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Abstract

We consider the motion of relativistic particles described by an action which is a function of the curvature
and torsion of the particle path. The Euler—Lagrange equations and the dynamical constants of the motion
are expressed in a simple way in terms of a suitable coordinate system. The moduli spaces of solutions in a
three-dimensional pseudo-Riemannian space form are completely exhibited.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

This paper deals with the motion of relativistic particles described by an action which is a
function of the curvature and torsion of the particle path. The model of a particle with torsion was
investigated in (2+1)-Minkowskian spagH. It was shown that, at classical level, the squared
mass of the system is bounded from above and that, besides the massive solutions of the equation
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of motion, the model must also have massless and tachyonic solutions. A relativistic model of
the anyon, describing the states of the particle with torsiavith the maximum value of the

mass, was constructed in rg2]. In ref. [3], the classical equations of motion of the model
whose Lagrangian function j§ = —m + «t are obtained. This model of relativistic particle with
torsion (whose action appears in the Bose—Fermi transmutation mechanism) is also studied in ref.
[4], where it is canonically quantized in the 21)-Minkowskian and 3-Euclidean spaces. The
solutions of the equations of motion in the massive, massless and tachyonic sectors are found by
using Hamiltonian formalism. In ref5], the author reconsiders the simplest models describing
spinning particles with rigidity, both massive and massless, and describes the moduli spaces of
solutions in (2+1)-backgrounds with constant curvature.

In (3+ 1)-dimensions there are also some geometrical models of relativistic particles. It seems
interesting to investigate these models and to establish which of them have a maximal symmetry
[6]. For instancef = a + bk, a # 0, describes a massive relativistic bo§dh f = ck models
a massless particle with an arbitrary (both integer and half-integer) hgi@ityn ref. [9], the
author studied the consequences of coupling of the highest curvature to the Lagrangian of a
massive spinless particle. More recently, in {&0], it is considered a relativistic particle whose
dynamics is determined by an action depending on the totsi®he Euler-Lagrange equations
are obtained but unfortunately, as the authors pointed out, these higher order differential equations
do not appear to be tractable in general. In[Ef], we also consider mechanical systems linearly
depending on the curvature and the torsion of the particle path and obtain the moduli space of
solutions in four-dimensional background spaces.

The main purpose of this paper is providing the moduli space of solutions of mechanical
systems, in three-dimensional pseudo-Riemannian space forms, whose Lagrangian is an arbitrary
function on the curvature and torsion of the particle path. In SecRoasd 3 we present the
model, whose action is given by

£0) = / F(k.7) s,
Y

wheref is a real arbitrary function. By using Killing vector fields along curves as a key tool,
we obtain and solve the motion equations for these Lagrangians. In Sdctianintegrate the
Frenet equations finding out the critical curves, which are critical points of the Lagrangian, in
terms of a suitable coordinate system. We point out that a similar study for flat spaces has been
realized in refs[10,12] where it is shown that the trajectories corresponding to a Lagrangian with

a linear dependence @mare determined by a quadraturerinWith the aim of getting a nearly
self-contained paper, iAppendix A we include an appendix about the Lie algebség v),
v=0,1,2.

2. The model and the motion equations

Let M§(C) be a three-dimensional pseudo-Riemannian space form of curvatmd index
v. Lety : I — M3(C) be an immersed curve with spee@) = |y/(z)|, curvaturek, torsiont and
Frenet framdgT, N, B}. The Frenet equations are written down as follows

VTT = Ssz,
VrN = —¢e1kT + e31B,
VrB = —¢e21N,
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wheree1 = (T, T), 2 = (N, N) andez = (B, B). Let
L(y) = / F(k, 7 ds )
Y

be the action for any real functighdefined on an open set &2. Let I' = I'(z, r) : [0, L] x

(=6, 8) — M beavariationofacurve : [0, L] —> M with I'(z, 0) = y(¢). Associated with™, we
consider the variation vector fieldd = W(t) = ar L (¢, 0) alongy(z). We also writeV = V(z, ) =

E(t, r), W=W(,r),v=uv@r), T=T(r), N=N(r), B= B(t,r), etc., with the obvious
meanings. Let denote the arclength parameter, andlét r), W(s, r), etc., be the corresponding
reparametrizations. To obtain the first variation equation we introduce general formulas for the
variations ofv, x andt alongy in the direction ofW. Then from the Frenet equations we obtain

W(v) = e10(Vr W, T), W(k) = (VZW, N) — 2e1k(V7 W, T) + e1C(W, N),
£2 2
W(z) = e1k(Ve W, B) — e12(Ve W, T) + T (#(VTW, B) + e1C(W, B))) _

Throughout this paper, the trivial case of geodesics-(0) will be excluded. Then, by using
standard arguments involving the above formulas and integration by parts, the first variation of
L(y) alongy in the direction ofW is given by

L /
£ =180~ [ (Vrp = eaCh +ereactin w) @
0
where the vectoP is given by
P = e1(f — (2kfx + tf)T + e1kfr B — Vr(fiN) + e2Vr (f’ )

and the boundary term is

()
Bly. W) = <va ssz > + (VW N = 22 FiB) + <W, P+ glgiffB> :
Observe that, we have us¢gdand f; to denote the partial derivatives oivith respect ta andr,
respectively. On the other hand, we restrict ourselves to variations with fixed endpoints having the
same Frenet frames on them. Théi{y, W)]g = 0, so that the critical curves are characterized
by the vanishing of the Euler—Lagrange operator

/
Ei=— (VTP — e1CfiN + 8182CJ;B) =0. (3

It is a straightforward computation to show that K8) is equivalent to the Euler—Lagrange
equations

—e160kf — £2(e37% — £1k?) fi + 2e180kTfr + fi + <‘[J;T> +1 (?) +&1Cfy =0,
4)
ff i
eatfy +ea— ff +e3(efi) —e1(kfe) —e2 - slezC? =0. (5)
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3. Solving the motion equations

We are going to integrate the motion equations. To do that, we will use the ideas involved in
Noether’s theorem in order to get invariants which provide suitable integral equations. We will
first obtain two very useful Killing vector fields.

Proposition 1. The critical curves of the Lagrangian (1) admit two Killing vector fields P and J
given by
fi

P=mU—%ﬁ+ﬁmT—(ﬂ+zﬂ)N+<—%mﬂwmﬂ+w<k>>3,(@

/

J=—e1fiT — %N — e3fxB, @)
satisfying that

(i) E=—(VrP+eCIAT)
@iy ViJ=—PAT

where € = g1£€3.

Proof. In a flat space, the Euler—Lagrange equations yieisla constant vector field along the
curve. On the other hand, from the Frenet equations, a direct computation allows us ® agite

T "\’
P =e1(f — (kfie + Tf))T — (f;ﬁ + %ff/> N+ <—83Tfk + e1kfr + €2 (?) > B.
Let Z be a constant vector field and choose a rotational vector field of theWorny A Z as
variational vector field. Then, we find that the curves of the variation have the same curvature and
torsion functions as the starting curve, so ti§0) = 0. Now, from(2) we get

L
ﬂ@ﬁﬂM%VAD%+A<&yAEm,

so that, as the Euler operator vanishes on critical curves, we have that
[Br.y A 25 = 0.

Finally, as the same reasoning holds for any real in the interydl)(@ve find thatB(y, y A Z) is
constant along critical curves. Aswas any constant vector field, we conclude that

/!

<VTT NZ, ngka> + <T ANZ, fxN — 82J]:[B> + (y A Z, P) = constant

Operating here, we obtaily — y A P, Z) = constant, where

/!

J=—e1f;T — %N — e3fixB.

ThereforeV = J — y A P is a constant vector field, which means tli& a translation followed
by a rotation, and so it is a Killing vector field.

Then, we have shown th& andJ are restrictions, along critical curves, of Killing fields in
flat spaces. Following Langer and Singer (see[fed]), we define a Killing vector field along a
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curve as a vector fiel such thatw(v) = W(k) = W(r) = 0. It is easy to show that, in space
forms, a Killing vector field along a curve is the restriction of a Killing vector field. Then, from
(i) and (ii), a straightforward computation shows ti*eand. are also Killing vector fields when

C #0. O

The power of Killing vector fields as a tool is pointed out in the following result.

Theorem 2. (Integral equations) The critical curves of the Lagrangian (1) satisfy the integral
equations

P (8)

-~

=e,

{ (P, P) +eC(J, J) = d,

for suitable constants d and e. They are written, in terms of f, as

2
ea(f — (fe+ f)? +e2 (fi+ 1 fi) +es (—ssrfk +erkf + 2 (f ) )

I\ 2
+eC <£1frz+82 (’;) +83fk>= ,

e felf — i+ 7 ) + 22 (4 1)

- (-83ffk+81kff+82<f/>) ..

Furthermore, these equations are equivalent to the Euler—Lagrange ones provided that (J, J) is
not constant.

Proof. FromProposition 1we get

(£, Py = —3T((P. P)+&C(J, ])).
(E,J) =—=T(P, J),

from which we deducéB). Now, we see that the equivalence betwgdrand the Euler—Lagrange
equations occurs wheP, J A T) does not vanish. But this condition means that the systems

(€, P)=0 (&,N)=0
and
(£, J) = (€,B)=0

are equivalent. A¥yJ = —P A T,we havethatP, J AT) = %T(J, J), which proves the equiv-
alence of the systems providéd J) is not constant. [

Remark. The constants appearing Tltheorem 2can be interpreted in terms of the magsand
the spinS of the particle. Indeed, generalizing Plyushchay’s model the relationships are given by

(P, P) +¢C(J,J) = e1M?, (P, J) = MS.

WhenC = 0, P andJ can be interpreted as the linear and the angular, respectively, momenta of
the particle.



+ Model

6 A. Ferrdndez et al. / Journal of Geometry and Physics xxx (2005) xxx—xxx

3.1. Integrating the Euler—Lagrange equations when (J, J) is constant

It is easy to see, frorRroposition 1that(P, J A T) = 0, provided(J, J) is constant. Ther,
J andT are linearly dependent. Moreover, whéhT) is constant,f; and f; also are constant,
because

fe=—(LT) and  f2=(J B)? =e3((J, J) — e1(J, T)?).

Then the critical curves of the Lagrangian dengity, t) = fxk + f:t + m are well known and
they are generalized helices (see ri8$and[11]).

Then, we can assume thaf T) is not constant. Furthermoré,and T are not collinear,
otherwise(J, T)2 = ¢1(J, J). Therefore, the framéT, J, J A T} allows us to get the following
system of equations, which is equivalent to the Euler—Lagrange one,

(VP +eCIAT, J)=0, (ViP+eCIANT,JAT)=0, (J J)=const 9)
As
(Ve P, J) =T(P,J) —(P,V1J) =T(P, J),

from Proposition lthe first equation of9) writes down ag P, J) = const.
From the third equation, we deduce tifat= o T + BJ. Therefore, whe # 0, the first equa-
tion reduces tqP, P) = const, because

1 1
(VrP, J) = <VTP, ,B(P_aT)> = E(VTR P),

and(Vy P, T) = 0. Whenp = 0, we see that should be constant. Summarizing, to solve the
second equation @B), we can suppose thépP, P), (P, J) and(J, J) are all constant.
On the other hand, we compute

(VeP, JAT)+eCUANT, JAT) = —|PAT|?+eC|J AT|? — e2k(P, J A N),
where we have used thép, J A T) = 0 andVyJ = —P A T. Moreover, we can write
—|PATP +¢C|lJ AT|? = —e2e3ak(J, B).
As P AJ=aT A J,we get

_(PALT A (PN R
a_ilf/\le and ﬂ_(J,N)_kfr’_H
which are related by
a=e1((P,T) - B(J, T)) = &1 <f — kfi +kf’;f’) : (10)

Note that(J, N) # 0, becauseJ, T) is not constant.
Now, we obtain a system, equivalent(8), in terms off and its partial derivatives:

o AP = T )+ enlf — k) fe

= , 11
11 g1ek|J A T2 (11)

(c1— Cf2+ (f = (kfi + Tf)D, JYer — £?)
= e1kfi((f — (kfx + tf))(L J) + fo(P, ), (12)
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2o (5 42
(L) =e1fy +e2 (,;) +e3fi 13)

wherec1 = ¢1(eC(J, J) — (P, P)).
Eq.(11) lead us to the relation

T/(Afrr — fir) = k/(fkk — Afw), (14)
where
Ak, 7) = (P, J) —t(J. J) +e1(f _kfk)fr.

e1ek|J A T|?

Furthermore, by assuming thAk fzr — szr # 0, itis easy to see thatf;; — fir and fix — Afnk
do not vanish simultaneously. Let us choose the first one. Then, from th¢1Byand (14)wve
get

kZ(AfU - fkt)2
(fkkftr - sz‘[)z
Now, Eq.(12)is of the formF(k, ) = 0, so that wher%% # 0, we findt as a function ok and

solvek by quadratures.
If fix — Afu # 0, we can proceed similarly.

(K')2 = &2 (4, J) — erf? — e3fP).

Remark. Whether f(k, t) only depends ok or 7, a straightforward computation shows that the
only critical curves are generalized helices.

3.1.1. P andJ are collinear

An interesting situation wherg, J) is constant occurs wheh = 8J. Here, itis included the
case where the critical curves are generalized helices but not classical helices, as it can be easily
checked. We observe that, whéris zero, the solutions are geodesics. In this case, we cannot
integrate the Frenet equations, but we can do the Euler-Lagrange onégsJAs —P A T, we
deduce that

E=—BJ+(B—eC)JAT =0,
and
—B(J,T)=0, (B>—¢cC)JAT?=0.
It is not difficult to see that this happens only when one the following cases holds:
(i) J=0,

(i) (J, T) andp are both constantanfi= ¢1(J, T) T,
(iiiy B2 =eC.

The solutions are geodesics in the two first cases, because they only occufvdrehf, both
vanish. In the third case, the Euler-Lagrange equations are trivially satisfied. Therefore, to get
the critical curves it is enough to look for curves satisfying the system

(P, T)=p(LT), (P,N)=p({JLN), (P B)=p{B).
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Moreover, (P, N) = B(J, N) can be deduced by taking covariant differentiation{ih T') =
B(J, T) relative toT, becauseP andJ are Killing vector fields. Therefore, we have to solve
the system

f_kfk = (T_ﬁ)f‘f’
exkfe + 2 (§) = eafi(z = B).

By assuming thafy frr — szf # 0, we can obtairk as a function of or viceversa.
Assume that is a functionk = i(t). Then

fé = k/frk + T/frr = T/(hrfrk + frr)v
so that

T/(hrfrk + f‘L'T)
h

This equation can be written as

a1(2)(t')? + az(r)t" = az(7).
This is an ordinary differential equation which can be transformed into a linear one by doing
7 = w(r) andy(z) = w(z)?. For instance, doing the calculations whifi, 7) = k2 + 72, we get

v = \/e2(2t8 — 1?)(e3(c2 — 21p) — e172 + Cy),

whereC; € R andk? = 218 — 2. Therefore, we have found critical curves which are not gener-
alized helices.

e1hfr + €2 < > = e3fi(t — ).

3.2. Integrating the Euler—Lagrange equations when (J, J) is not constant: two interesting
cases

SettingQ = P — tJ, the integrals of the Euler-Lagrange equations can be written as
(Q,0)+ (0, J)+eC(J, J) =d — e,
(0. )+ () J)=e.

Although these equations cannot be, in general, integrated, some particular casegguct) as
g(k) + at or f(k, ) = g(r) deserve our attention.

(15)

(B.d.a)  f(k, )= g(k) +at

From the second equation (¥5), we find out
e+ e1ag
£3gs
which we bring to the first equation ¢f5) to getk by quadratures
g,%(d — e1(g — kgi)? — e3a°k? — eC(e1a® + 83g,€))

— e3(e + e1ag)(e + c1ag — 2¢1akgy)
£28%8k

Note thatg2g2, # 0, because we had assumed that) is not constant.

)

(k/)Z —
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3.1.b)  f(k, ) = g(z). For a physical meaning of a model with torsion see[dfand refer-
ences therein.

Now, we first observe that from the first Euler—Lagrange equation we deduce that
AN /£l
&2 T
erkfr + &2 (i’) =5 (81€2kf - kft> :
From hereQ can be written as
&2 /g/r
Q =e18T + = | e162kg — U= | B.
2t k
Then, from the first equation ¢15), we get
(‘L'/)Z _ k2(€ + €18:(¢ — 787))
£2782,

(16)

We also have tha:tg%r # 0, becauseéJ, J) is not constant. A straightforward computation involv-
ing (16) gives

/N 2
e+¢
182 + &2 <8kr> = 711&.

Then, we can obtaik as a function of and thereforg16) can be rewritten as

(2 _ 43T (1(d — e — £1g” + eatggy) — eC(eageg + )
(t(ggrr + 82) — e1¢ — g8:)? '
Finally, we get

_ 4ege3t?(t(d — te — £18° + £1188:) — £C(e18:8 + €))(e18:(g — T81) + ©)

(') > 3
(t(gger + &%) — €16 — ggv)

17)
Thereforesr can be obtained by quadratures.
Note that to finck?, we have to assume that
7(ggre + 82) — £1¢ — ggr # 0.
Otherwise, we should also have that
t(d — te — £18% + €17887) — £C(e18:8 + €) = 0.
Now, puttingy(t) = g(7)?, we have the system

/

8—21(t2 —eC)y — e11y + dt — e(z? +6C) = 0, gy” — g1 — yE =0,

whose solutions are of the fory(t) = c¢172 — 2¢1et + e1d — ec1C, wherecy is an arbitrary
constant. Therefore, the curvatures of the critical curves should satisfy

(')

Itis worth pointing out that we obtain critical curves for any given curvature, getting a pretty wide
family. However, this family does not appear in ri@f2], where the authors study the Lagrangian
(1) in flat spaces.

_ 8182/(2(6‘17:2 — 2e1eT 4+ e1d — C18C)2

e1dcy — c2eC — 2
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4. The solving natural equations problem

In order to find explicitly the critical curves of the Lagrangidfy), we look for a suitable
coordinate system. To do that, we first give the following technical result
Lemma 3. P and J commute.

The method to obtain the coordinate system in flat spaces will be quite different from that
followed whenC = 0. However, as we will soon see, the parametersd? — 4eCe? and| P A J|
seem to play an important role in the description of the particle path in any case. Itis easy to show
that they are related by

A= (P, P)—eC(J,J)?+A4C|P A J|2. (18)

We begin with the description of the flat case.
4.1. Flat case (C =0)

We have to distinguish two cases according to the causal charagteTbé method given in
this case holds wheneveér# 0, even wherJ, J) is constant.

4.1.1. P is not null

Choose an orthonormal coordinate system £2, z3) in R:j, such tha® andd,, are collinear
and write P = ud,,. Let Ry = €’* be the one-parameter group of rotations leaving invadgnt
(andP), where

0O 0 O
A=|10 0 ¢ |,
0 —&p 0

& = (0,,, 07,) andeg = (9,5, 9;5). Let
W(Z» rv 9) = R@(Z821 + razz)

be a cylindrical coordinate system.

Thend, = d;,, 3, = Ry(d;,) and dy = —eprRy(3,;). By using the properties of orthogonal
matrices, we find thad, andd, are unit vectors (having the same causal charact@raasia,,,
respectively) anddy, ) = gor>. On the other hand, we have

Y A 0; = 1o A Rg(0;,) = —eorRe(d;5) = 0p.
Doing a translation, we get = « P + y A P, wherea = {4} Therefore,
J = u(ad. + d)
so that
2 s
P A J = g60ruco, and PAT=u (——89 + 898,1’058,) .
r
Hence, we get

&P A JJ?

2 _
r(s)c = (P D)2
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or equivalently
[P AJ|
r(s) =
(s) i

Su(PAT,PAJ)
os)= | LT g e
) /O et

Finally, it is clear that
u

2(s) = P, P)/0<P’ T)du + co.

The constantg; andc, determine, respectively, a rotation arouRdand a translation in the
direction of P. This means that choosing two particular functiérendz, satisfying the Euler—
Lagrange equations, all constants and freedom degrees are associated with rigid motions. This
is an important point because we know that the coordinate expressions are necessary, but nof
sufficient. The fact of obtaining curves differing from rigid motions implies that all curves have
the same curvatures and the critical curves are completely determined.

and

4.1.2. Pis null
Proceeding as above, choose an orthonormal coordinate system ¢3) with (3, 9;,) =1
and(d.,, 3;,) = —1 such that

P = 1 €] 9z,)
- «/é 21 27
We are going to see that this choice is always posible. Consider a Lorentziamptangaining
P and let{w1, w2} be an orthonormal frame afsuch thatv1 is spacelike ana; timelike. Then,
we can suppose thdt = u(w1 + wp), with 1 € R. The coordinate system verifying the above
conditions is jusf{es, ez, e3}, where

2u?+1 +2/L2—1 1—2u2 2u+1
e1 = w w2, e = w1 —
! 2V2u ! 2V2u 2 2 2V2u ! 2V2u

andes is a unit vector orthogonal to the plareNow fix a one-parameter rotation groRp = €’4
leaving invariantP, with

w2,

1 0 0 1
A=—1] 0 o -11,
V2
—&p —E¢g 0
whereey = (3., 9;,). Considering the pseudo-orthonormal basis

(11 = (0 — By), v2 = —

V1= —= —0z), 2= —7
v2rt V2

we haveA(vy) = 0, A(v2) = —egpv3 and A(v3) = v1. On the other hand, taking the coordinate

systemyi(z, r, ) = zv1 + rRg(v2), then the coordinate vector fields = v1, 9, = Rg(v2) and

09 = rRyA(v2) = —regRy(v3) form a pseudo-orthogonal basis afii}, o,, %ag} is a pseudo-

orthonormal one having, anda, as null vectors such thaé,, 3,) = 1. Moreover,

(azl + azz)v v3 = 05},

Yy Avp =rRg(v2) A Rg(v1) = rRo(v2 A v1) = —egrRg(v3) = 9p.
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Doing a translation, we gel = ev2 + y A P. Now, we are going to findy in terms of the
coordinate vector fields. To do that, observe that

02
Rg(v3) = 0Ovy +v3 and Ry(v2) = —8951)1 + vp — ggbva.

Then
62 0 62 0
U2=—895P+3r—739 and J=—8965P~|—ear+ 1—67 dg.
r
Therefore, developing/, T), (J, J) and{P, T) we find out the coordinates 6 andr as

02r  Or? 3
«s) = &6 ( - )

1
— 4+ —= |- | (UAPTAJ ,
2 e +36‘2 ez/< Jd e

00) = (P = eald ). ) = / (P.T) di + co.

Whene = 0, as(T, T) = 2z,r; + £02r?, we get
|J/\T|2 B (J,T) 2 _
/2 duter 0(s) = /u ; H(s)2 = (J. ).

Obviously, the mtegratlon constamﬁsandcz produce rigid motions, so that the critical curves
are completely determined. Indeed,gives the translation;vq, whereas:, produces the trans-

—eoc3 2
lation 2 v1 + c2v2 — "2 v3 followed by the rotationR,, .. This rigid motion is associated
with the expression of in terms ofP, which is not invariant by rotations, so that we must apply
a translation to compensate this fact.

4.2. Non-flat case (C # 0)

The manifoIdMS’(C) can be viewed as a hyperquadriclmj, whereu =voru=v+1,
according toC > 0 or C < 0, respectively. Choose the following parametrization

X6, ¢, ) = e e(y),
whereA, B € o(4, 1) commutec(y) = (a1(¥), a2(¥), az(¥), aa(y))t is a curve iriRﬁ satisfying
(c(¥), c(¥)) = 1/C and t denotes transpose. It is easy to see that the coordinate vector fields are
given by

Xo = A e#Be(y),

X, = B e’Bc(y),

Xy = erBe(y),

and satisfy
800 = (Xo, Xo) = —c(Y)' AA%(Y), gpp = (Xy, Xy) = —c(¥)' AB?c(¥),
guy = (Xy, Xy) = CW)ACW),  gap = (X0, Xp) = —c(¥)' AABc(Y),

8oy = (Xo, Xy) = —c(W)'AAC(Y), oy = (Xy, Xw —c(Y)'ABC (),
whereA stands for the diagonal matrix diag| €2, €3, €4] representing the canonical metric in
R4,
"
Now, we have to distinguish according to the isometry Lie algebra s eifdes), withs = 0, 1
oro(4, 2).
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4.2.1. The isometry Lie algebra is 0(4,8), 6§ =0, 1

We can assume thab = €3 = ¢4 = 1 ande; = ¢, wheree stands for detf). In order to
find explicitly the coordinate functions of the critical curves we have to consider two cases: (1)
d’>+e?#£00r(2)d =e=0.

Case 1: (d% + ¢2 +# 0). Then chooseA = P; and B = L1 (as in Appendix A.]) and c(y) =
(a1(y), 0, az(¥), O). Itis easy to show that the coordinate vector fields form an orthogonal system
with ggg = az(¥)? andgg, = az(¥)2. Now, asP andJ commute, we can apply a rotation, when
necessary (se&ppendices A.1 and A)2to write P andJ as

P = p1Xp+ p2X . P X
P1LAG T P2Agy  thatis - M (4 ’ M= p1 p2 .
J =q1Xe+ q2X, J Xy q1 q2

From(8), we deduce that

p2+eCq? =eCd, p3+eCq5 = Cd, (19)
p1q1 = €Ce, p2q2 = Ce.
Writing down (J, J) in terms ofg;, we find that
2
2 q2 2 q1—€C{JJ)
al(W(S)) C(q qu) and a3(¢(5)) - C(qiféq%) . (20)

Observe thaz{yl — qu # 0, becauseJ, J) is not constant. On the other hand, we can wXige
andX, in terms ofP andJ as

Xog =a1P +apJ a1 o2 _1
, where =M.
Xy = P1P + B2J B1 B2

Finally, asT = 6'(s) Xy + ¢'(s) X, + ¥/(s) Xy, from (20) we conclude

(T, X (P, T) + J T
9()—/ iy —C(611_€6]2)/a1 a2(2 )dM+Cl
800 L) —q5
and
TX) B1(P, T)+ B2(J, T)
= = C(q5 — du + co.
o= [ © 2 dn = e - e e e

There are several choices for the signsggfand ¢, but only one can be chosen, since the
corresponding critical curves differ each others from rotations. Now we have to distinguish two
subcasesx = 1 ande = —1.

Case 1.1 (¢ = 1). Then the hyperquadric B3(C), so thate = 1. It is easy to see that> 0 and
A > 0, unlessJ, J) is constant. As before, we can suppose that ¢> > 0. A straightforward
computation shows that

e p1 =+/Cqz andpy = +/Cqy Wwhene > 0; and
e p1 = —+/Cgoandpy, = —/Cq1 whene < 0.

Case 1.2 (e = —1). Then the hyperquadricis eitk@f(C) orH3(C), accordingtaC > 0orC < 0,
respectively. A similar computation as above shows that
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e p1=4+—eCq2 and pr=—+/—eCq1whenge > 0;and
e p1=—+/—eCqzy and py=+/—eCq1Whenge <O.

Case 2: (d = e=0).TakeA = Ly + P3, B = L3 — P, andc(¥) = (a1(¥), a2(¥), 0, 0). Then
the coordinate vector fields form an orthogonal frame with= gy, = (a1(¥) + as(P))?. In
this case, we can suppose tifat= Xy andJ = g1Xg + g2X,. From(8), we deduce thaj; =
andq2 = —1/(¢C), so that &1(¥) + a2(¥))? = —eC(J, J). Without loss of generality, we can
assume thaj, > 0. Finally, asT = 0'(s) Xy + ¢'(s) X, + ¥'(s) Xy, we deduce that

PT
0(s) = —% <<J—J>) du + c1,
() = g2 [ 7 die + c2.

Explicit expression of the coordinate system X
We have to distinguish several cases:

(@) € = 1, thenM3(C) = S3(C). Takeas(¥) = smw andaz(y) = cosw and then

X6, ¢, ¥) = —(cos@ siny, — sind siny, COSp COSY, — Sing COSY).

JC
(b) € = —1, thenM3(C) = S3(C) or H3(C). Now, we have two subcases:
(bl) d? + ¢2 # 0. Then

X (6, ¢, ¥) = (a1(y) cosh¥, a1 (¥) sinho, az(y) coshp, —az(y) sinhy).
(b2) d =e=0.Then

X0, ¢, ¥) = (a1(¥) + 2(¢? + 6 (@r(¥) + a2(¥)),

a2(¥) — 50 + )@ (¥) + a2(¥)),  —¢(a1(¥) + a2(¥)), O(ar(¥) + a2())).
The functionsz1(v), az2(¥) andaz(y) are given by

e a1(y) = smhw andaz(y) = az(y¥) = coshw inS3 1(0).
* ai(¥) = = coshyr andaz(¥) = as(y) = = sinhy in H3(C).

Finally, observe that there are interesting relationships amengp (or az) and|P A J|. In
cases (a) and (b1), we have

Y sin2y i (a)

|P AT = /|Chay(¥)az(y) = {

et sinh 2y in (b1)
In case (b2), the relation is

[PAJ| =

1
F(al(w) + a2 =
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4.2.2. The isometry Lie algebra is o(4, 2)
First, we can suppose that= —1 andC < 0, since the anti-de Sitter space is the only space
form whose Lie algebra is(4, 2). We will takeao(y) = \/% coshyr andaz(y) = \/% sinhy,

and choose the matricdsandB as inAppendix A.2 having nine possible cases. In any of them,
the productgg andg,,, are constant (more precisely, they take value{ﬁ)jpr%, %}). However,
86, 1S @ linear combination of coshfd and sinh(z/), and therefore it depends a@hin such a
way that it is not constant anywhere. Furthermggg,andg,y both vanish. From\ppendix A.2
along with [P, J] = 0, we deduce that

P Xo
=M .
J X,
The coefficientg1 andg» do not vanish, becausd, J) is not constant. Fror(8), we deduce that

pip2+6Cq1g2 =0, (pf+eCqd)gen + (p5 + £Cq3)8yp = d,
P1g2 + p2q1 = 0, q1DP1866 + q2DP28pp = €.
Now A = d? — 4eCe? = (d + 2v/¢Ce)(d — 2+/¢Ce) can be positive, negative or zero. We shall
take, without loss of generalityy; with the same sign o1 and thenp, and g, will have
opposite sign. Moreover, when< 0 we can supposg > 0 and take;, with the same sign of
—(d +2C(J, J)). If A > 0, we can assume that andg; are positive.

From the left-hand equations (81), we deduce thap1 = +/eCq1 and p2 = —/eCq2. Fur-
thermore, considering the right-hand equations, we get

48Cg99q§ =d+ 2VeCe and 4:ngq% =d — 2VeCe. (22)

The parameterd + 2+/¢Ce andd — 2+/eCe determine the choices df andB. Thus, we shall
study separately the casest 0 andi = 0.

Case 1: (A # 0). Now d + 2+/eCe andd — 2+/eCe do not vanish. A direct computation yields
goo = €9/eC andgy, = &,/C.

On the other hand, frorf8), we get
2:C(J,J)—d
809 = —F -
4¢Cq192
From the relationships amomRy J, Xy andX,, it is easy to see that

Xo\ _ (o2 (P _where | %) = m 1, (24)
Xy BrB2) \J B1 B2

and therefore

(21)

(23)

1
=— PANJ=—PAJ
Y7 det(M) 2p1qg2

From these equations aft= 60'(s) Xy + ¢'(s) X, + ¥'(s) Xy it can be deduced that
TAXgp, XonX
9/(3) — < % 0 ‘/’>
|X<9 A X<p|2
T A Xg, Xg N Xyp)
|X6 N X<p|2

XN X

’

o) =~



+ Model

16 A. Ferrdndez et al. / Journal of Geometry and Physics xxx (2005) xxx—xxx

Then, from(24), we get

B (T A(BLP + B2J). PN J)
6(s) = 2q1qz/ AL

du

and
(T A (1P +a2J), PAJ)
[P A J|?

o(s) = —2q192 / due.

A straightforward computation yields

( 2a2(W)az(y).  Fr <0,
89 = ap()? + as(¥)2. if & > 0.

These expressions, together w’ztgq— ag = 1 (18), (22) and (23)lead us to the following:

E!
(& wheny <0
az(tﬁ(s))z — % Vi and a3(1/,(s))2 — w vk
2eCy/—A 2eC/—A ’
from which we deduce that
v —eCh v —eCA
PATI= " (@2 +ad) = 5o Cosh;

(b) whena >0

[2eC(J, J) —d| — /% 126C(J, J) —d| + /A

2 2
= and = ,
az2(¥(s)) 20 az(¥(s)) N
so that we get
VeCh
[P AJ| =+~eCrazaz = 2€C sinh 2.
£

Case 2: (A =0). We have to distinguish two subcases depending on the valudd 6f

2/ eCeandd — 2+/¢Ce).

Subcase 2.1. d + 2./eCe = 0 andd — 2+/¢Ce # 0. Thengy, = 1 (seeAppendix A.2 andggy =
0, 8pp = £4/(C), ga, = (a2 + az)® andg3 = 3¢,,d. Now, from

_ 2:C{J, J) —d
8op = 4eCqo
we deduce that
1 1
86y + z¢ 86p — 3¢
ax(y) = ——= and az(y) = ——=.
2«/g9¢ 2«/g0go
Therefore,

+/26Ce,d
|PAJ| = \/26Ce,d(az + az)® = Y— .

eC
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The expressions fatr and agree with that obtained when# 0, takinggs = 1, buty can
now be simplified as

B (P, T) 4+ eC(J, T))
o(s) = 2ev/eCqo / 55CU. T ds

Note that the symmetric caget 2+/eCe # 0 andd — 2+/¢Ce = 0 only differs from this in a
rotation.

Subcase 2.2. d + 2v/¢Ce = 0 andd — 2+/eCe = 0. Then,d = e = 0 andggs = gyp = 0,91 =
g2 = L andgg, = 2(az + az)?. On the other hancgs, = %(J, J), so we have

_eC(JJ)+4 _eC(J J) -4
az(¥(s)) = CSATTT and az(¥(s)) = 2T
In this case,
[P A J| =4VeClaz + az)? = ‘k‘e/é?ezlp

Again the expressions éfandg, wheni # 0, hold, but they can be simplified as

Q(S)_/—<P,T>+R<J,T> and (S)_/<P,T>+\/E<J,T>
- JeC(J, ) = VoGl

Explicit expression of the coordinate system X

Finally, we are going to describe how to construct the coordinate systerAppkendix A.2
we have seen that the possible choices of the mattieeslB are& = +/2PJ, £ | = /2P5 and
58 = \/E(Pf + Pg). Here,§ = 1 corresponds to the choices Afand§ = —1 with those ofB.
Moreover, the lower index i@ gives the causal characterX for the choices oft and the casual
character ofx,, for those ofB. Now, we observe that

CoSw Sinw 0 0
ot _ sinw  Ccosw 0 0
0 0 Cosw §Sinw
0 0 é$sinw cosw
coshw 0 sinhw 0
ewffl _ 0 coshw 0 -3 sinhw
sinhw 0 coshw 0 '
0 —Jsinhw 0 coshw
w w 0
8 _ 1 0 —dw

1

—w
w 0 1 Sw
0 —dw —dw 1
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Then by computing (& e*Zc(y)), we obtain the coordinate systems. For example,
(a) whenX, andX,, are spacelike, the coordinate syst&id, ¢, ) is given by
1
VeC

(b) when they are timelike, the coordinate system is

(coshyr sin@ + ), coshyr cosP + ¢), sinhyr cosp — ¢), — sinhyr sin@ — ¢))

(sinhyr sinh@ + ¢), coshyr coshf — ¢), sinhyr cosh@ + ¢), — coshyr sinh@ — ¢)).

1
v eC
5. Conclusions

Inref.[11], we have studied actions In = 3 spacetimes whose Lagrangian is alinear function
m + nk + pt on the curvature and torsion of the particle path, finding out that trajectories are
Lancret curves, or generalized helices. Indeed, the critical curves are always Lancret curves,
which are obtained by geometrical integration involving the Hopf fibrations (see alg&]jef.

Here, we go further in a two-fold sense, assuming that the Lagrangian density is an arbitrary
function on the curvature and torsion of the particle path which is lying in a three-dimensional
pseudo-Riemannian space form. We have got two Killing vector fields along cireesl J

and exploited the machinery supplied by them, which became a fruitful tool in our earlier and
recent paper. Actually, the integral equations are reduced to a system invBlaimdy, which is
equivalent to the Euler—Lagrange equations if, and onlyJif/) is not constant. Then we have
solved the motion equations and found out solutions which, as a pretty interesting fact, are not
generalized helices. We note that when the Lagrangian densitytisik + pt, then(J, J) is
constant.

To obtain explicitly the critical curves of the Lagrangian, we have chosen suitable coordinate
frames where the Frenet equations have been integrated. With the help of the corresponding Lie
algebras, a complete system of solutions is given in the de Sﬁt&nd anti de SitteH? worlds
as well as in the non-flat Riemannian space fofhandH?.

Finally, an open and interesting problem could be the searching for critical curves different
from the generalized helices whén J) is constant, as well as a suitable method to get them.
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Appendix A

We look for characteristic elements of the orbits of the Lie algef#av), whenv =0, 1, 2.
That is, givenA € o(4, v), we apply a rotatiorG to choose a new coordinate system where
the matrix associated t is A = GAG . Thus is obtained the orbit of, where we wish to
find an element in a simple way. Now, there is a bijective mapging(4, v) — K such that
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P([A, B]) = —[®(A), @(B)], wherek is the subset of Killing vector fields (see rgf4]). Then,
by means ofb, we use characteristic elements of the Lie algebra to find characteristic okies of
(see ref[15] for details).

Al o(4,1)

We will show that any element of the Lie algeln@, 1) is given by a linear combination of
the vector fields\y and X,,.
Let A;; be a matrix such that;; = 1 and 0 the remaining entries. Let us define

Mij = Ajj — cigjAji,
wheregsg = —1landg; = 1,i = 1, 2, 3. A basis ofo(4, 1) is given by
Pi = Moi, Li=Mas, Lz2=Mz1, L3z=Mi.

It is not difficult to see that
[P P=) ehiLe, [Li,L]==) eile, [Li,Pl==) eiiPs,
k k k
whereef?j =1, when{i, j, k} is an even permutation ¢1, 2, 3}, and—1 otherwise.
Fix A € 0(4, 1) and define the orbit
orb(A) = {B € 0(4,1) : B= GAG™%, for anyG = I;c; exp(X;) andX; € o(4, 1), Vi € I},

I being a finite subset. It is clear thg#, 1) is a disjoint union of orbits. To determine the orbit of
anyA, first observe that when

Ap(s) = expGL)A exp(—sL),
whereL € o0(4, 1), then
AL () = [L. AL(S)].
Therefore, writingA 1 (s) andL in the above basis af(4, 1)

AL(s) =D LOLi+ Y pi()P, L= aiLi+y BiP;,
the following equations hold
Lo=—> &k ilajli = Bipi),
iJ

P == &k i(ajpi+ Bili).
i.J
Itis not difficult to see that the Casimir functions fd#, 1), with the initial conditionA; (0) = A,
satisfy

Yolkpe=ki, D =Y pi=ka
k k k

for certain constantls; andk,. Then orb@) is lying in a certain level st C o(4, 1) of the Casimir
functions. To see that they exactly agree we have to showtisatonnected and orlj is open.
As Cis a disjoint union of its orbits, the connectedness will mean that it contains a single orbit.
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To prove thatC is connected, we consider three-dimensional slices(p1, p2, p3) = const.
They are circles obtained by the intersection of a normal planeveith a sphere of radius
ko + (p, p),i.e.,

(,p)=ki, (LI)=ka+(p.p),

wherel = (1, I2, I3). To compute the values pfwhere the slice is not empty we have to write
the condition that the distance from the plane to the origin is lower than the radius of the sphere,
that is,
k2
k2 + (p, p) = ——.
(p, p)
This is a connected set and scidt is clear that, at each orbit except for the case= k> = 0,
thereis atleast arepresentativdas alL1 + bPi. If k1 = k2 = 0, we can choose arepresentative
elementL;, 4+ P3. Finally, by choosing a non zero element of the Lie algebra of the form
alLy + bP1, any other element commuting with must be a linear combination @f; and P;.
Analoguely we find that the elements commuting with+ Pz are of the forma(L2 + Ps3) +
b(L3 — Py)

A.2. o(4,0)and o(4, 2)

We will see now that(4, 20), 0 = 0, 1, is isomorphic to the produe(3, o) x o(3, ¢). With
the above notation, we set

LY = (Moy + 81M23), LY = (Mo + 82M13), L3 = (M12 + 83M30),
wheres; = 1, i = 1, 2, 3. Whengg = ¢1 = 1 andey = 3 = &, we obtain
(L3, L2] = (1— 5182) 152, [L?. L3] = —e(1 + £8283) L™,
(L%, L0 = —(1 — e6183)L; .
Therefore, ifs$2 = 1, set
15

1
=L 78
ﬁ b

S8 Pi=_—_L

1
P = L°, = ,
! V22 T2

P
to get

[P} 3l = —cP}. [P Pyl =—eP). [P} Pil= P},
Moreover,P;S and PJ._‘S always commute. Them(4, 2p) splits as a direct sum of two commuting
subalgebras

0(4,20) = E1® E_1,
where

E1=spaiP}, P}, P}} and E_;=spariP;t, Pyt Py

Both subalgebras can be identified wiitB, 0). We look for canonical elements obtained from
rigid motions. We will study separately each direct summand, because when we apply a rotation
generated by an elementBf, the componenti _; is left invariant and viceversa. To determine
Ey,uw=-11takeA € E,. If

Ap(s) = expGL)A exp(—sL),
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then

1) =L, AL(9)].
If L = p1P + p2P3 + paP5 andA = ai(s) P + az(s) P + as(s) P, it follows that

a} = —&(p2az — p3az),

ay = p1az — p3az,

ay = —(p1az — paay).
Then the Casimir function is

sa% + a% + a% = k.

Proceeding as above, the orbitodfn E,, is lying in a certain level s&f of the Casimir function
and we will show that is open i@. Now C is not always connected, however, whan# 0 the
orbit agrees with one of its connected components. Whea 0 we can proceed as above to
show that there are two connected components which are lying in the same orbit.

As a canonical element on each orbib@3, 0) is of the forman, a canonical one in(4, 0) is

aP} +bP; .
Since,Pi3 = %(Mm + §M>3), the above element can also be given by

aMo1 + bM>3.

On the other hand, there are three types of orbits(8)1), depending ork; > 0, k1 < 0 or
k1 = 0. The canonical elements in each type of orbit are

{aPy, aP3, (P} + P3)},
wherea € R. Therefore, we get nine classesif, 2)
aPl+bPL aP}+bPy Y, aP} + (Pt + Py Y,
aP} +bP; Y, aP}+bPyt, aPi+ (P71 + Py Y,
(PE+ PY+bPit,  (PL+PH+bPyY,  (PL+ P+ (PLt+PyY)

wherea, b € R. Note that any element can be written @$ + bB, whereA and B are com-
muting matrices. Furthermore, the simplest coordinates are obtained by takimgl B in
V2P, V2P§, J2(P + P))}, better than in( P{, P3, (P} + P))}.
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