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Abstract

In this paper we introduce s-degenerate curves in Lorentzian space forms as those ones

whose derivative of order s is a null vector provided that s > 1 and all derivatives of order

less than s are spacelike (see the exact definition in section 2). In this sense classical null

curves are 1-degenerate curves. We obtain a reference along an s-degenerate curve in an

n-dimensional Lorentzian space with the minimun number of curvatures. That reference

generalizes the reference of Bonnor for null curves in Minkowski spacetime and it will be

called the Cartan frame of the curve. The associated curvature functions are called the Cartan

curvatures of the curve. We characterize the s-degenerate helices (that is, s-degenerate curves

with constant Cartan curvatures) in n-dimensional Lorentzian space forms and we obtain a

complete classification of them in dimension four.

1 Introduction

The geometry of null hypersurfaces in spacetimes has played an important role in the
development of general relativity, as well as in mathematics and physics of gravitation. It
is necessary, for example, to understand the causal structure of spacetimes, black holes,
assymptotically flat systems and gravitational waves.

A starting point to study null surfaces, or in general null hypersurfaces, consists of
investigating the curves that live in those hypersurfaces. In this sense, the null curves in
Lorentzian space forms has been studied by several authors (see, for example, [2], [3], [9],
and references therein).

However, in a null hypersurface there are many other curves distinct from the null
ones. They are spacelike curves with a null higher derivative, that is, s-degenerate curves
(see section 2 for details). In this paper we study s-degenerate curves in Lorentzian space
forms Mn

1 and obtain existence, uniqueness and congruence theorems for that kind of
curves. Notice that they must be spacelike curves.

Timelike and lightlike trajectories are the natural ones in spacetime geometries, but
some recent experiments point out the existence of superluminal particles (spacelike trayec-
tories) without any breakdown of the principle of relativity; theoretical developments exist
suggesting that neutrinos might be instances of “tachyons” as their square mass appears
to be negative. A model has recently been presented to fit the cosmic ray spectrum at
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E ≈ 1 − 4PeV, [6, 7, 8], using the hypothesis that the electron neutrino is a tachyon.
This model yields a value for m2(νe) ≈ −3eV 2, which is consistent with the results from
recent mesurements in tritium beta decay experiments, [4], [11], [14]. Moreover, the muon
neutrino also exhibits a negative mass-squared, [1]. However, as it is pointed out in [5], at
present time we have not a satisfactory quantum theory for tachyonic fermions, so more
theoretical work would be needed to determine a physically acceptable theory.

In [12] the author considers a model of a D-dimensional massless particle described by
a Lagrangian proportional to the Nth extrinsic curvature of the world-line. He presents
the Hamiltonian formulation of the system and shows that its trajectories are spacelike
curves.

Therefore, it is required to construct a complete (at least local) theory of spacelike tra-
jectories for neutrinos. Here, we are intended to provide a suitable mathematical macchin-
ery to support the recent advances in theoretical physics.

In this paper we prove the following theorems.

Theorem 4. Let k1, . . . , km : [−δ, δ] −→ R be differentiable functions with ki > 0 for i 6=
s,m. Let p be a point in Mn

1 , n = m+2, and let
{
W 0

1 , . . . ,W 0
s−1, L

0,W 0
s , N0,W 0

s+1, . . . ,W
0
m

}
be a positively oriented pseudo-orthonormal basis of TpMn

1 (c). Then there exists a unique

s-degenerate Cartan curve γ in Mn
1 (c), with γ(0) = p, whose Cartan reference satisfies:

L(0) = L0, N(0) = N0,Wi(0) = W 0
i , i ∈ {1, . . . ,m} .

Theorem 5. If two s-degenerate Cartan curves C and C̄ in Mn
1 (c) have Cartan curvatures

{k1, . . . , km}, where ki : [−δ, δ] −→ R are differentiable functions, then there exists a

Lorentzian transformation of Mn
1 (c) which maps bijectively C into C̄.

In section 5 we characterize the 2-degenerate helices (that is, 2-degenerate curves with
constant Cartan curvatures) in 4-dimensional Lorentzian space forms and we obtain a
complete classification of them.

2 Frenet frames for s-degenerate curves

The goal of this section is to find Frenet frames for s-degenerate curves in Lorentzian space
forms. Before to do that, we need a technical result.

Let E be a real vector space with a symmetric bilinear mapping g : E × E → R. We
say that g is degenerate on E if there exists a vector ξ 6= 0 in E such that

g(ξ, v) = 0, for all v ∈ E;

otherwise, g is said to be non-degenerate. The radical (also called the null space) of E,
with respect to g, is the subspace Rad(E) of E defined by

Rad(E) = {ξ ∈ E | g(ξ, v) = 0, v ∈ E}.

The dimension of Rad(E) is called the nullity degree of g (or E) and is denoted by rE .
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If F is a subspace of E, then we can consider gF the symmetric bilinear mapping on
F × F obtained by restricting g and define rF as the nullity degree of F (or gF ). For
simplicity, we will use 〈, 〉 instead of g or gF .

A vector v is said to be timelike, lightlike or spacelike provided that g(v, v) < 0,
g(v, v) = 0 (and v 6= 0), or g(v, v) > 0, respectively. The vector v = 0 is assumed to be
spacelike. A unit vector is a vector u such that g(u, u) = ±1.

Two vectors u and v are said to be orthogonal, written u ⊥ v, if g(u, v) = 0. Similarly,
two subsets U and V of E are said to be orthogonal if u ⊥ v for any u ∈ U and v ∈ V .
Given two orthogonal subspaces F1 and F2 in E with F1∩F2 = {0}, the orthogonal direct
sum of F1 and F2 will be denoted by F1 ⊥ F2.

Lemma 1 Let (E, 〈, 〉) be a bilinear space and let F be a hyperplane of E. Let rF =
dim Rad(F ) and rE = dim Rad(E). Then the following statements hold:

(i) If rF = 0 and rE = 1, then there exists a null vector L such that

E = F⊥span {L} .

(ii) If rF = rE ∈ {0, 1}, then there exists a non-null unit vector V such that

E = F⊥span {V } .

Moreover, if Rad(E) = {0} then V is unique, up to the sign.

(iii) If rF = 1 and rE = 0, and F = F1⊥L, where L ∈ Rad(F ) and F1 is non-degenerate,

then there exists a unique null vector N such that 〈L,N〉 = ε, ε = ±1, and

E = (span {L} ⊕ span {N})⊥F1.

Proof. We only need to make some algebraic computations.

(i) Since F is non-degenerate, then E = F⊥F⊥, where F⊥ = span {L} for a certain
vector L. The inclusion Rad(E) ⊂ F⊥ implies Rad(E) = F⊥ and so L is a null
vector.

(ii) We may assume that rF = rE = 1. By considering F = F1⊥span {L}, where
F1 is non-degenerate and L is null, then E = F1⊥F⊥

1 . Since dim F⊥
1 = 2, then

F⊥
1 = span {L}⊕ span {V }, where Rad(E) = span {L} and V is a non-null vector in

F⊥, so that the required splitting is fulfilled.

(iii) By a similar reasoning we may assume that F = F1⊥span {L}, where F⊥
1 = span {L}⊕

span {V }. Since Rad(E) = {0} then 〈L, V 〉 6= 0. Let N be the vector defined by

N =
ε

〈L, V 〉

(
V − 〈V, V 〉

2 〈L, V 〉
L

)
.

It is easy to see that N is the only vector satisfying 〈N,N〉 = 0, 〈L,N〉 = ε and
N ∈ F⊥

1 , and the splitting follows. �
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Let (Mn
1 ,∇) be an oriented Lorentzian manifold and let γ : I −→ Mn

1 be a differen-
tiable curve in Mn

1 . For any vector field V along γ, let V ′ be the covariant derivative of
V along γ. Write Ei(t) = span

{
γ′(t), γ′′(t), . . . , γ(i)(t)

}
, where t ∈ I and i = 1, 2, . . . , n.

Let d be the number defined by d = max {i : dim Ei(t) = i for all t}.

Definition 1 With the above notations, the curve γ : I −→ Mn
1 is said to be an s-

degenerate (or s-lightlike) curve if for all 1 ≤ i ≤ d, dim Rad(Ei(t)) is constant for all t,
and there exists s, 0 < s ≤ d, such that Rad(Es) 6= {0} and Rad(Ej) = {0} for all j < s.

Remark 1 Note that 1-degenerate curves are precisely the null (or lightlike) curves (see,
for instance, [2], [3], [9], and references therein). In this paper we will focus on s-degenerate
curves, s > 1), in Lorentzian spaces. Notice that they must be spacelike curves.

To find the Frenet frames, we will distinguish four cases separately:

1) d = n and s ≤ d.

2) d < n and s = d.

3) d < n and s = d− 1.

4) d < n and s < d− 1.

Case 1: d = n and s ≤ d

First of all, write γ′ = k̄1W1, where W1 is a unit spacelike vector such that k̄1 > 0. Then
E2 = span {W1}⊕span {γ′′}, so that from Lemma 1 there exists a unit spacelike vector W2

such that E2 = span {W1}⊥span {W2}. Furthermore, W2 is unique by choosing it in such
a way that {γ′, γ′′} and {W1,W2} have the same orientation. By proceeding iteratively,
using Lemma 1, we obtain a set {W1, . . . ,Ws−1} of orthonormal spacelike sections along γ

such that
{
γ′, . . . , γ(i)

}
and {W1, . . . ,Wi} have the same orientation for all i, 1 ≤ i ≤ s−1.

Now we have Es = Es−1 ⊕ span
{
γ(s)
}

and dim Rad(Es) = 1. By using again Lemma 1
we can find a (not unique) null vector field L such that Es = Es−1 ⊕ span {L}. As
s 6= n, because En is non-degenerate, then Es+1 = Es ⊕ span

{
γ(s+1)

}
. Now we will

prove that dim Rad(Es+1) = 1. By assuming that dim Rad(Es+1) = 0, then there exists
a unique null vector field N satisfying 〈Wi, N〉 = 〈N,N〉 = 0, 〈L,N〉 = ε, ε = ±1,
and Es+1 = span {W1, . . . ,Ws−1, L,N}. By taking derivatives we obtain the following
equations:

γ′ = k̄1W1,

W ′
1 = k̄2W2,

W ′
i = −k̄iWi−1 + k̄i+1Wi+1, 2 ≤ i ≤ s− 2,

W ′
s−1 = −k̄s−1Ws−2 + εk̄sL,

L′ = εk̄s+1L,

for certain functions k̄j , j = 1, . . . , s + 1. As L ∈ span
{
γ′, . . . , γ(s)

}
, we can write

L = λ1γ
′ + . . . + λsγ

(s), with λs 6= 0, and therefore L′ = (∗) + λsγ
(s+1) = εk̄s+1L ∈

span
{
γ′, . . . , γ(s)

}
. We conclude that γ(s+1) ∈ span

{
γ′, . . . , γ(s)

}
, which can not hold.
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Then dim Rad(Es+1) = 1, and using Lemma 1 once more there exists a (not unique)
vector field Ws such that

{
γ′, . . . , γ(s+1)

}
and {W1, . . . ,Ws−1, L,Ws} have the same ori-

entation. Since n > s + 1, we claim that dim Rad(Es+2) = 0. Otherwise, there exists a
unit spacelike vector field Ws+1 orthogonal to Es+1. By differentiating we obtain

W ′
s−1 = −k̄s−1Ws−2 + εk̄sL,

L′ = εk̄s+1L + k̄s+2Ws.
(1)

Since Rad(Es+2) = span {L} we get
〈
L, γ(s+1)

〉
=
〈
L, γ(s+2)

〉
= 0, so that

〈
L′, γ(s+1)

〉
= 0.

From here and (1) we find that
〈
Ws, γ

(s+1)
〉

= 0 (i.e., Ws lies in Rad(Es+1)), which
is a contradiction. Hence dim Rad(Es+2) = 0 and there exists a unique N satisfying
〈N,L〉 = ε and 〈N,Wi〉 = 0. We choose ε in such a way that

{
γ′, . . . , γ(s+2)

}
and

{W1, . . . ,Ws−1, L,Ws, N} have the same orientation. If s + 2 = n, the process concludes;
otherwise, dim Rad(Ei) = 0 for i > s+2 and we can obtain orthonormal spacelike sections
{Ws+1, . . . ,Wm}, m = n−2, with the same orientation rule. The vector field Wm is chosen
in order that {W1, . . . ,Ws−1, L,Ws, N, Ws+1, . . . ,Wm} is positively oriented. Regarding
this reference, we have the following equations

γ′ = k̄1W1,

W ′
1 = k̄2W2,

W ′
i = −k̄iWi−1 + k̄i+1Wi+1, 2 ≤ i ≤ s− 2,

W ′
s−1 = −k̄s−1Ws−2 + εk̄sL,

L′ = εk̄s+1L + k̄s+2Ws,

W ′
s = εk̄s+3L− εk̄s+2N,

N ′ = −k̄sWs−1 − εk̄s+1N − k̄s+3Ws + k̄s+4Ws+1,

W ′
s+1 = −εk̄s+4L + k̄s+5Ws+2,

W ′
j = −k̄j+3Wj−1 + k̄j+4Wj+1, s + 2 ≤ j ≤ m− 1,

W ′
m = −k̄m+3Wm−1,

for certain functions {k̄1, . . . , k̄m+3}. The set F = {W1, . . . ,Ws−1, L,Ws, N, Ws+1, . . . ,Wm}
is said to be a Frenet reference along γ. The functions

{
k̄1, . . . , k̄m+3

}
are called the curva-

ture functions of γ with respect to F . The above equations are called the Frenet equations
of γ with respect to F .

Case 2: d < n and s = d

A similar reasoning as in Case 1 shows that there exists a set {W1, . . . ,Ws−1, L} such
that L is a null vector, {W1, . . . ,Ws−1} is an orthonormal set of spacelike vectors and
Ed = span {W1, . . . ,Ws−1, L}. Then we can obtain the following equations:

γ′ = k̄1W1,

W ′
1 = k̄2W2,

W ′
i = −k̄iWi−1 + k̄i+1Wi+1, 2 ≤ i ≤ s− 2,

W ′
s−1 = −k̄s−1Ws−2 + εk̄sL,

L′ = εk̄s+1L,
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for certain functions {k̄1, . . . , k̄s+1}. If Mn
1 is a Lorentzian space form, then γ lies in a

d-dimensional totally geodesic lightlike submanifold. This can be proved by adapting the
proofs of Theorems 5 and 9 of Chapter 7 in [13]. This case has been treated in Sect. 4 of
[10].

Case 3. d < n and s = d− 1

As above again, we obtain Ed = span {W1, . . . ,Ws−1, L,Ws} and equations

W ′
s−1 = −k̄s−1Ws−2 + εk̄sL,

L′ = εk̄s+1L + k̄s+2Ws,

W ′
s = εk̄s+3L.

Since Ws lies in E⊥
s , we have

〈
Ws, γ

(s)
〉

= 0. By differentiating here we deduce that〈
Ws, γ

(s+1)
〉

= 0, which is a contradiction.

Case 4: d < n and s < d− 1

Now we have Ed = {W1, . . . ,Ws−1, L,Ws, N, Ws+1, . . . ,Wd−2}. Working as in case of non-
degenerate curves (see, for example, [13, Vol. IV]), if Mn

1 is a Lorentzian space form we
deduce that γ lies in a d-dimensional non-degenerate totally geodesic submanifold of Mn

1 .
So this case reduces to Case 1.

Remark 2 Before going any further, we note that the type s does not depend on the
parameter of the curve. To see that let t̄ be another parameter and write γ(t) = β(t̄(t)).
By differentiating with respect to t we get γ(i)(t) =

∑i
j=1 xij(t)βj(t̄), that is, Ei =

span
{
γ′(t), . . . , γ(i)(t)

}
= span

{
β′(t̄), . . . , β(i)(t̄)

}
, which shows the claim.

On the other hand, let Φ : Mn
1 −→ Mn

1 be an isometry and γ̄(t) = (Φ ◦ γ)(t). Then
for all vector field V along γ we have

D̄

dt

(
dΦγ(t)(V (t))

)
= dΦγ(t)

(
D

dt
V (t)

)
,

where Dt and D̄t stand for the covariant derivatives along γ and γ̄, respectively.

Hence
〈
γ(i)(t), γ(j)(t)

〉
=
〈
γ̄(i)(t), γ̄(j)(t)

〉
, showing that this kind of curves are invariant

under Lorentzian transformations, in the sense that the type s does not change under a
Lorentzian transformation.

3 The Cartan reference of an s-degenerate curve

The goal of this section is to find a Frenet frame with the minimal number of curvatures and
such that they are invariant under Lorentzian transformations. We will restrict ourselves
to Case 1. Without loss of generality, let us assume that γ is arc-length parametrized, so
that W1 = γ′ and k̄1 = 1. By taking k̄s = ε, Lemma 1 leads to a uniquely determined set
{W1, . . . ,Ws−1, L}. Therefore we only need to find Ws.
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Suppose that Ws and W ∗
s are two distinct vector fields generating two distinct Frenet

frames, that is,

{W1, . . . ,Ws−1, L,Ws, N, Ws+1, . . . ,Wm} −→
{
k̄1 = 1, k̄2, . . . , k̄s = 1, k̄s+1, . . . , k̄m+3

}{
W1, . . . ,Ws−1, L,W ∗

s , N∗,W ∗
s+1, . . . ,W

∗
m

}
−→

{
k̄1 = 1, k̄2, . . . , k̄s = 1, k̄∗s+1, . . . , k̄

∗
m+3

}
A straightforward computation shows that

W ∗
s = fL + Ws, N∗ = −1

2
f2L + N − fWs, k̄∗s+1 = k̄s+1 − fk̄s+2, (2)

where f : I −→ R is a differentiable function. We can choose f in such a way that
k̄∗s+1 = 0. Then by reordering the curvature functions we have the following equations:

γ′ = W1,

W ′
1 = k1W2,

W ′
i = −ki−1Wi−1 + kiWi+1, 2 ≤ i ≤ s− 2,

W ′
s−1 = −ks−2Ws−2 + L,

L′ = ks−1Ws,

W ′
s = εksL− εks−1N,

N ′ = −εWs−1 − ksWs + ks+1Ws+1,

W ′
s+1 = −εks+1L + ks+2Ws+2,

W ′
j = −kjWj−1 + kj+1Wj+1, s + 2 ≤ j ≤ m− 1,

W ′
m = −kmWm−1,

(3)

for certain functions {k1, . . . , km}. Bearing in mind (2) we can easily deduce the following
result.

Theorem 2 Let γ : I −→ Mn
1 , n = m + 2, be an s-degenerate unit curve, s > 1, and

suppose that
{
γ′(t), γ′′(t), . . . , γ(n)(t)

}
spans Tγ(t)M

n
1 , for all t. Then there exists a unique

Frenet frame satisfying the equations (3).

Definition 2 An s-degenerate curve, s > 1, satisfying the above conditions is said to be
an s-degenerate Cartan curve. The reference and curvature functions given by (3) will be
called the Cartan reference and Cartan curvatures of γ, respectively.

Observe that when m > s then ε = −1 and ki > 0 for i 6= s, and km > 0 (km < 0, resp.)
according to {γ′, γ′′, . . . , γ(n)} is positively or negatively oriented, respectively. However,
when m = s then ε = −1 or ε = 1 according to {γ′, γ′′, . . . , γ(n)} is positively or negatively
oriented, respectively, and ki > 0 for i 6= s.

Definition 3 An s-degenerate helix in Mn
1 is an s-degenerate Cartan curve having con-

stant Cartan curvatures.
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4 s-degenerate curves in Lorentzian space forms

Let γ : I −→ Mn
1 (c) be an s-degenerate Cartan curve, Mn

1 (c) standing for Rn
1 , Sn

1

o Hn
1 , according to c = 0, c = 1 or c = −1, respectively. Let Dt denote the co-

variant derivative in Mn
1 (c) along γ. Then for any vector field V along γ we have

DtV = V ′ + c 〈V, γ′〉 γ, where 〈, 〉 denotes the standard metric in Rn
1 , Rn+1

1 or Rn+1
2 . If

{W1, . . . ,Ws−1, L,Ws, N, Ws+1, . . . ,Wm} is the Cartan reference, then equations (3) write
down as follows:

γ′ = W1,

W ′
1 = k1W2 − cγ,

W ′
i = −ki−1Wi−1 + kiWi+1, 2 ≤ i ≤ s− 2,

W ′
s−1 = −ks−2Ws−2 + L,

L′ = ks−1Ws,

W ′
s = εksL− εks−1N,

N ′ = −εWs−1 − ksWs + ks+1Ws+1,

W ′
s+1 = −εks+1L + ks+2Ws+2,

W ′
j = −kjWj−1 + kj+1Wj+1, s + 2 ≤ j ≤ m− 1,

W ′
m = −kmWm−1.

(4)

Now we state the following question:

Let {W1, . . . ,Ws−1, L,Ws, N, Ws+1, . . . ,Wm} be a reference satisfying (3) for
certain functions kj. Is there an s-degenerate Cartan curve γ having {W1, . . . ,

Ws−1, L,Ws, N, Ws+1, . . . ,Wm} as Cartan reference and kj as Cartan curva-
tures?

The answer is affirmative, as we will show in this section. But before to do that, we are
going to state and prove an algebraic result.

Definition 4 A basis B = {L1, N1, . . . , Lr, Nr,W1, . . . ,Wm} of Rn
q , with 2r ≤ 2q ≤ n and

m = n− 2r, is said to be pseudo-orthonormal if it satisfies the following equations:

〈Li, Lj〉 = 〈Ni, Nj〉 = 0, 〈Li, Ni〉 = εi, 〈Li, Nj〉 = 0 i 6= j,

〈Li,Wα〉 = 〈Ni,Wα〉 = 0, 〈Wα,Wβ〉 = εαδαβ ,

where i, j ∈ {1, . . . , r}, α, β ∈ {1, . . . ,m}, εα = −1 if 1 ≤ α ≤ q − r and εα = 1 if
q − r + 1 ≤ α ≤ m.

Lemma 3 Let B = {L1, N1, . . . , Lr, Nr,W1, . . . ,Wm} be a basis of Rn
q , with 2r ≤ 2q ≤ n

and m = n− 2r. Consider B′ = {V1, . . . , Vq, Vq+1, . . . , Vn} where

Vi =



1√
2

(Li − εiNi) i = 1, . . . , r

Wi−r i = r + 1, . . . , q
1√
2

(Li−q + εi−qNi−q) i = q + 1, . . . , q + r

Wi−2r i = q + r + 1, . . . , n

(5)
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The following conditions are equivalent:

(i) B is a pseudo-orthonormal basis.

(ii) B′ is an orthonormal basis.

(iii) B′ satisfies

−
q∑

α=1

VαiVαj +
n∑

β=q+1

VβiVβj = ηij .

(iv) B satisfies

r∑
α=1

εα (LαiNαj + LαjNαi)−
q−r∑
β=1

WβiWβj +
m∑

θ=q−r+1

WθiWθj = ηij .

Here Vρk, Lρk, Nρk and Wρk stand for the components of vectors Vρ, Lρ, Nρ and Wρ, respec-

tively, and (ηij) denotes the matrix of the canonical metric in the standard coordinates.

Proof. (i) ⇔ (ii) It is obvious.

(ii) ⇔ (iii) Consider the matrices V = (Vij), B = (bij) and C = (cij) in Mn×n(R) given
by

bij = 〈Vi, Vj〉 ,

cij = −
q∑

α=1

VαiVαj +
n∑

β=q+1

VβiVβj .

Put

V =

(
A1 A2

A3 A4

)
, B =

(
B1 B2

B3 B4

)
and C =

(
C1 C2

C3 C4

)
,

where A1, B1 and C1 are matrices in Mq×q(R). Consider the complex matrix

A =

(
A1 iA2

−iA3 A4

)
∈Mn×n(C).

Then a straightforward computation shows that

AAT =

(
−B1 iB2

iB3 B4

)
and AT A =

(
−C1 −iC2

−iC3 C4

)
.

Then B′ is orthonormal if and only if C1 = −I, C4 = I and C2 = C3 = 0.

(iii) ⇔ (iv) From (5) we have

Lα =
1√
2

(Vα+q + Vα) and Nα =
εα√

2
(Vα+q − Vα) , α ∈ {1, . . . , r} ,

and therefore

εα (LαiNαj + NαiLαj) = −VαiVαj + V(α+q)iV(α+q)j , α ∈ {1, . . . , r} , i, j ∈ {1, . . . , n} ,

which finishes the proof.
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Theorem 4 Let k1, . . . , km : [−δ, δ] −→ R be differentiable functions with ki > 0 for i 6=
s,m. Let p be a point in Mn

1 , n = m+2, and let
{
W 0

1 , . . . ,W 0
s−1, L

0,W 0
s , N0,W 0

s+1, . . . ,W
0
m

}
be a positively oriented pseudo-orthonormal basis of TpMn

1 (c). Then there exists a unique

s-degenerate Cartan curve γ in Mn
1 (c), with γ(0) = p, whose Cartan reference satisfies:

L(0) = L0, N(0) = N0,Wi(0) = W 0
i , i ∈ {1, . . . ,m} .

Proof. By the general theory of differential equations we know that there exists a unique
solution {W1, . . . ,Ws−1, L,Ws, N, Ws+1, . . . ,Wm} of (4), defined on the interval [−δ, δ],
and satisfying the initial conditions of the theorem. Taking into account (4), a straight-
forward computation leads to

d

dt

ε (Li(t)Nj(t) + Lj(t)Ni(t)) + cγi(t)γj(t) +
m∑

β=1

Wβi(t)Wβj(t)

 = 0.

Now, since {W1, . . . ,Ws−1, L,Ws, N, Ws+1, . . . ,Wm} is pseudo-orthonormal at t = 0, Lemma 3
(with r = 1) yields

ε (Li(t)Nj(t) + Lj(t)Ni(t)) + cγi(t)γj(t) +
m∑

β=1

Wβi(t)Wβj(t) = νij , ∀t ∈ [δ, δ].

By using again Lemma 3, we deduce that, for all t, {L,N,W1, . . . ,Wm, γ} is pseudo-
orthonormal if c = ±1, and {L,N,W1, . . . ,Wm} is pseudo-orthonormal if c = 0. This
concludes the proof.

Theorem 5 (Congruence Theorem) If two s-degenerate Cartan curves C and C̄ in

Mn
1 (c) have Cartan curvatures {k1, . . . , km}, where ki : [−δ, δ] −→ R are differentiable

functions, then there exists a Lorentzian transformation of Mn
1 (c) which maps bijectively

C into C̄.

5 s-degenerate helices in M4
1(c)

This section is devoted to the classification of 2-degenerate Cartan helices in Lorentzian
space forms M4

1(c). Now, the Cartan equations write down as follows:

γ′ = W1,

W ′
1 = L− cγ,

L′ = k1W2,

W ′
2 = εk2L− εk1N,

N ′ = −εW1 − k2W2.

(6)

If we assume that k1 and k2 are constant, then γ satisfies the following differential equation:

γ(5) − (2εk1k2 − c) γ(3) −
(
k2

1 + 2εck1k2

)
γ′ = 0.

Without loss of generality, we can assume that γ is positively oriented, that is, ε = −1.

In what follows, we will present examples of 2-degenerate Cartan helices in M4
1(c) and

show the corresponding characterization theorems.
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5.1 Helices in R4
1

Example 1 Let γω,σ be the curve in R4
1 defined by

γω,σ(t) =
1√

ω2 + σ2

(σ

ω
coshωt,

σ

ω
sinhωt,

ω

σ
sinσt,

ω

σ
cos σt

)
,

with ωσ > 0. Then γω,σ is a helix with curvatures

k1 = ωσ and k2 =
σ2 − ω2

2ωσ
.

Theorem 6 (Clasification theorem of 2-degenerate helices in R4
1) Let γ be an s-

degenerate Cartan curve fully immersed in R4
1. Then γ is a helix if and only if it is

congruent to a helix of Example 1.

Proof. Let k1 > 0 and k2 be the constant curvatures of γ. By the congruence theorem 5
it suffices to find a helix of the family given in Example 1 with these curvatures. Take
constants ω and σ such that

ω2 = k1

(
−k2 +

√
1 + k2

2

)
and σ2 = k1

(
k2 +

√
1 + k2

2

)
,

with ωσ > 0. The proof concludes since the curvatures of γω,σ are k1 and k2.

5.2 Helices in S4
1

Example 2 (Helices of Type 1) Let 0 < σ2 < 1 < ω2 and let γω,σ be the curve in S4
1

defined by

γω,σ(t) =

(√
(ω2 − 1)(1− σ2)

ω2σ2
,
1
ω

√
1− σ2

ω2 − σ2
sinωt,

1
ω

√
1− σ2

ω2 − σ2
cos ωt,

1
σ

√
ω2 − 1
ω2 − σ2

sinσt,
1
σ

√
ω2 − 1
ω2 − σ2

cos σt

)
.

Then γω,σ is a helix with curvatures

k1 =
√

(ω2 − 1)(1− σ2) and k2 =
ω2 + σ2 − 1

2
√

(ω2 − 1)(1− σ2)
.

Example 3 (Helices of Type 2) Let σ2 > 1 and let γω,σ be the curve in S4
1 defined by

γω,σ(t) =

(
1
ω

√
σ2 − 1
ω2 + σ2

coshωt,
1
ω

√
σ2 − 1
ω2 + σ2

sinhωt,
1
σ

√
ω2 + 1
ω2 + σ2

sinσt,

1
σ

√
ω2 + 1
ω2 + σ2

cos σt,
1

ωσ

√
(ω2 + 1)(σ2 − 1)

)
, ω 6= 0.

Then γω,σ is a helix with curvatures

k1 =
√

(σ2 − 1)(ω2 + 1) and k2 =
σ2 − ω2 − 1

2
√

(σ2 − 1)(ω2 + 1)
.
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Example 4 (Helices of Type 3) Let σ2 > 1 and let γσ be the curve in S4
1 defined by

γσ(t) =

(
1
2

√
σ4 − 1

σ2 − 1
t2,

√
σ2 − 1

σ2
t,

√
σ4 − 1
σ2

−
√

σ4 − 1
2(σ2 + 1)

t2,

1
σ2

sinσt,
1
σ2

cos σt

)
.

Then γσ is a helix with curvatures

k1 =
√

σ2 − 1 and k2 =
1
2

√
σ2 − 1.

Theorem 7 (Clasification theorem of 2-degenarate helices in S4
1) Let γ be an s-

degenerate Cartan curve fully immersed in S4
1. Then γ is a helix if and only if it is

congruent to one in the families described in Examples 2-4.

Proof. Let k1 > 0 and k2 be the constant curvatures of γ. We have to find a helix of
one of the above types with these curvatures.

Case 1: Assume that k2 > k1/2. Take the helix γω,σ of type 1 determined by

ω2 =
(2k1k2 + 1) +

√
(1− 2k1k2)2 + 4k2

1

2
and σ2 =

(2k1k2 + 1)−
√

(1− 2k1k2)2 + 4k2
1

2
.

A straightforward computation shows that 0 < σ2 < 1 < ω2 and the curvatures of γω,σ

are k1 and k2.

Case 2: Assume that k2 < k1/2. Take the helix γω,σ of type 2 determined by

ω2 =
−(2k1k2 + 1) +

√
(1− 2k1k2)2 + 4k2

1

2
and σ2 =

(2k1k2 + 1) +
√

(1− 2k1k2)2 + 4k2
1

2
.

It is easy to show that σ2 > 1 and the curvatures of γω,σ are k1 and k2.

Case 3: Assume that k2 = k1/2. Take the helix γσ of type 3 determined by σ2 = 1 + k2
1.

It is easy to see that σ2 > 1 and the curvatures of γσ are k1 and k2.

The result follows from the congruence theorem 5.

5.3 Helices en H4
1

Example 5 (Helices of Type 1) Let 0 < σ2 < 1 < ω2 and let γω,σ be the curve in H4
1

defined by

γω,σ(t) =

(
1
ω

√
1− σ2

ω2 − σ2
coshωt,

1
σ

√
ω2 − 1
ω2 − σ2

coshσt,
1
ω

√
1− σ2

ω2 − σ2
sinhωt,

1
σ

√
ω2 − 1
ω2 − σ2

sinhσt,− 1
ωσ

√
(ω2 − 1)(1− σ2)

)
Then γω,σ is a helix with curvatures

k1 =
√

(ω2 − 1)(1− σ2) and k2 = −1
2

ω2 + σ2 − 1√
(ω2 − 1)(1− σ2)

.
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Example 6 (Helices of Type 2) Let ω2 > 1 and let γω,σ be the curve in H4
1 defined by

γω,σ(t) =

(√
(ω2 − 1)(σ2 + 1)

ω2σ2
,
1
ω

√
σ2 + 1
ω2 + σ2

coshωt,
1
ω

√
σ2 + 1
ω2 + σ2

sinhωt,

1
σ

√
ω2 − 1
ω2 + σ2

sinσt,
1
σ

√
ω2 − 1
ω2 + σ2

cos σt

)
, σ 6= 0.

Then γω,σ is a helix with curvatures

k1 =
√

(ω2 − 1)(σ2 + 1) and k2 =
1
2

σ2 − ω2 + 1√
(ω2 − 1)(σ2 + 1)

.

Example 7 (Helices of Type 3) Let ω2 > 1 and let γω be the curve in H4
1 defined by

γω,σ(t) =

(√
ω4 − 1
ω2

+
√

ω4 − 1
2(ω2 + 1)

t2,
1
ω2

coshωt,
1
ω2

sinhωt,√
ω2 − 1

ω2
t,

1− ω4

2(ω2 + 1)
t2

)
.

Then γω is a helix with curvatures

k1 =
√

ω2 − 1 and k2 = −1
2

√
ω2 − 1.

Theorem 8 (Clasification theorem of 2-degenerate helices in H4
1) Let γ be an s-

degenerate Cartan curve fully immersed in H4
1. Then γ is a helix if and only if it is

congruent to one in the families described in Examples 5-7.

Proof. The idea of the proof is exactly alike as that in the precedent cases. Let k1 > 0
and k2 be the constant curvatures of γ. By the congruence theorem we only have to find
a helix of one of the above types with these curvatures.

Case 1: Assume that k2 < −k1/2. Take the helix γω,σ of type 1 determined by

ω2 =
(1− 2k1k2) +

√
(2k1k2 + 1)2 + 4k2

1

2
and σ2 =

(1− 2k1k2)−
√

(2k1k2 + 1)2 + 4k2
1

2
.

A straightforward computation shows that 0 < σ2 < 1 < ω2 and the curvatures of γω,σ

are k1 and k2.

Case 2: Assume that k2 > −k1/2. Take the helix γω,σ of type 2 determined by

ω2 =
(1− 2k1k2) +

√
(2k1k2 + 1)2 + 4k2

1

2
and σ2 =

−(1− 2k1k2) +
√

(2k1k2 + 1)2 + 4k2
1

2
.

As before we have that ω2 > 1 and the curvatures of γω,σ are k1 and k2.

Case 3: Finally, assume that k2 = −k1/2. Take the helix γω of type 3 determined by
ω2 = 1 + k2

1. It is easy to see that ω2 > 1 and the curvatures of γω are k1 and k2.
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