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Abstract

In this paper we introduce s-degenerate curves in Lorentzian space forms as those ones
whose derivative of order s is a null vector provided that s > 1 and all derivatives of order
less than s are spacelike (see the exact definition in section 2). In this sense classical null
curves are l-degenerate curves. We obtain a reference along an s-degenerate curve in an
n-dimensional Lorentzian space with the minimun number of curvatures. That reference
generalizes the reference of Bonnor for null curves in Minkowski spacetime and it will be
called the Cartan frame of the curve. The associated curvature functions are called the Cartan
curvatures of the curve. We characterize the s-degenerate helices (that is, s-degenerate curves
with constant Cartan curvatures) in n-dimensional Lorentzian space forms and we obtain a
complete classification of them in dimension four.

1 Introduction

The geometry of null hypersurfaces in spacetimes has played an important role in the
development of general relativity, as well as in mathematics and physics of gravitation. It
is necessary, for example, to understand the causal structure of spacetimes, black holes,
assymptotically flat systems and gravitational waves.

A starting point to study null surfaces, or in general null hypersurfaces, consists of
investigating the curves that live in those hypersurfaces. In this sense, the null curves in
Lorentzian space forms has been studied by several authors (see, for example, [2], [3], [9],
and references therein).

However, in a null hypersurface there are many other curves distinct from the null
ones. They are spacelike curves with a null higher derivative, that is, s-degenerate curves
(see section 2 for details). In this paper we study s-degenerate curves in Lorentzian space
forms M} and obtain existence, uniqueness and congruence theorems for that kind of
curves. Notice that they must be spacelike curves.

Timelike and lightlike trajectories are the natural ones in spacetime geometries, but
some recent experiments point out the existence of superluminal particles (spacelike trayec-
tories) without any breakdown of the principle of relativity; theoretical developments exist
suggesting that neutrinos might be instances of “tachyons” as their square mass appears
to be negative. A model has recently been presented to fit the cosmic ray spectrum at
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E =~ 1—4PeV, [6, 7, 8], using the hypothesis that the electron neutrino is a tachyon.
This model yields a value for m?(v,) ~ —3eV?2, which is consistent with the results from
recent mesurements in tritium beta decay experiments, [4], [11], [14]. Moreover, the muon
neutrino also exhibits a negative mass-squared, [1]. However, as it is pointed out in [5], at
present time we have not a satisfactory quantum theory for tachyonic fermions, so more
theoretical work would be needed to determine a physically acceptable theory.

In [12] the author considers a model of a D-dimensional massless particle described by
a Lagrangian proportional to the Nth extrinsic curvature of the world-line. He presents
the Hamiltonian formulation of the system and shows that its trajectories are spacelike
curves.

Therefore, it is required to construct a complete (at least local) theory of spacelike tra-
jectories for neutrinos. Here, we are intended to provide a suitable mathematical macchin-
ery to support the recent advances in theoretical physics.

In this paper we prove the following theorems.

Theorem 4. Let ki, ..., ky, : [-0,0] — R be differentiable functions with k; > 0 for i #
s,m. Let p be a point in M}, n = m+-2, and let {Wlo, e Wg_l, LY, W2 NO, WSH, e W%}
be a positively oriented pseudo-orthonormal basis of T,M7 (c). Then there exists a unique
s-degenerate Cartan curve v in MY (c), with v(0) = p, whose Cartan reference satisfies:

L(0) = L°, N(0) = N°, W;(0) = W?, die{l,...,m}.
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Theorem 5. If two s-degenerate Cartan curves C and C in M} (c) have Cartan curvatures
{ki,...,km}, where k; : [-6,0] — R are differentiable functions, then there exists a
Lorentzian transformation of M7 (c) which maps bijectively C' into C.

In section 5 we characterize the 2-degenerate helices (that is, 2-degenerate curves with
constant Cartan curvatures) in 4-dimensional Lorentzian space forms and we obtain a
complete classification of them.

2 Frenet frames for s-degenerate curves

The goal of this section is to find Frenet frames for s-degenerate curves in Lorentzian space
forms. Before to do that, we need a technical result.

Let E be a real vector space with a symmetric bilinear mapping g : £ x £ — R. We
say that g is degenerate on E if there exists a vector £ # 0 in E such that

g9(§,v) =0, for all v € E;

otherwise, g is said to be non-degenerate. The radical (also called the null space) of E,
with respect to g, is the subspace Rad(F) of E defined by

Rad(E)={{ € E | g(&v) =0, veE}.

The dimension of Rad(FE) is called the nullity degree of g (or E) and is denoted by rg.



If F'is a subspace of F, then we can consider gr the symmetric bilinear mapping on
F x F obtained by restricting g and define rr as the nullity degree of F' (or gr). For
simplicity, we will use (,) instead of g or gp.

A vector v is said to be timelike, lightlike or spacelike provided that g(v,v) < 0,
g(v,v) =0 (and v # 0), or g(v,v) > 0, respectively. The vector v = 0 is assumed to be
spacelike. A wunit vector is a vector u such that g(u,u) = +1.

Two vectors u and v are said to be orthogonal, written v L v, if g(u,v) = 0. Similarly,
two subsets U and V of E are said to be orthogonal if u L v for any v € U and v € V.
Given two orthogonal subspaces F and F» in E with Fy N F; = {0}, the orthogonal direct
sum of F; and F5 will be denoted by Fy 1 Fb.

Lemma 1 Let (E,(,)) be a bilinear space and let F' be a hyperplane of E. Let rp =
dim Rad(F') and rp = dim Rad(E). Then the following statements hold:

(i) If rp = 0 and rg = 1, then there exists a null vector L such that

E = Flspan{L}.

(ii) Ifrp = rg € {0,1}, then there exists a non-null unit vector V such that
E =Flspan{V}.

Moreover, if Rad(E) = {0} then V is unique, up to the sign.
(iii) Ifrp =1 and rg =0, and F = F} L L, where L. € Rad(F) and F; is non-degenerate,

then there exists a unique null vector N such that (L, N) =&, e = £1, and

E = (span{L} ® span{N})LF].
Proof. We only need to make some algebraic computations.

(i) Since F is non-degenerate, then £ = F LFL where F+ = span{L} for a certain
vector L. The inclusion Rad(E) C F* implies Rad(E) = F* and so L is a null
vector.

(ii) We may assume that rp = rg = 1. By considering F' = FjLlspan{L}, where
Fy is non-degenerate and L is null, then £ = F} LFi-. Since dim Fi* = 2, then
Fi- = span {L} @ span {V'}, where Rad(E) = span {L} and V is a non-null vector in
F, so that the required splitting is fulfilled.

(iii) By a similar reasoning we may assume that F' = Fj 1 span {L}, where Fj- = span {L}®
span {V'}. Since Rad(E) = {0} then (L,V) # 0. Let N be the vector defined by

€ (v.V)
N=—F|(V- L.
(L,V) < 2(L,V) >
It is easy to see that N is the only vector satisfying (N, N) = 0, (L, N) = ¢ and
N e Ff‘, and the splitting follows. |




Let (M7, V) be an oriented Lorentzian manifold and let v : I — M7 be a differen-
tiable curve in MJ'. For any vector field V along v, let V'’ be the covariant derivative of
V along v. Write E;(t) = span {~/(t),7"(t),. .. ,’y(i)(t)}, where t € I and i = 1,2,...,n.
Let d be the number defined by d = max {7 : dim E;(t) = i for all ¢}.

Definition 1 With the above notations, the curve v : I — M7 is said to be an s-
degenerate (or s-lightlike) curve if for all 1 < i < d, dimRad(E;(t)) is constant for all ¢,
and there exists s, 0 < s < d, such that Rad(Es) # {0} and Rad(E;) = {0} for all j < s.

Remark 1 Note that 1-degenerate curves are precisely the null (or lightlike) curves (see,
for instance, [2], [3], [9], and references therein). In this paper we will focus on s-degenerate
curves, s > 1), in Lorentzian spaces. Notice that they must be spacelike curves.

To find the Frenet frames, we will distinguish four cases separately:
1) d=nand s < d.

2) d<nands=d.

3) d<nands=d—1.

)

4) d<nand s<d-—1.

Case 1: d=nand s <d

First of all, write v/ = ]_ﬁWl, where Wy is a unit spacelike vector such that k1 > 0. Then
E5 = span {W; } @span {7"}, so that from Lemma 1 there exists a unit spacelike vector Ws
such that Fo = span {W;} Lspan {Ws}. Furthermore, W5 is unique by choosing it in such
a way that {7/,7”} and {Wy, Wa} have the same orientation. By proceeding iteratively,
using Lemma 1, we obtain a set {W7, ..., Ws_1} of orthonormal spacelike sections along -y
such that {'y’, e ,V(i)} and {W7, ..., W;} have the same orientation for all i, 1 <i < s—1.
Now we have E; = E;_1 @ span {7(5)} and dim Rad(Es) = 1. By using again Lemma 1
we can find a (not unique) null vector field L such that Es = E,_; @ span{L}. As
s # n, because E, is non-degenerate, then Es11 = FE; @ span {’y(s+1)}. Now we will
prove that dim Rad(Esy1) = 1. By assuming that dim Rad(Esy1) = 0, then there exists
a unique null vector field N satisfying (W;, N) = (N,N) = 0, (L,N) = ¢, ¢ = =1,
and Fgy; = span{Wy,...,W,_1, L, N}. By taking derivatives we obtain the following
equations:

v = kW,
Wi = koW,
W/ =—kWis1 + kisaiWip1, 2<i<s—2,
5/_1 = ks 1Ws_ o+ €]_€sLa

L' = ¢eksi1 L,

for certain functions l;:j, j=1,...,s4+ 1. As L € span {’y’,...,’y(s)}, we can write
L=M7+ ...+ 279, with \; # 0, and therefore I’ = (%) + A\y"tD) = ek 1L €
span {7/, ... ,’y(s)}. We conclude that 4+ € span {~,... ,fy(s)}, which can not hold.



Then dim Rad(Es;+1) = 1, and using Lemma 1 once more there exists a (not unique)
vector field W such that {’y’, .. ,fy(s+1)} and {W1,...,Ws_1, L, W} have the same ori-
entation. Since n > s+ 1, we claim that dim Rad(Esy2) = 0. Otherwise, there exists a
unit spacelike vector field W1 orthogonal to Fs; 1. By differentiating we obtain

5/_1 = _E571W572 + 5];53117

L/ 1. 7 (1)
= kg1 L + ks a2 Ws.

Since Rad(Ey12) = span {L} we get (L,v+tD)) = (1,452} = 0, so that (L', y(+D) = 0.
From here and (1) we find that (W,,7*Y) = 0 (ie., Wy lies in Rad(Es41)), which
is a contradiction. Hence dimRad(FEs;+2) = 0 and there exists a unique N satisfying
(N,L) = ¢ and (N,W;) = 0. We choose ¢ in such a way that {7/,... ,'y(s+2)} and
{Wh,...,Ws_1,L,Ws, N} have the same orientation. If s + 2 = n, the process concludes;
otherwise, dim Rad(E;) = 0 for ¢ > s+2 and we can obtain orthonormal spacelike sections
{Weit,..., Wi}, m = n—2, with the same orientation rule. The vector field W,,, is chosen
in order that {Wy,... , Ws_1, L, Ws, N, Wsi1,...,Wp,} is positively oriented. Regarding
this reference, we have the following equations
v = kWi,
Wi = koW,
W/ = —kiWi1 + kipiWiy1, 2<i<s-—2,
3/71 = _ks—1W8—2 + E];‘SL,
L' = cks1 L + koW,
W, = eks3L — eksyaN,
N' = —kWs_1 — eksy1N — ko sWs + ksyaWiei1,
i1 = —€koral 4+ ko sWiya,
WJ/ = —]_ﬁj_:,_ng_l + ];!j+4Wj+1, s+2<73<m—1,
Wyln = _];/'m+3Wmfla

for certain functions {k1, ..., kni3}t. Theset F = {Wy,...,Ws 1, L, Ws, N, Wiy1,...,Wpn}
is said to be a Frenet reference along . The functions {E;l, cee l_€m+3} are called the curva-
ture functions of v with respect to F. The above equations are called the Frenet equations
of v with respect to F.

Case 2: d<nand s=d

A similar reasoning as in Case 1 shows that there exists a set {W7y,...,Ws_1, L} such
that L is a null vector, {Wi,...,Ws_1} is an orthonormal set of spacelike vectors and
E;=span{Wi,...,W,_1,L}. Then we can obtain the following equations:

v = kW,
W1 = koWa,

Wi =—kiWi_1 + kigaWigy1, 2<i<s—2,
o1 = —ks 1 Wi o + ek L,

L' =ceke1L,



for certain functions {ki,...,ksr1}. If M} is a Lorentzian space form, then 7 lies in a
d-dimensional totally geodesic lightlike submanifold. This can be proved by adapting the
proofs of Theorems 5 and 9 of Chapter 7 in [13]. This case has been treated in Sect. 4 of
[10].

Case 3. d<nand s=d—1
As above again, we obtain E; = span {W1i,...,Ws_1, L, W} and equations

5/_1 = —/%5_1W3_2 + glz‘sL,
L, = EESJrlL + ]_CS+QWS,
Ws/ = 5E5+3L.

Since W lies in EF, we have <WS,’y(S)> = 0. By differentiating here we deduce that
(W, 'y(s+1)> = 0, which is a contradiction.

Case4: d<nand s<d-—1

Now we have Eg = {W1,..., Ws_1,L,Ws, N, Ws41,..., Ws_o}. Working as in case of non-
degenerate curves (see, for example, [13, Vol. IV]), if M is a Lorentzian space form we
deduce that ~ lies in a d-dimensional non-degenerate totally geodesic submanifold of M.
So this case reduces to Case 1.

Remark 2 Before going any further, we note that the type s does not depend on the
parameter of the curve. To see that let ¢ be another parameter and write (t) = B(#(t)).
By differentiating‘ with respect to t we get FO(t) = > =1 z;j(t)37(t), that is, E; =
span {7'(t),...,79(t)} = span {B'(¢),..., 3% (#)}, which shows the claim.

On the other hand, let ® : M — M7 be an isometry and J(t) = (® o 7)(¢). Then
for all vector field V along v we have

% (AP (V (1)) = dP,) (iv(t)> ,

where D; and D; stand for the covariant derivatives along v and 7, respectively.

Hence <”y(i) (t),~\) (t)) = <’7(i) (t), 79 (t)), showing that this kind of curves are invariant
under Lorentzian transformations, in the sense that the type s does not change under a
Lorentzian transformation.

3 The Cartan reference of an s-degenerate curve

The goal of this section is to find a Frenet frame with the minimal number of curvatures and
such that they are invariant under Lorentzian transformations. We will restrict ourselves
to Case 1. Without loss of generality, let us assume that  is arc-length parametrized, so
that Wi =+ and k; = 1. By taking ks = €, Lemma 1 leads to a uniquely determined set
{Wi,...,Ws_1, L}. Therefore we only need to find W.



Suppose that W and W/ are two distinct vector fields generating two distinct Frenet
frames, that is,

*

{WL"'7Ws—17L7W8)N7WS+17"'7Wm} — {];:1 = 17122)”'7]%8 = 1712:S+17‘~'7]7€m+3}
77{m+3

{Wl,...,WS_l,L,W;,N*, :Jrl,...,W;L} — {El=1,k2,...,]%521,7:+1,...

A straightforward computation shows that
¥ N 1 — - _
Wi=fL+W,, N*= —5f2L + N — W, ki =ksir — fhsio, (2)

where f : I — R is a differentiable function. We can choose f in such a way that
E;; 1 = 0. Then by reordering the curvature functions we have the following equations:

v =W,
Wi = kW,
Wi =—kioiWis1 + kiWip, 2<i<s-—2,
Wi_| = —ks—oWs 2+ L,
L' = ke 1 W,
W, = ¢eksL — eks_1N,
N' = =Wy — kW, + ksy1Wera,
s+1 = —€kst1L + kspoWsia,
W)= kW1 + ki Wist, s+2<j<m-—1,
W = ke Win1,

for certain functions {ki, ..., kn}. Bearing in mind (2) we can easily deduce the following
result.

Theorem 2 Let v : I — M, n = m + 2, be an s-degenerate unit curve, s > 1, and
suppose that {7'(t),7"(t), ... ™ (t)} spans T, sM7, for all t. Then there exists a unique
Frenet frame satisfying the equations (3).

Definition 2 An s-degenerate curve, s > 1, satisfying the above conditions is said to be
an s-degenerate Cartan curve. The reference and curvature functions given by (3) will be
called the Cartan reference and Cartan curvatures of -y, respectively.

Observe that when m > sthene = —1 and k; > 0 for ¢ # s, and ky, > 0 (k,, < 0, resp.)
according to {v/,7", ... ,’y(”)} is positively or negatively oriented, respectively. However,
when m = s then ¢ = —1 or € = 1 according to {7/,~”,...,7™} is positively or negatively
oriented, respectively, and k; > 0 for ¢ # s.

Definition 3 An s-degenerate heliz in M{" is an s-degenerate Cartan curve having con-
stant Cartan curvatures.



4 s-degenerate curves in Lorentzian space forms

Let v : I — MY (c) be an s-degenerate Cartan curve, MY (c) standing for R}, S}
o HY, according to ¢ = 0, ¢ = 1 or ¢ = —1, respectively. Let D; denote the co-
variant derivative in M7 (c) along . Then for any vector field V along v we have
DV = V' +¢(V,y') v, where {,) denotes the standard metric in R}, R?™ or Ry If
{Wi,... , Ws_1, LyWg, N, Wyy1,...,Wp,} is the Cartan reference, then equations (3) write
down as follows:
7/ = W17
W{ = k‘1W2 — 7,
W)= —kiaWi1+kWiy1, 2<i<s-2,
5/71 - _ks—2W5—2 + L7
L' = ke W,
Wé = 6]{35L — 6](53,1N,
N/ = _€Ws—1 - ksWs + ]C3+1W5+1,
W3/+1 = —cksi1L + ks oWsia,
W], =—kW; 1 +kjp Wi, s+2<j<m-—1,
W), = —kypWp_1.

Now we state the following question:

Let {Wy,... ,.Ws_1,Ly,Wg, N, Wyi1,..., Wy} be a reference satisfying (3) for
certain functions kj. Is there an s-degenerate Cartan curve v having {W1i, ...,
We_1, L, W, N, Wgi1,...,Wn} as Cartan reference and k;j as Cartan curva-
tures?

The answer is affirmative, as we will show in this section. But before to do that, we are
going to state and prove an algebraic result.

Definition 4 A basis B = {L1, N1,..., Ly, N., Wi,..., Wy} of RY, with 2 < 2¢ < n and
m =n — 2r, is said to be pseudo-orthonormal if it satisfies the following equations:
(Liy Lj) = (Niy Nj) =0, (L, Ny) = €5, (Li, Nj) =0 i # 3,
<L’ia Wa> = <NZ7Wa> = 07 <Wa7Wﬁ> = €a5aﬁ,
where 7,5 € {1,...,r}, o,0 € {1,....m}, e = -1if 1 <a < g—rand g, = 1 if
g—r+1<a<m.

Lemma 3 Let B = {L1,N1,..., Ly, No, Wi, ..., Wy, } be a basis of Ry, with 2r < 2q <n
and m =n — 2r. Consider B' ={Vi,...,Vy, Vg41,..., Vo } where

1 .
E(Ll—EZNl) Z:L..‘,T
Wi i=r+1,...,
Vi=d T o ! (5)

E(Li_q‘i_gi_qu‘_q) Z:q+1,,q+7'

Wi_op i=q+r—+1,...,n




The following conditions are equivalent:
(i) B is a pseudo-orthonormal basis.
(ii) B’ is an orthonormal basis.

(i) B’ satisfies

q n
= VaiVaj+ Y VaiVa =y

a=1 B=q+1
(iv) B satisfies
T q—r m
> o (LaiNaj + LajNai) = > WailWsi+ > WelWg; = ny;.
a=1 /=1 O0=q—r+1

Here Vi, Lok, N, and Wy, stand for the components of vectors V,, L,, N, and W, respec-
tively, and (n;;) denotes the matrix of the canonical metric in the standard coordinates.

Proof. (i) < (ii) It is obvious.

(ii) < (iii) Consider the matrices V' = (Vj;), B = (b;;) and C = (c¢;;) in My xn(R) given
by

bij = (Vi, Vj) ,
q n
Cij = — Z Vm'Vaj + Z Vgﬂ/bj.
a=1 B=q+1

Put
A A B1 B C; C
V— 1 As . B- 1 B and O — 1 Co ’
A3 A4 Bg B4 03 04
where Ay, By and C are matrices in Myx4(R). Consider the complex matrix
A ;A
A= ( Lot 2) € Mupxn(C).

iAy Ay

Then a straightforward computation shows that

—B, B -Cy —iC
AAT = (770 ") g ATA= e
iB3 By _’iC3 04
Then B’ is orthonormal if and only if Cy = —I, C4y = I and Cy = C3 = 0.

(iii) < (iv) From (5) we have

1 Ea

La:ﬁ(voﬁ_q‘i‘va) and Nazﬁ(va_,_q—va), OCE{].,...,T},

and therefore
Ea (LaiNaj +Naz‘Laj) = —Vm'Vaj +V(a+q)iv(a+q)j> [ {1,...,7“}, i,j € {1,...,n},

which finishes the proof.



Theorem 4 Let ki, ..., ky : [-0,0] — R be differentiable functions with k; > 0 for ¢ #
s,m. Let p be a point in M}, n = m+-2, and let {Wlo, ce Wfﬁl, LY, W2 NO, WSOH, e W%}
be a positively oriented pseudo-orthonormal basis of T,M7(c). Then there exists a unique
s-degenerate Cartan curve v in MY (c), with v(0) = p, whose Cartan reference satisfies:

L(0) = LY, N(0) = N°, W;(0) = W?, iec{l,....,m}.

Proof. By the general theory of differential equations we know that there exists a unique
solution {W1y,...,Ws_1,L,Ws, N,Wsi1,...,Wy,} of (4), defined on the interval [—d, ],
and satisfying the initial conditions of the theorem. Taking into account (4), a straight-
forward computation leads to

d m
O @m0 + L Nw) + nr ) + 3 W Wa ) | =0.
/=1
Now, since {W1, ..., Ws_1, L, Ws, N, W41, ..., Wy} is pseudo-orthonormal at ¢ = 0, Lemma 3

(with r = 1) yields

e (Lit)Nj(t) + Li()Ni(£)) + evi(t)y; () + > Wi () W;(t) = vij, Yt € [6,0].
B=1
By using again Lemma 3, we deduce that, for all ¢, {L, N, Wi,...,W,,,~} is pseudo-
orthonormal if ¢ = +1, and {L, N,Wy,...,W,,} is pseudo-orthonormal if ¢ = 0. This
concludes the proof.

Theorem 5 (Congruence Theorem) If two s-degenerate Cartan curves C and C' in
M7 (¢) have Cartan curvatures {ki,...,kn}, where k; : [—0,0] — R are differentiable
functions, then there exists a Lorentzian transformation of MY (c) which maps bijectively

C into C.

5 s-degenerate helices in Mj(c)

This section is devoted to the classification of 2-degenerate Cartan helices in Lorentzian
space forms M1 (c). Now, the Cartan equations write down as follows:

'7, = W1>
W{ =L— c,
L' = kW, (6)

WQ’ =¢ekoL — k1N,
N' = —eW; — koW
If we assume that k1 and ko are constant, then -~y satisfies the following differential equation:
7(5) — (2ek1ky — ) ’y(?’) — (k% + 2sck1k2) v =0.
Without loss of generality, we can assume that « is positively oriented, that is, e = —1.

In what follows, we will present examples of 2-degenerate Cartan helices in M{(c) and
show the corresponding characterization theorems.
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5.1 Helices in R‘ll

Example 1 Let v, , be the curve in R} defined by
= 1
'Yw,a( ) - \/ﬁ

with wo > 0. Then 7, , is a helix with curvatures

o o . w . w
— cosh wt, — sinh wt, — sinot, — cosot |,
w w o o

0'2—(.4}2

ki =wo and ko=
2wo

Theorem 6 (Clasification theorem of 2-degenerate helices in R}) Let v be an s-
degenerate Cartan curve fully immersed in R}. Then v is a helix if and only if it is
congruent to a helix of Example 1.

Proof. Let k; > 0 and k3 be the constant curvatures of 7. By the congruence theorem 5
it suffices to find a helix of the family given in Example 1 with these curvatures. Take
constants w and ¢ such that

w2 =k (—k2+\/1+k§> and o2 =k <k2+\/1+k§>,

with wo > 0. The proof concludes since the curvatures of +, , are k1 and k».

5.2 Helices in S}

Example 2 (Helices of Type 1) Let 0 < 02 < 1 < w? and let 7, be the curve in S}
defined by

B (w? — 1)(1—02) 1 [1-02 1 [1-02
’}/w,g(t) = 202 y — 02— o2 sin wt w m COS C()t,

\/ — 02 sin ot, U — 02 cos at)

Then 7, is a helix with curvatures

3 3 w4021
ki =+/(w?—1)(1—02) and k2:2\/(w2—1)(1—02)'

Example 3 (Helices of Type 2) Let 0% > 1 and let 7, , be the curve in S} defined by

1 [ o 1 241
Voo (t) = ( 1/ 5 5 coshwt smhwt “ + —5—— sinot,
wV w +o o

1 Jw?2+1
oV w?+ 02

cos at, i\/(w2 +1)(o2 — 1)) ,w # 0.

Then 7, is a helix with curvatures

o2 —w? -1

202 ~ D@2 + 1)

k1 =+v(02—1)(w?+1) and kg =

11



Example 4 (Helices of Type 3) Let 02 > 1 and let 7, be the curve in S} defined by

() 1vot—1 2 02—1t Vot—1 Vot-1 £
o 2 02-1 o2 7 o2 2(02+1)

1

1
— sinot, — —5 COS o*t)
o o2

Then v, is a helix with curvatures

1
klz\/02—1 and k2:§ 0'2—1.

Theorem 7 (Clasification theorem of 2-degenarate helices in S}) Let v be an s-
degenerate Cartan curve fully immersed in Sj. Then v is a helix if and only if it is
congruent to one in the families described in Examples 2-4.

Proof. Let k1 > 0 and k2 be the constant curvatures of v. We have to find a helix of
one of the above types with these curvatures.

Case 1: Assume that ko > k;/2. Take the helix 7, , of type 1 determined by

L (kiky + 1) 4 /(1 2kika)? + 4k (2 + 1) = /(1 — 2hika)? + 4k
w® = 5 and o° = 7 .

A straightforward computation shows that 0 < 02 < 1 < w? and the curvatures of Voo,
are k1 and k.

Case 2: Assume that ko < k;/2. Take the helix 7, , of type 2 determined by

L~ (kiks 1) /(1 - 2hika)? 4 4R ;

(2kika + 1)+ /(1 — 2kaka)? + 4k
w® = 5 and o° = 5 .

It is easy to show that o2 > 1 and the curvatures of Yo,o are ki and ka.

Case 3: Assume that ko = k1 /2. Take the helix v, of type 3 determined by o2 = 1 + k2.
It is easy to see that o2 > 1 and the curvatures of 7, are k; and k.

The result follows from the congruence theorem 5.

5.3 Helices en Hj

Example 5 (Helices of Type 1) Let 0 < 02 < 1 < w? and let v, , be the curve in Hf
defined by

*ywa :< 1/ coshwt \/ coshat smhwt
wV w?2—o02 2 _ g2 \/ 2_ g2

1 wQ — smhat ——\/ 1)(1 — o2 )>

(o w

Then 7, » is a helix with curvatures

1 24021
V@@ -D(1=02) and ky—-—2—21°

e 2 (=11
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Example 6 (Helices of Type 2) Let w? > 1 and let ~,, , be the curve in Hj defined by

2-1)(e241) 1 2+1 1 2+1
Voo (t) = (\/(w )"+ 1) \/U + coshwt, — Lsimhu}t,

w202 "wV w? 402 wV w2+ o?

1 Jw2—-1 . . 1 Jw?2—-1 ; 20
—{\/ —5——sinot, =/ ——— cosot | ,o .
oV w?+02 oV w?+02

Then 7, is a helix with curvatures

o2 —w?+1
VD02 +1)

Example 7 (Helices of Type 3) Let w? > 1 and let ~, be the curve in H} defined by

Vot—1  Vwt-1 , 1 .
Yoo () = ( 3 2 T 1)75 ,Ecoshwt,ﬁsmhwt,

w2—1, 1-wt ,
t, 2.
w2 7 2w?+1)
Then ~,, is a helix with curvatures

ki=vVw?—1 and ky= —%\/wQ —1.

ki =2 —1)(62+1) and ky=

DO | =

Theorem 8 (Clasification theorem of 2-degenerate helices in H}) Let v be an s-
degenerate Cartan curve fully immersed in H{. Then v is a helix if and only if it is
congruent to one in the families described in Examples 5-7.

Proof. The idea of the proof is exactly alike as that in the precedent cases. Let k1 > 0
and ko be the constant curvatures of 7. By the congruence theorem we only have to find
a helix of one of the above types with these curvatures.

Case 1: Assume that ko < —k;/2. Take the helix 4, » of type 1 determined by

L (L= 2kaka) + 1/ (2kiky +1)2 + 4k (1= 2kiks) — \/ (2kiks +1)2 + 4k
w’ = and o“ = .

2 2

A straightforward computation shows that 0 < 02 < 1 < w? and the curvatures of v, ,
are k1 and k.

Case 2: Assume that ko > —k1/2. Take the helix 7, » of type 2 determined by

,  (1—=2kiko) + \/(2k1k2 +1)2 + 4k ,  —(1—2kiks) + \/(2k:1k2 +1)% + 4k3
w® = and o° = .

2 2

As before we have that w? > 1 and the curvatures of Vw,o are ki and ko.

Case 3: Finally, assume that ko = —k1/2. Take the helix ~, of type 3 determined by
w?=1+ k% It is easy to see that w? > 1 and the curvatures of v, are k; and k.
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