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Abstract

We obtain a Lancret-type theorem for null generalized helices in Lorentz-Minkowski spaces.

In the 3-dimensional space we get that the only null generalized helices are the ordinary

null helices. In the 5-dimensional space, we distinguish between null generalized helices with

non-null or null axis and in both cases we solve the natural equations problem.

1 Introduction

The study of generalized helices in 3-dimensional Euclidean space R3 amounts to 1802
when M.A. Lancret stated that (see [13] for details) “a necessary and sufficient condition
in order to a curve be a generalized helix is that its torsion is a constant multiple of its
curvature”. Here a generalized helix is a curve of constant slope, that is, a curve whose
tangent indicatrix is a planar curve.

The n-dimensional case (n odd) was considered by Hayden in 1931 (see [8]) where he
introduced the “generalized helix” as the curve defined by the properties

κn−1

κn−2
= const.,

κn−3

κn−4
= const., . . . ,

κ2

κ1
= const.,

where κ1, κ2, . . . , κn−1 are the curvatures of the curve.

In R3, a generalized helix satisfies that its tangent makes a constant angle with a
fixed direction (called the axis). In the general case, we must replace “fixed” direction by
“parallel vector field”. Hayden proved in [8, 9] that a curve is a generalized helix is there
exists a parallel vector field lying in the osculating space of the curve and making constant
angles with the tangent and the principal normals.

When the ambient space is a Lorentzian space form, some results have been obtained.
For example, in [2], a non-null curve γ immersed in L3 is called a generalized helix if
its tangent indicatrix is contained in some plane, say π, of L3. Since π can be either
degenerate or non-degenerate, then both cases are distinguished by calling degenerate and
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non-degenerate generalized helices, respectively. Then the authors give a sort of Lancret
theorem for generalized helices in L3 which formally agrees with the classical one. In
fact they proved that “generalized helices in L3 correspond with non-null curves in L3 for
which the ratio of torsion to curvature is constant”.

In the geometry of null curves difficulties arise because the arc length vanishes, so that
it is not possible to normalize the tangent vector in the usual way. A method of proceeding
is to introduce a new parameter called the pseudo-arc which normalizes the derivative of
the tangent vector (see [4] and [16]). In [6] we generalize the results of Bonnor, since for
a null curve in an n-dimensional Lorentzian space form we introduce a Frenet frame with
the minimun number of curvature functions (which we call the Cartan frame), and then
we study the null helices in those spaces, that is, null curves with constant curvatures.
In this paper we use the Cartan frame (and the Cartan curvatures) introduced in [6] to
define and study null generalized helices in the Lorentz-Minkowski spaces (some results
for null curves in 3-dimensional spaces are obtained in [1]).

To point out the interest of generalized helices it should be mentioned that they arise
in the context of the interplay between geometry and integrable Hamiltonian systems (see
[10] and [11]). In [3] we have found parametrized solutions of the localized induction
equation (LIE) in the 3-dimensional anti De Sitter space, so that the soliton solutions are
the null geodesics of the Lorentzian Hopf cylinders. Therefore there is a natural geometric
evolution on generalized helices inducing a mKdV curvature evolution equation coming
from the LIE. The role of generalized helices here is probably similar to that of curves of
constant torsion or constant natural curvature (see [11]).

Other applications of generalized helices can be found in [12], where the author pro-
posed a mathematical model of the auditory process in the cochlea that doesn’t neglect the
effect of cochlea coiling, and [7], where the authors obtained, for inhomogeneous electro-
magnetic waves in isotropic media, the operator evolution solutions of Maxwell equations;
in the case of homogeneous waves an evolution operator is associated with a set of right-
handed and left-handed generalized helices.

This paper is organized as follows. First we remember the Frenet references for null
curves in an orientable Lorentzian manifold and obtain similar equations for spacelike
curves in lightlike totally geodesic submanifolds of a Lorentzian space form. By using those
equations, in the next section we define the null generalized helices in odd dimensional
spaces and obtain a Lancret-type theorem (see Theorem 5). In sect. 4 we get that the
only generalized helices in 3-dimensional Lorentz-Minkowski space are the ordinary helices
(Proposition 6); as for null generalized helices in 5-dimensional Lorentz-Minkowski space
we prove the following result (Theorem 8):

Let Γ be a null Cartan curve in R5
1, υ 6= 0 a constant unit vector (spacelike or timelike)

and Σ the orthogonal hyperplane (resp. timelike or spacelike) to υ in R5
1. Let Υ denotes

the projection of Γ onto Σ. Then Γ is a generalized helix with axis υ if and only if Υ is a

curve in Σ with constant curvature and torsion.

From that result we can solve the natural equations problem for generalized helices
with non-degenerate axis (Theorem 9):

2



Let Γ be a null Cartan curve in R5
1. Then Γ is a generalized helix with non-degenerate axis

if and only if it is a null geodesic of a Lorentzian cylinder C1 = Υ×R1
1 or C2 = Υ×R1, where

Υ is a non-degenerate curve (spacelike in R4 or timelike in R4
1) with constant curvature

and torsion.

Finally, for null generalized helices Γ with null axis, we prove the following (Theorem
10):

If Γ is a generalized helix with null axis υ 6= 0 and Σ denotes its lightlike orthogonal

hyperplane, then the curvatures ρ1, ρ2 and ρ3 of the projected spacelike curve Υ are given

by:

ρ1(s) =
r̃√
s
, ρ3 = r̃1ρ2,

for certain constants r̃ and r̃1. Conversely, if Υ is a spacelike curve in a lightlike hyperplane

of R5
1 whose curvatures satisfy the above relations, then there exist a null generalized helix

Γ in R5
1 whose projection onto Σ is just exactly Υ.

The natural equations problem for null generalized helices with null axis can be solved
as follows (Theorem 11):

Let Γ be a null Cartan curve in R5
1. Then Γ is a null generalized helix with null axis if and

only if it is a geodesic in a Lorentzian surface Υ × R1
0, where Υ is a timelike generalized

helix in R5
1 with null axis and with constant first curvature, and R1

0 stands for the direction

of the axis.

2 Preliminaries

Let E be a real vector space with a symmetric bilinear mapping g : E × E → R. We say
that g is degenerate on E if there exists a vector ξ 6= 0 in E such that

g(ξ, v) = 0, for all v ∈ E;

otherwise, g is said to be non-degenerate. The radical (also called the null space) of E,
with respect to g, is the subspace rad(E) of E defined by

rad(E) = {ξ ∈ E | g(ξ, v) = 0, v ∈ E}.

The dimension of rad(E) is called the nullity degree of g (or E) and is denoted by rE .

If F is a subspace of E, then we can consider gF the symmetric bilinear mapping on
F × F obtained by restricting g and define rF as the nullity degree of F (or gF ). For
simplicity, we will use 〈, 〉 instead of g or gF .

A vector v is said to be timelike, lightlike or spacelike provided that g(v, v) < 0,
g(v, v) = 0 (and v 6= 0), or g(v, v) > 0, respectively. The vector v = 0 is assumed to be
spacelike. A unit vector is a vector u such that g(u, u) = ±1.

Two vectors u and v are said to be orthogonal, written u ⊥ v, if g(u, v) = 0. Similarly,
two subsets U and V of E are said to be orthogonal if u ⊥ v for any u ∈ U and v ∈ V .
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Given two orthogonal subspaces F1 and F2 in E with F1∩F2 = {0}, the orthogonal direct
sum of F1 and F2 will be denoted by F1 ⊥ F2.

Lemma 1 Let (E, 〈, 〉) be a bilinear space and let F be a hyperplane of E. Let rF =
dim rad(F ) and rE = dim rad(E). Then the following statements hold:

(i) If rF = 0 and rE = 1, then there exists a null vector L such that

E = F⊥span {L} .

(ii) If rF = rE ∈ {0, 1}, then there exists a non-null unit vector V such that

E = F⊥span {V } .

Moreover, if rad(E) = {0} then V is unique, up to the sign.

(iii) If rF = 1 and rE = 0, and F = F1⊥L, where L ∈ rad(F ) and F1 is non-degenerate,

then there exists a unique null vector N such that 〈L,N〉 = ε, ε = ±1, and

E = (span {L} ⊕ span {N})⊥F1.

Proof. We only need to make some algebraic computations.

(i) Since F is non-degenerate, then E = F⊥F⊥, where F⊥ = span {L} for a certain
vector L. The inclusion rad(E) ⊂ F⊥ implies rad(E) = F⊥ and so L is a null vector.

(ii) We may assume that rF = rE = 1. By considering F = F1⊥span {L}, where
F1 is non-degenerate and L is null, then E = F1⊥F⊥

1 . Since dimF⊥
1 = 2, then

F⊥
1 = span {L} ⊕ span {V }, where rad(E) = span {L} and V is a non-null vector in

F⊥, so that the required splitting is fulfilled.

(iii) By a similar reasoning we may assume that F = F1⊥span {L}, where F⊥
1 = span {L}⊕

span {V }. Since rad(E) = {0} then 〈L, V 〉 6= 0. Let N be the vector defined by

N =
ε

〈L, V 〉

(
V − 〈V, V 〉

2 〈L, V 〉
L

)
.

It is easy to see that N is the only vector satisfying 〈N,N〉 = 0, 〈L,N〉 = ε and
N ∈ F⊥

1 , and the splitting follows. �

3 Frenet references for null curves

Let Mn
1 be an orientable Lorentzian manifold and consider Γ a null curve locally parametrized

by γ : I ⊂ R −→ Mn
1 . Assume that

{
γ′, γ′′, . . . , γ(n)

}
is linearly independent and posi-

tively oriented. Then following similar computations to that given in [6] we can construct
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a (non unique) general Frenet reference satisfying the following equations:

γ′ = k̄1L̄,

L̄′ = −k̄2L̄ + k̄3W̄1,

W̄ ′
1 = −k̄4L̄ + k̄3N̄ ,

N̄ ′ = k̄2N̄ − k̄4W̄1 + k̄5W̄2,

W̄ ′
2 = k̄5L̄ + k̄6W̄3,

W̄ ′
i = −k̄i+3W̄i−1 + k̄i+4W̄i+1, 3 ≤ i ≤ m− 2,

W̄ ′
m−1 = −k̄m+2W̄m−2 + k̄m+3W̄m,

W̄ ′
m = −k̄m+3W̄m−1.

(1)

where
〈
L̄, L̄

〉
=

〈
N̄ , N̄

〉
= 0 and

〈
L̄, N̄

〉
= −1.

The set F =
{
L̄, W̄1, N̄ , W̄2, . . . , W̄m

}
satisfying the above equations is called the

Frenet reference on Mn
1 along Γ with respect to the screen vector bundle span{W̄i}. The

functions
{
k̄1, . . . , k̄m+3

}
are called the curvature functions of Γ with respect to F . Those

equations are called the Frenet equations of Γ with respect to F .

The Frenet reference F is said to be distinguished if k̄1 = 1 and k̄2 = 0. There are
many distinguished Frenet references, but for each given parameter on the curve, we can
uniquelly construct an associated distinguished reference. In particular, if we choose the
pseudo-arc parameter, the associated distinguished Frenet reference is called the Cartan
reference of the curve. We have the following result.

Theorem 2 ([6]) Let γ : I −→ Mn
1 , n = m + 2, be a null curve parametrized by the

pseudo-arc such that
{
γ′(t), γ′′(t), . . . , γ(n)(t)

}
is a basis of Tγ(t)M

n
1 for all t. Then there

exists only one Frenet reference satisfying the equations

L′ = W1,

W ′
1 = −k1L + N,

N ′ = −k1W1 + k2W2,

W ′
2 = k2L + k3W3,

W ′
i = −kiWi−1 + ki+1Wi+1 i ∈ {3, . . . ,m− 1} ,

W ′
m = −kmWm−1,

(2)

and verifying

(i)
{
γ′, γ′′, . . . , γ(i)

}
and {L,W1, N, W2, . . . ,Wi−2} have the same orientation for 1 6

i 6 m− 1,

(ii) {L,W1, N, W2, . . . ,Wm} is positively oriented.

Furthermore, the curvature functions satisfy ki > 0 for all i ≥ 2.
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4 Frenet references for spacelike curves in lightlike totally

geodesic submanifolds of a Lorentzian space form

Let Nm be a lightlike totally geodesic submanifold in an oriented Lorentzian manifold
Mn

1 and consider a spacelike curve Υ locally parametrized by β : J ⊂ R −→ Nm, with
s denoting the arc-length parameter. Let us assume that

{
β′(s), . . . , β(m)(s)

}
is a basis

of Tβ(s)N
m for all s ∈ J . Write Ei(s) = span

{
β′(s), . . . , β(i)(s)

}
, for 1 ≤ i ≤ m, and

assume that dim rad(Ei(s)) is constant for all s ∈ J . Since Υ is contained in a lightlike
submanifold, there exist an index 1 ≤ i0 ≤ m satisfying dim rad(Ei0) = 1. Let us denote
r = min {i : dim rad(Ei) = 1}, then r > 1 because Υ is spacelike, and dim rad(Ej) = 1
for j > r.

Now we are going to construct a Frenet reference for this kind of curves. The first
vector of the reference is T (s) = β′(s). In a similar way as in the non-degenerate case, and
using the Gram-Schmidt method applied to Er−1, we can construct a set of orthonormal
spacelike vectors {T, V1, . . . , Vr−2} satisfying that Ej+1 = span {T, V1, . . . , Vj}, for 1 ≤ j ≤
r − 2. As dim rad(Er) = 1, by using Lemma 1 we can find a vector L (not unique) such
that

Er = Er−1⊥span {L} = span {T, V1, . . . , Vr−2}⊥span {L} .

A straightforward computation shows that the following equations hold:

β′(s) = T

T ′ = ρ1V1

V ′
1 = −ρ1T + ρ2V2

V ′
i = −ρiVi−1 + ρi+1Vi+1 2 ≤ i ≤ r − 3

V ′
r−2 = −ρr−2Vr−3 + ρr−1L

(3)

where ρj : J −→ R are differentiable functions and ( )′ denotes covariant derivative in
Nm, which in this case agrees with the covariant derivative of the ambient space Mn

1 .

Our goal is to show that r = m. Let us assume that r = m−1, then dim rad(Em−1) =
dim rad(Em) = 1. Taking into account Lemma 1, there exist a unit spacelike vector
Vr−1 such that Em = Em−1⊥span {Vr−1}. By derivating we can add to (3) the following
equations:

L′ = ρrL+ ρr+1Vr−1,

V ′
r−1 = ρr+2L,

(4)

from which we deduce

ρr+1 =
〈
L′, Vr−1

〉
=

d

ds
〈L, Vr−1〉 −

〈
L, V ′

r−1

〉
= 0,

and then L′ = ρrL. Since L ∈ span
{
β′, . . . , β(r)

}
, we can write L = λ1β

′ + · · · + λrβ
(r),

with λr 6= 0, and then L′ ∈ span
{
β′, . . . , β(r)

}
. We deduce β(r+1) ∈ span

{
β′, . . . , β(r)

}
,

which contradicts the hypothesis. Hence r 6= m− 1.
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Now let us assume r < m − 1. Then we can find two unit spacelike vectors Vr−1 and
Vr satisfying

Er+2 = Er+1⊥span {Vr} = Er⊥span {Vr−1}⊥span {Vr} ,

and such that L′ = ρrL+ρr+1Vr−1. Since L ∈ rad(Er+2), then
〈
L, β(r+1)

〉
=

〈
L, β(r+2)

〉
=

0, and hence
〈
L′, β(r+1)

〉
= 0. The hypothesis implies that ρr+1 6= 0 and then

〈
Vr−1, β

(r+1)
〉

=
0, that is equivalent Vr−1 ∈ rad(Er+1), which is a contradiction. Hence we conclude that
r = m and the Frenet reference is {T, V1, . . . , Vm−2,L}, satisfying the following equations

β′(s) = T

T ′ = ρ1V1

V ′
1 = −ρ1T + ρ2V2

V ′
i = −ρiVi−1 + ρi+1Vi+1 2 ≤ i ≤ m− 3

V ′
m−2 = −ρm−2Vm−3 + ρm−1L
L′ = ρmL

(5)

That reference, as in the non-degenerate case, can be constructed in a unique way (up to
orientation) except L. The vector L can be arbitrarily chosen depending on each situation;
a good choice is ρm−1 = ±1. In any case we need at least m − 1 curvature functions in
order to determine completely the curve. Moreover, the most natural criterion to choose
the orientation is to consider that

{
β′, . . . , β(i+1)

}
and {T, V1, . . . , Vi}, 1 ≤ i ≤ m− 2 have

the same orientation, and that {T, V1, . . . , Vm−2,L} is positively oriented.

The following theorems of existence, uniqueness and congruence can be proved in a
similar way as in [6]. Now Mn

1 (c) denotes a Lorentzian space form of constant curvature
c.

Theorem 3 Let ρ1, ρ2, . . . , ρm : [−ε, ε] −→ R be differentiable functions. Let Nm be a

lightlike totally geodesic submanifold of Mn
1 (c), p a point in Nm and consider a positively

oriented pseudo-orthonormal basis
{
T 0, V 0

1 , . . . , V 0
m−2,L0

}
of TpN

m. Then there exists a

unique spacelike Cartan curve α in Mn
1 (c), contained in Nm with α(0) = p, whose Cartan

reference {T, V1, . . . , Vm−2,L} satisfies

T (0) = T 0, V1(0) = V 0
1 , . . . , Vm−2(0) = V 0

m−2,L(0) = L0.

Theorem 4 If two spacelike Cartan curves C and C̄ in Mn
1 (c), contained in a lightlike

totally geodesic submanifold Nm, have Cartan curvatures in Nm {ρ1, . . . , ρm}, where

ρi : [−ε, ε] −→ R are differentiable functions, then there exists a Lorentzian transformation

of Mn
1 (or of Nm) which maps C into C̄.

5 Null generalized helices in the Lorentz-Minkowski space

Let Γ ⊂ Rn
1 , n = 2q + 3, be a null Cartan curve locally parametrized by γ : I −→ Rn

1 , and
consider m = n − 2 = 2q + 1. In a similar way to the non-degenerate case (see [8], [9],
[14], [15], [17], [18]), we present the following definition.
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Definition 1 A null Cartan curve γ : I −→ Rn
1 , n = 2q + 3, is said to be a generalized

helix if there exist a non-zero constant vector v such that the products 〈γ′(t), υ〉 6= 0,
〈N(t), υ〉 and 〈W2i+1(t), υ〉 6= 0, 1 ≤ i ≤ q − 1, are constant.

In the non-degenerate case, the above vectors appearing in the definition are unitary
and the constancy of those products imply that the curve γ makes a constant angle with
some of the vectors of the Cartan reference. The straight line generated by v is uniquely
determined and will be called the axis of γ. That line can be spacelike, timelike or lightlike.
When v is a non-null vector (i.e. spacelike or timelike), we can assume without loss of
generality that v is unitary.

A classical result stated by M.A. Lancret in 1802 and first proved by B. de Saint Venant
in 1845 (see [13] for details) says that “a curve in R3 is a generalized helix if and only if
the ratio of curvature to torsion is constant”. The following proposition is a generalization
of this result to null curves in Lorentz-Minkowski spaces.

Theorem 5 (The Lancret theorem for null curves) Let γ : I −→ Rn
1 be a null Car-

tan curve. Then the following statements are equivalent:

(i) There exist constants {r, r1, . . . , rq} (ri 6= 0) such that

k1(t) = r and k2i+1(t) = rik2i(t) for 1 ≤ i ≤ q, n = 2q + 3.

(ii) γ is a generalized helix.

Proof. “(i) ⇒ (ii)” Bearing in mind (2) we can write

L′ = W1,

N ′ = −k1W1 + k2W2,

W ′
2i+1 = −k2i+1W2i + k2i+2W2i+2, 1 ≤ i ≤ q − 1,

W ′
m = −kmWm−1.

(6)

Let us denote Ri =
∏

j≥i rj , and consider the vector field along the curve γ given by

υ(t) = R1(rL + N) +
q−1∑
i=1

Ri+1W2i+1 + Wm.

Taking into account (6), statement (i) and that riRi+1 = Ri, we have the following:

dυ

dt
(t) = R1(rL′ + N ′) +

q−1∑
i=1

Ri+1W
′
2i+1 + W ′

m

= R1(rW1 − k1W1 + k2W2) +
q−1∑
i=1

(−Rik2iW2i + Ri+1k2i+2W2i+2)− rqkm−1Wm−1

= R1k2W2 + (−R1k2W2 + R2k4W4) + (−R2k4W4 + R3k6W6)

+ · · ·+
(
−Rm−3

2
km−3Wm−3 + Rm−1

2
km−1Wm−1

)
−Rm−1

2
km−1Wm−1

= 0,
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showing that υ(t) is a constant vector. Moreover, it is easy to see that 〈υ, L〉, 〈υ, N〉 and
〈υ, W2i+1〉 are constant, and that concludes the first part of the proof.

“(ii) ⇒ (i)” Now there exist a non-zero constant vector v satisfying the conditions of
the definition. By derivating we have

0 =
d

dt
〈L, υ〉 =

〈
L′, υ

〉
= 〈W1, υ〉 ,

which implies that υ ∈ span {W1(t)}⊥ for all t ∈ I. On the other and,

0 =
d

dt
〈N, υ〉 = 〈−k1W1 + k2W2, υ〉 = k2 〈W2, υ〉 .

Since k2 6= 0, that equation yields υ ∈ span {W2(t)}⊥ for all t ∈ I. Finally, applying the
same ideas we have

0 =
d

dt
〈υ, W2i+1〉 = k2i+2 〈υ, W2i+2〉 = 0, 1 ≤ i ≤ q − 1,

and then υ ∈ span {W2i+2}⊥, 1 ≤ i ≤ q − 1. Then we obtain

υ ∈ (span {L} ⊕ span {N})⊥

 ⊕
1≤i≤q

span {W2i+1}

 ,

so that we can write

υ = %L + %1N +
q∑

i=1

%2i+1W2i+1,

for certain functions % and %j . From the hypothesis we deduce that % and %j are constant,
for j < m. But for j = m we have

d%m

dt
=

d

dt
〈υ, Wm〉 = −km 〈υ, Wm−1〉 = 0,

showing that %m is also constant. All these computations lead to the following

0 =
dυ

dt
= %L′ + %1N

′ +
q∑

i=1

%2i+1W
′
2i+1

= %W1 + %1(−k1W1 + k2W2) +
q−1∑
i=1

%2i+1(−k2i+1W2i + k2i+2W2i+2)− %mkmWm−1

= (%− %1k1)W1 + (%1k2 − %3k3)W2 + (%3k4 − %5k5)W4

+ · · ·+ (%m−2km−1 − %mkm)Wm1 .

But that equation holds if and only if

k1 =
%

%1
= r, k2i+1 =

%2i−1

%2i+1
k2i = rik2i.

Observe that, since γ is fully immersed, the constants %i 6= 0 for all i. �
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6 Null generalized helices in low dimensions

The 3-dimensional case

Let γ : I −→ R3
1 be a null Cartan curve with reference {L,W,N}. The Cartan equations

write down as follows:

L′ = W,

W ′ = −kL + N

N ′ = −kW.

(7)

Then γ : I −→ R3
1 is a generalized helix if there exist a constant vector υ 6= 0 such that

〈γ′, υ〉 is constant. That means that the tangent indicatrix lies in a plane, or equivalently,
there exists a vector v 6= 0 in R3

1 which is orthogonal to the acceleration vector field of γ.
The following result is an easy consequence of Theorem 5.

Proposition 6 Let γ : I −→ R3
1 be a null Cartan curve. Then γ is a generalized helix if

and only if γ is a Cartan helix.

It is well-known that, up to congruences, there are exactly three types of helices,
according to its curvature function (or its axis):

Curve Curvature Axis

γ(t) =
(
− t

σ
,

1
σ2

sinσt,
1
σ2

cos σt

)
k =

1
2
σ2 > 0 υ = (1, 0, 0) timelike

γ(t) =
(

1
ω2

sinhωt,
1
ω2

coshωt,− t

ω

)
k = −1

2
ω2 < 0 υ = (0, 0, 1) spacelike

γ(t) =
(

t3

4
+

t

3
,
t2

2
,
t3

4
− t

3

)
k = 0 υ = (1, 0, 1) null.

The 5-dimensional case with non-null axis

Let Γ be a null Cartan curve in R5
1 with Cartan reference {L,W1, N, W2,W3}. In this case,

Γ is a generalized helix if there exist a constant vector υ 6= 0 satisfying that 〈υ, L〉 = λ and
〈υ, N〉 = λ1 are constant. The Cartan equations in this situation write down as follows:

L′ = W1,

W ′
1 = −k1L + N,

N ′ = −k1W1 + k2W2,

W ′
2 = k2L + k3W3,

W ′
3 = −k3W2.

(8)

Consider υ 6= 0 a non-zero unit vector (spacelike or timelike), and put 〈υ, υ〉 = ε. Let Σ
denotes the orthogonal hyperplane (resp. timelike or spacelike) to υ. Then we have the

10



following decomposition:

R5
1 = span {υ}⊥span {υ}⊥ = span {υ}⊥Σ.

Let P denotes the projection map onto the hyperplane Σ and let Υ be the curve in Σ ob-
tained by projecting Γ, i.e. Υ = P (Γ). Let γ : I −→ R5

1 be the pseudo-arc parametrization
of γ and denote β̄ : I −→ Σ the parametrization of Υ with respect to the same parameter
t. Then we can write

γ(t) = β̄(t) + µ̄(t)υ (9)

where µ̄ : I −→ R is a non constant differentiable function. Taking derivatives in the last
equation we have

L(t) = β̄′(t) + µ̄′(t)υ,

and by multiplication we obtain〈
β̄′(t), β̄′(t)

〉
= −µ̄′(t)2ε.

Then the projected curve Υ is spacelike (resp. timelike) according to υ is timelike (resp.
spacelike). Let β : J −→ Σ be the arc-length parametrization of Υ and let s denotes the
arc-length parameter. Let us consider its Frenet reference {`(s), n1(s), n2(s), n3(s)} with
`(s) = β′(s) and 〈`(s), `(s)〉 = −ε, satisfying the following Frenet equations:

`′ = k̃1n1,

n′1 = εk̃1` + k̃2n2,

n′2 = −k̃2n1 + k̃3n3,

n′3 = −k̃3n2.

(10)

The following result relates the curvatures of the null curve Γ in R5
1 with the curvatures

of its projection Υ in a hyperplane Σ.

Lemma 7 Let Γ be a null curve in the 5-dimensional Lorentz-Minkowski R5
1 and consider

Υ the orthogonal projection of Γ onto a non-degenerate hyperplane Σ. Let us denote by

t and s the pseudo-arc and arc parameters of Γ and Υ, respectively. Then s and t are

linearly related if and only if the first curvature k̃1 of Υ is constant. Moreover, in this

case, k1 is constant if and only if k̃2 is constant.

Proof. With respect to s, equation (9) writes down as follows

γ(t(s)) = β(s) + µ(s)υ,

where β(s) = β̄(t(s)) and µ(s) = µ̄(t(s)). By taking derivatives with respect to s we have:

L(t(s))t′(s) = `(s) + µ′(s)υ, (11)

which implies
0 = −ε + µ′(s)2ε = ε(µ′(s)2 − 1),

11



and so µ(s) is a linear function. By derivating again we deduce

W1(t(s))t′(s)2 + L(t(s))t′′(s) = k̃1n1,

that yields
t′(s)4 = k̃1(s)2.

This shows the first part of Lemma. The last claim of Lemma follows from the fact that
t′′(s) = 0 and k̃1 is constant; an easy and similar reasoning yields the conclusion. �

We are in position to state a result that relates null generalized helices in R5
1 with

non-degenerate axis and non-degenerate curves in a hyperplane of R5
1.

Theorem 8 Let Γ be a null Cartan curve in R5
1, υ 6= 0 a constant unit vector (spacelike

or timelike) and Σ the orthogonal hyperplane (resp. timelike or spacelike) to υ in R5
1. Let

Υ denotes the projection of Γ onto Σ. Then Γ is a generalized helix with axis υ if and

only if Υ is a curve in Σ with constant curvature and torsion.

Proof. From Lemma 7, to prove the first implication we only need to show that s and t

are linearly related. From equation (11) we obtain λt′(s) = εµ′(s) = ε and since 〈L, υ〉 = λ

is constant we deduce that t(s) is a linear function.

Conversely, let us assume that k̃1 and k̃2 are constant. From Lemma 7 we have that t

and s are linearly related, and k1 is constant. Now we are going to find a constant r such
that k3 = rk2. A straightforward computation leads to the following expressions for the
curvature functions:

k1(t(s)) = − k̃2
2 − εk̃2

1

2k̃1

,

k2(t(s))2 =
k̃2

2

k̃2
1

k̃3(s)2,

k3(t(s))2 =
1
k̃1

k̃3(s)2.

Hence k3 = rk2 with r2 = k̃1

k̃2
2

. �

The following result can be deduced from the last theorem.

Theorem 9 (Solving natural equation for generalized helices with non-degenerate axis.)
Let Γ be a null Cartan curve in R5

1. Then Γ is a generalized helix with non-degenerate axis

if and only if it is a null geodesic of a Lorentzian cylinder C1 = Υ×R1
1 or C2 = Υ×R1, where

Υ is a non-degenerate curve (spacelike in R4 or timelike in R4
1) with constant curvature

and torsion.

The 5-dimensional case with null axis

In the following we are going to study null generalized helices with null axis. The main
difficulty now is that the orthogonal hyperplane to the axis is also lightlike and then we
can project in different ways.
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Let v be the axis of the helix and Σ the orthogonal hyperplane, so that υ ∈ Σ. By the
general theory of lightlike hypersurfaces (see [5]) we have the decomposition

TpR5
1 = TpΣ⊕ tr(TpΣ) = (span {υ}⊥S(TpΣ))⊕ tr(TpΣ), ∀p ∈ Σ,

where tr(TΣ) =
⋃

p∈Σ tr(TpΣ) is called a screen transversal vector bundle and S(TΣ) =⋃
p∈Σ S(TpΣ) is called a screen distribution. Then each choice of a screen distribution pro-

vides a projection map on Σ, so that the problem is finding a canonical screen distribution
(or the most canonical screen distribution in some sense).

Let Γ be a null generalized helix with null axis υ locally parametrized by γ : I −→ R5
1.

Since 〈L, υ〉 = λ is constant, where L is the tangent vector, then L̃ = 1
λL is a transversal

section along Γ satisfying
〈
L̃, υ

〉
= 1. Let Υ denotes the projection of Γ with respect to

L̃, which is locally parametrized by

β̄(t) = γ(t)− 〈γ(t), υ〉 L̃(t).

Since 〈γ′(t), υ〉 = λ, then 〈γ(t), υ〉 = λ(t + σ) where σ is a constant, from which we have

β̄(t) = γ(t)− (t + σ)L(t). (12)

The Frenet equations (5) write down as follows

T ′ = ρ1V1

V ′
1 = −ρ1T + ρ2V2

V ′
2 = −ρ2V1 + ρ3υ

υ′ = 0

(13)

where we have choosen L = υ.

Theorem 10 Let Γ be a null Cartan curve in R5
1. If Γ is a generalized helix with null

axis υ 6= 0 and Σ denotes its lightlike orthogonal hyperplane, then the curvatures ρ1, ρ2

and ρ3 of the projected spacelike curve Υ, obtained as in (12), are given by:

ρ1(s) =
r̃√
s
, ρ3 = r̃1ρ2, (14)

for certain constants r̃ and r̃1. Conversely, if Υ is a spacelike curve in a lightlike hyperplane

of R5
1 whose curvatures satisfy (14), then there exist a null generalized helix Γ in R5

1 whose

projection onto Σ is just exactly Υ.

Proof. Let s denotes the arc-length parameter of Υ, then (12) can be rewritten as

β(s) = γ(t(s))− (t(s) + σ)L(t(s)),

where t stands for the pseudo-arc parameter of Γ. Taking derivatives and using the Frenet
equations we get

T (s) = −(t(s) + σ)t′(s)W1(t(s)),
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from which we deduce that

t(s) = −σ +
√

σ2 + 2(s + ω),

for a constant ω, and so t′(s) = 1/
√

σ2 + 2(s + ω). Without loss of generality, let us
assume that σ = ω = 0. By derivating, taking into account the Frenet equations and using
that k1 is constant and k3 = r1k2, with r1 constant, we deduce the following formulae:

ρ1(s) =
√

k1√
s

, ρ2(s) =
k2(s)

2
√

k1
√

s
, ρ3(s) = −r1k2(s)√

2s
.

Then we can take r̃ =
√

k1 and r̃1 = −
√

2k1r1, and this concludes the proof.

Conversely, let Υ be a spacelike curve in a lightlike hyperplane Σ locally parametrized
by β : J −→ Σ. Put Σ = span {υ}⊥, where υ is a null vector. Let {T, V1, V2,L = υ}
be the Frenet reference satisfying (13), where the curvatures verify (14) (s denoting the
arc-length parameter). The Frenet reference {T, V1, V2,L = υ} can be completed (in a
unique way) to a basis of Tβ(s)R5

1, for all s ∈ J , by adding a vector field N (s) along β(s)
satisfying

〈L,N〉 = −1, 〈T,N〉 = 〈V1,N〉 = 〈V2,N〉 = 〈N ,N〉 = 0.

An easy computation shows that N ′(s) = ρ3(s)V2(s) = r̃1ρ2(s)V2(s). Then it is a straight-
forward computation to see that the curve

γ̄(s) = β(s) +
√

s

r̃

(
V1(s)−

r̃1

2
υ − 1

r̃1
N (s)

)
is a parametrization of a null generalized helix Γ with axis v. First, γ̄ is a null curve since

γ̄′(s) =
1

2r̃
√

s

(
V1(s)−

r̃1

s
υ − 1

r̃1
N (s)

)
.

Now let t be the pseudo-arc parameter of Γ and put γ̄(s) = γ(t(s)). By taking derivatives
we get

γ̄′′(s) = γ′′(t(s))t′(s)2 + γ′(t(s))t′′(s)

= − 1
2s

T (s) +
1

4r̃s
√

s

(
−V1(s) +

r̃1

2
υ +

1
r̃1
N (s)

)
,

from which we deduce 〈
γ̄′′(s), γ̄′′(s)

〉
= t′(s)4 =

1
4s2

,

and so t′(s) = 1/
√

2s. From here, a long and messy computation yields the Frenet reference
of Γ:

L =
1√
2r̃

(
V1 −

r̃1

2
υ − 1

r̃1
N

)
,

W1 = −T,

N =
r̃√
2

(
V1 −

r̃1

2
υ − 1

r̃1
N

)
,

W2 = −V2,

W3 = − r̃1

2
+

1
r̃1
N .
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These equations imply that Γ is a null generalized helix with null axis υ, since 〈L, υ〉 =
1√
2r̃r̃1

and 〈N, υ〉 = r̃√
2r̃1

are constant. Moreover, the curvatures are given by

k1 = r̃2, k2 = 2r̃
√

sρ2, k3 =
√

2
√

sρ2,

which concludes the proof. �

Now let Γ be a null generalized helix with null axis, whose curvatures satisfy k1(t) = r

and k3(t) = r1k2(t), then the axis is given by

υ = −1
2

(
rL + N +

1
r1

W3

)
,

where r = 1
2r2

1
.

Let us consider a timelike curve Υ in R5
1 parametrized by β : J −→ R5

1, with Frenet
reference {`, n1, n2, n3, n4} satisfying the following equations:

`′ = k̃1n1,

n′1 = k̃1` + k̃2n2,

n′2 = −k̃2n1 + k̃3n3,

n′3 = −k̃3n2 + k̃4n4,

n′4 = −k̃4n3,

(15)

with `(s) = β′(s), s standing for the arc parameter. Following [9], the curve Υ is said to
be a generalized helix if there exist a constant vector υ 6= 0 such that the products 〈β′, υ〉
and 〈n2, υ〉 are constant. In this case, the Lancret theorem assures us that k̃2 = r̃1k̃1 and
k̃4 = r̃3k̃3. Moreover, the axis is given by

υ =
1
2

(
` +

1
r̃1

n2 +
1

r̃1r̃3
n4

)
.

If the axis υ is null (〈υ, υ〉 = 0), then we have r̃1 =
√

1 + 1/r̃2
3.

Let us consider the surface S locally parametrized by

X(s, ω) = β(t) + ωυ, (16)

then
∂X

∂s
(s, ω) = `(s),

∂X

∂ω
= υ,

showing that S is a Lorentzian surface of R5
1. The null geodesics Γ in S can be parametrized

by
γ̄(s) = β(s)− (s + σ)υ, (17)

where σ is constant. Let t be the pseudo-arc parameter of Γ (as a curve of R5
1), then

γ̄(s) = γ(t(s)). A long and messy computation, from equation (17), yields the following
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relations among the Cartan curvatures of Γ and the generalized helix Υ:

k1(t(s)) =
1
2

k̃1(s)
r̃2
3

− 7
8

k̃′1(s)
2

k̃1(s)3
+

1
2

k̃′′1(s)
k̃1(s)2

,

k2(t(s)) =

√
1 + r̃2

3

r̃3
k̃2

3(s),

k3(t(s)) =

√
1 + r̃2

3

k̃1(s)
k̃3(s).

As a consequence, we obtain that Γ is a null generalized helix with null axis if and only if
k̃1(s) is constant. In this case,

k1 = r =
1
2

k̃1

r̃2
3

, r1 =
r̃3√
k̃1

.

From here and by using the theorem for existence and uniqueness of timelike curves R5
1,

we can prove the following theorem.

Theorem 11 (Solving natural equation for generalized helices with degenerate axis.) Let

Γ be a null Cartan curve in R5
1. Then Γ is a generalized helix with null axis if and only if

it is a geodesic in a Lorentzian surface Υ× R1
0, where Υ is a timelike generalized helix in

R5
1 with null axis and with constant first curvature, and R1

0 stands for the direction of the

axis.
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Angel Ferrández (aferr@um.es), Angel Giménez (agpastor@um.es), Pascual Lucas (plucas@um.es)
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