ (2h1 — K)2 + 483,

k2

. S—

k1 k2 — k2

10
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. . 1 1
A straightforward computation shows that < h? < —; and that the curvatures of, , , are
g w
k1, ko andk:g.

Case 2: Suppose that2k; + k3) < \/(2k:1 — k2)2 + 4k3. Take the helixy, . of type 2
determined by

1 1
WP = = (2k + ) + 5\/(%1 _R2) 4 42,
1 1
0 = 5 (2 + k) + 5/ (2h1 — K)2 + 483,
I .
2hik3 — K2

As before we have that the curvatures)gf, , areky, ko andks.

Case 3: Finally, if (2k; +k3) = \/(2k1 — k3)? + 4k3, then we can take the heliy, ;, determined
by

k2 + k3 k3
0'2 = 2 +2 3 and h2 = %
k3 2 (k2 + kg)

It is easy to see thdt? < 1/2 and the curvatures of,, arek;, ko andks. That concludes the
proof. [
5. Null curvesinSy

Lety : I — S} C R?*! be a null curve and denote by, the covariant derivative i}
along~y. Then for any vector field” along~y we have

DV =V +(V,),

where(, ) stands for the canonical metric Rﬂ”l. If {L,N,Wy,...,W,,} denotes the Cartan
reference, then equations (2) write down as follows:

v =1L,

L/ = le

N' = —v 4+ ki W1 + ko Ws,
W{ =~k L — N, (2

Wé = —koL + k3Wsj,

Wi =—kWi—1 +kipiWig1, i€{3,...,m—1},

W) = —kyWy_1.
Theorem 5.1 Let ky, ko, ...,k : [—€,¢] — R be differentiable functions withy < 0 and
ki > 0fori € {3,...,m — 1}. Letpbe apointirS}, n = m+2,and let{ L°, NO, W, ... W}

be a positively oriented pseudo-orthonormal basigg#. Then there exists a unique Cartan
curver in ST, with~(0) = p, whose Cartan referencel, N, W1, ..., W,,} satisfies

L(0)=L° N(0) = N°, W;(0) = W?, ie{l,...,m}.

(2

11
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Proof. We proceed as in the proof of Theorem 4.3. {é&t N,~, W1,..., W,,} be a solution
of (1) with initial conditions{ L°, N°, p, WP, ..., W2 }. A straightforward computation yields

d m
g | LiON; (@) + L () N(t) + ()7 (1) + > Wa(t)Wg;(t) | = 0.
5=1
Since{L", N, p, W7, ..., W2} is a pseudo-orthonormal basis, from Lemma 4.2, with r =
1, we obtain

Li(t)N;(t) + Li(ONi(t) + (0 (1) + Y Wai() W (1) = nig, Vit € [—e, ],
p=1
and then{ L(t), N (t),~(t), W1i(t),..., Wy, (t)} is a local pseudo-orthonormal frame. This con-
cludes the proofl]
The following result is clear.

Theorem 5.2 If two Cartan curveg” andC' in S} have Cartan curvatureks, .. ., k, }, where
k; : [—¢,e] — R are differentiable functions, then there exists a Lorentzian transformatisf of
which mapg” into C.

5.1. Null helices inS]

In this section we are going to classify the null helices in the 4-dimensional De Sitter space.
The Cartan frame of a null curvein S} satisfies the following equations

v =L,

L' =Wy,

N' = —y 4+ k1W1 + ko Wa, 4)
Wll = —kiL — N,
WQ/ = —koL.

An easy computation shows thatyjfis a helix, then it satisfies the following differential equation
7O 42143 — (1 4+ K3y =0,
whose general solution is
~v(t) = Ay sinhwt 4+ Ay coshwt + Assinot + Ay cosot + As,
whereAq, Ay, A3, A4 and A5 are constant vectors [ﬁ?.

Example 5.3 Lety,,, : R — S} C R} be the null curve defined by

1 1 . 1 1 . 1 wi—1 o¢-1
Yw,o(t) =1/ ———= | —sinhwt, — coshwt, —sinot, — cos ot, 5— + 5 ,
w w o o w

w? + 02
wherew ando are non-zero constants such thds? > 1.
A direct computation shows thatis a null helix with curvatures
1

k1 = 5 (02 —wQ) and k3 =w?o? - 1.

12
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Theorem 5.4 Let y be a null curve fully immersed ifi}. Theny is a helix if and only if it is
congruent to one of the family described in Example 5.3.

Proof. Let v be a null helix irS‘ll with curvatures:; andk,. Consider the constanisando given

by
w:\/—k1+\/k%+k§+1 and 0:\/k1+\/k%+k§+l.

Then from (5) we deduce that, , has curvatures; andk,, so that we get the result by using the
congruence Theorem 5.21

6. Null curves inHY

Lety : I — H} c RS be a null curve and denote by, the covariant derivative i}
along~y. Then for any vector field along~y we have

DV =V —(V,) 7,

where(, ) stands for the canonical metric Rg“. If {L,N,W1,...,W,,} denotes the Cartan
reference, then we have the following equations
v =L,
L' =Wy,
N =+ kyWi + koW,
W! = —kL—N, 2)

Wy = —koL + ksWs,
Wi = —kiWi_1 + kipaWip, i€{3,...,m—1},
W = ks Win_1.

Theorem 6.1 Let ky, ko, ...,k : [—€,¢] — R be differentiable functions with, < 0 and
ki > 0fori € {3,...,m — 1}. Letp be apointinH}, n = m+2, andlet{ L°, NO, W, ... W}
be a positively oriented pseudo-orthonormal basigdfl}. Then there exists a unique Cartan
curver in HY, with~(0) = p, whose Cartan referenc., N, W1, ..., W,,} satisfies

L(0) = L°, N(0) = N°, W;(0) = W2, ie{l,...,m}.

7

Proof. We proceed as in the proof of Theorem 5.1. Két N,~,Wy,...,W,,} be a solution
of (1) with initial conditions{ L°, N°, p, W, ..., W7 }. A straightforward computation yields

DA LN 1) + Ly ON:) —3050) + D W))W (1) | = 0.
B=1

Since{ L%, N, p, W?,..., W } is a pseudo-orthonormal basis, from Lemma 4.2, with 2 and
r =1, we obtain

Li(t)N;(t) + Li(O)Ni(t) = %(0); () + Y Wai()Wg;(t) = mig, Vit € [—e, ],
p=1

13
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andthen(L(t), N(t),v(t), Wi(t), ..., Wi (t)} is alocal pseudo-orthonormal frame with ) =
—1. That concludes the prodfl
The following result is clear.

Theorem 6.2 If two Cartan curve<” andC' in H} have Cartan curvature$ky, . . ., k, }, where

k; : [—e,e] — R are differentiable functions, then there exists a Lorentzian transformation of
H? which mapg into C.

6.1. Null helices inH

Let ~ be a null curve irfHl{, then its Cartan frame satsifies the following equations

V=L,

L' =Wy,

N/Z’Y—Flel-i-kQWQ, 4)
Wll =—kiL — N,
WQI = —koL.

If v is a helix, then it is easy to see that it verifies the following ordinary differential equation
7 42k ®) 4+ (1 - k2)y = 0.

Before we state the main result of this section we present some examples of helices in the
4-dimensional anti De Sitter space.

Example 6.3 [Helices of Type Al] LeD < w? < 1 and lety,, be the curve il defined by

t 1 1 1 1
Yo (t) = (2 coshwt, — (cosh wt — §Wt sinh wt) ,—= (sinh wt — iwt cosh wt) ,
w w

w2
t . V1—wt
ﬂsmhwt,i .

w2
Then~,, is a helix with curvatures
ki =—w? and k3 =1-w

Example 6.4 [Helices of Type A2] LeD < o2 < 1 and lety, be the curve irfl] defined by

) = (L (sinot— 2otcosot ), t+ Sotsinot), —— t
= | = (sinot — =otcosot | ,— | cosot + —otsinot | ,—— coso
Vo o2 2 o2 2 " 20 ’

t . V1—ot
—sinot, ———— | .
20 o

Then~, is a helix with curvatures

ki =02 and k¥=1-o"

14
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Example 6.5 [Helices of Type A3] Letv? = 1 and lety be the null curve irHl] defined by

Then~ is a helix with curvatures
kEy=0 and k3 =1.
~ will be called thenull quarticin Hj.

Example 6.6 [Helices of Type B1] LeD < w? < o2 andw?0? < 1, and lety,,, be the curve in
H{ defined by

1 1 . 1 1 . 1 1+wt 1404
Yuo(t) =4/ 55 | —sinwt, — coswt, —sinot, — cosat, 5~ 3 :
' o°—w* \w w o o w o

Thenr, , is a helix with curvatures

1
k1 = 3 (w2 + 02) and k3 =1-—w?c?
Example 6.7 [Helices of Type B2] LeD < ¢? < w? andw?s? < 1, and lety, , be the curve in

H{ defined by

o2 2

w2 —02\w o o w

1 1 1 1 1 1 41 4
Vo,o(t) =1 —5—— ( sinh wt, — cosh ot, — sinh ot, — cosh wt, \/ to  1tw ) .
w

Thenr, » is a helix with curvatures

1
ki = ) (w2 + 02) and k3 =1-—w?0?

Example 6.8 [Helices of Type B3] Letr # 0 and lety, be the curve i} defined by

2+20" -0t 1
’ya(t):< +2o sinot, — cosat>

202\/1+c% o 2\/1+a4’02

Then~, is a helix with curvatures

2

klz% and k3 =1.

Example 6.9 [Helices of Type B4] Letv # 0 and lety,, be the curve i} defined by

2+2 1 1 ¢ t
Yol(t) = < + 20 + Wt — sinhwt, — coshwt, ——= )

2w2V/1 + wt Tw? VTt w
Then~,, is a helix with curvatures

w2
2

k= — and k3 =1.

15
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Example 6.10 [Helices of Type B5] Letvo # 0 and lety,, , be the curve it} defined by

[ 1 1 41 41 1 1 1
Voo (t) = 21 o2 (\/ :;) + 1_20 ,wsinhwt,wcoshwt,Usinat,gcosat).

Then, , is a helix with curvatures

(0 —w?) and k3 =1+w?o?

Example 6.11 [Helices of Type C] Letv? + 02 < 1 and lety,, , be the curve iffl{ defined by

" 2wo (w? +02)

—2wo coshwt cos ot + (w2 — 02) sinh wt sin o't, (w2 + 02) sinh wt cos ot,

(w? + 0?) sinhwtsinot, 2wo /1 — (w2 + 02)2> :

Voo (1) 2wo cosh wt sin ot + (w2 — 02) sinh wt cos ot,

Thenn, » is a helix with curvatures

k= —-w?+0? and k%zl—(w2+02)2.

Theorem 6.12 Let~y be a null curve fully immersed iHl;. Then is a helix if and only if it is
congruent to one helix of the families described in Examples 6.3-6.11.

Proof. That result can be obtained following a similar reasoning as in the precedent cases. The
idea of the proof consists of finding, for any constaatandks = 0, a helix in one of the above

nine examples with curvaturds andk,. The following table collects all the possibilities and
figure 8 represents a diagram of them.

16
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Case Type | Parameters

B2 +k3=1,k <0,0<k3<1|Al |w?=—k

E+k3=1,k>00<ki<l|A2 |o0?=k

ki=0,k3=1 A3

RAk>Lh>00<k<1|Bl | W=k —\l+k-1,
=t TR

E24+k2>1,k <0,0<ki<1|B2 |w?=—k +\/k}+k3—1,
02:4@1-\/@

k2 +k3>1,k >0k3=1 B3 | 0% =2k

k2 4+ k2> 1,k <0,k3=1 B4 | w?= 2k

k3> 1 B5 | w®=—k +/k}+k3—1,
o =k + K+ k31

k2 + k2 <1 C w2=;<—k‘1+ 1—k‘%>,
02:;<k1+ 1—k%>
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