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Abstract

In [2] we showed that null scrolls with zero mean curvature provide a nice class
of classical string solutions in AdS3. In this note we prove that the whole class of
null scrolls give a huge family of solutions to the extrinsic Polyakov string theory, in
that background, which contains the classical theory as a natural submodel . Then we
use this result to exhibit the solitonic nature of the field equation associated to the
Polyakov action.
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If one wishes to evolve curves in a target spacetime to generate surfaces being extremals

of a certain action, it seems natural to involve the extrinsic geometry of surfaces in the

density of the action. This idea was materialized by A. M. Polyakov [3] by introducing the

so called extrinsic Polyakov action. In the anti de Sitter world AdS3, which we take of

curvature -1, that action is given by

P(S) =

∫
S

(
H2 − 1

)
dA−

∫
∂S

κ ds, (1)

(*) Corresponding author A. Ferrández.
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where it runs through the space of timelike surfaces S with the same boundary ∂S and

tangent along the common boundary. Here H means the mean curvature of S and κ the

curvature of ∂S in S.

The field equation providing the solutions of this string theory, extrinsic Polyakov string

solutions, was computed in [1] as

∆H + 2H(H2 −K − 1) = 0, (2)

where K and ∆ denote, respectively, the Gaussian curvature and the Laplacian of S endowed

with the induced metric. Obviously, stationary surfaces are solutions of (2). Therefore, every

classical string solution is an extrinsic Polyakov string solution.

A null scroll S(γ, B) in AdS3 ⊂ R2,2 (see [2]) is a ruled surface naturally parameterized

by

X(s, t) = γ(s) + t B(s), (3)

where the directrix γ(s) is a null curve in AdS3, and the ruling flow B(s) is a null vector field

tangent to AdS3 at γ(S). The Laplacian of a null scroll associated to the induced metric is

given by

∆ = −2
∂2

∂s∂t
− 2 (〈γ′, B′〉+ t 〈B′, B′〉) ∂

∂t
−

(
2t〈γ′, B′〉+ t2 〈B′, B′〉

) ∂2

∂t2
. (4)

The mean curvature H of S(γ, B) is given by

H(s, t) = det[γ′, B, B′](s),

while the Gaussian curvature is computed to be

K(s, t) = −1 + H2(s, t). (5)

These two functions are invariant along the ruling flow, so we use (4) to get ∆H(s, t) =

∆K(s, t) = 0, so that they are harmonic functions. We combine this information with (2)

and (5) to conclude the following statement:

Every null scroll in AdS3 provides a solution of (2) and so an extrinsic Polyakov string

configuration.

To compute the charges that they could carry, we check the critical values of (1) on a

non-null polygon, say Ω. If ∂Ω is made up of n smooth pieces and θj, 1 ≤ j ≤ n, denote the

exterior hyperbolic angles, then we use the Gauss-Bonnet formula (see [1]) to get

P(Ω) =

∫
Ω

(H2 − 1) dA−
∫

∂Ω

κ ds =

∫
Ω

K dA−
∫

∂Ω

κ ds =
n∑

j=1

θj.

Then we have proved that the charges are encoded in the boundaries, namely in the

corners along the boundaries. This shows a holographic principle for the P critical values,

on scroll Polyakov string solutions
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Now let F1 be the class of null scrolls in AdS3. To any S ∈ F1 we can associate a

wave function φS which appears as a solution of the generalized Liouville equation (see [2],

Theorem 6.1). Therefore, if F2 denotes the class of solutions of the generalized Liouville

equation, we can define a map

Φ : F1 → F2, Φ(S) = φS,

which is surjective (inverse scattering). Moreover, Φ−1(φ) is made up of a C∞(R)-family of

isometric solutions of (2) which are not congruent in AdS3. This result shows the solitonic

nature of equation (2), the field equation of the extrinsic Polyakov string theory in AdS3.

Other consequences could be obtained by using this approach that allows us to see the

generalized Liouville equation as a submodel of the extrinsic Polyakov string theory in AdS3.

For instance, every null scroll in AdS3 can be seen as a soliton of (2) wich carries charges

that can be holographically computed in the conformal boundary of AdS3.

It should be noted that the map Φ provides a one-to-one correspondence between the

submodel made up of classical string solutions and the space of solutions of the Liouville

equation (compare with [2], Corollary 6.2).
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