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Resumen

Willmore, sigma model and Polyakov extrinsic string are three closely related
energy actions, the latter two having important applications in Physics. We exhibit
solutions of all of them, in a Lorentzian atmosphere, by means of null scrolls, a sort
of timelike ruled surfaces with no counterpart in a Riemannian background.
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1. Aims

Imagine three energy actions (Willmore, noncompact sigma model and Polyakov ex-

trinsic string) located at the vertices of a triangle. Then we wish to explain how and why

null scrolls are placed at the center of the triangle:
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2. Null scrolls

γ : I ⊂ R → L3, regular curve

B : I ⊂ R → L3, a vector field along γ

X(s, t) = γ(s) + tB(s), ruled surface

Xs :=
∂X

∂s
= γ′ + tB′, Xt :=

∂X

∂t
= B

(gij) =

(
〈γ′, γ′〉+ 2t〈γ′, B′〉+ t2〈B′, B′〉 〈γ′, B〉+ t〈B′, B〉

〈γ′, B〉+ t〈B′, B〉 〈B,B〉

)
According to the causal character of γ′ and B, there are four possibilities:

Case γ′ B Condition

(1) non-null non-null lin. indep.

(2)∗ null non-null 〈γ′, B〉 6= 0

(3)∗ non-null null 〈γ′, B〉 6= 0

(4) null null 〈γ′, B〉 6= 0

3



Definition. A null scroll S(γ,B) will be a surface parametrized by

X(s, t) = γ(s) + t B(s)

such that

〈γ′(s), γ′(s)〉 = 〈B(s), B(s)〉 = 0

and

〈γ′(s), B(s)〉 = −1 (normalization condition).

(gij) =

(
2t〈γ′, B′〉+ t2〈B′, B′〉 −1

−1 0

)
.

Definition.

C(s) = γ′(s)×B(s)

Gauss map.

N(s, t) = C(s) + t B′(s)×B(s).

B′(s)×B(s) = −f(s)B(s),

where f(s) = 〈γ′(s), B′(s)×B(s)〉 = det[γ′(s), B′(s), B(s)],
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N(s, t) = −t f(s)B(s) + C(s).

−f(s) is called the parameter of distribution of the ruled surface S(γ,B).

Shape operator.

dN ≡
(
f t f ′ + 〈γ′, γ′′ ×B〉
0 f

)
.

Mean and Gauss curvature functions.

H(s, t) = f(s) and K(s, t) = f(s)2

Laplacian.

∆ = −2
∂2

∂s∂t
− 2 (〈γ′, B′〉+ t 〈B′, B′〉) ∂

∂t
−

(
2t〈γ′, B′〉+ t2 〈B′, B′〉

) ∂2

∂t2
.

∆H(s, t) = 0 and H2(s, t)−K(s, t) = 0

Remark 2.1 When f(s) = const, X(γ,B) is called a B-scroll, [L. K. Graves, Codi-

mension one isometric immersions between Lorentz spaces, Trans. A.M.S. 252 (1979),

367-392.]
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3. Constructing null scrolls

The metric:

dx2 + dy2 − dz2

The light cone:

C := {x2 + y2 = z2}

Take a vector ~u ∈ C

~u = (x, y, z) = z (cosα, sinα, 1).

Then (z, α) parametrize C.

γ′(s) = c(s) (cosω(s), sinω(s), 1), B(s) = r(s) (cosϕ(s), sinϕ(s), 1),

normalization condition:

cos (ω − ϕ) = 1− 1

c(s) r(s)
.

The mean curvature of a null scroll:

H(s, t) = f(s) = −det[γ′(s), B(s), B′(s)] = −r(s)ϕ′(s)
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Remark 3.1 The mean curvature of a null scroll only depends on the lightlike ruling flow.

Algorithm for stationary (H(s, t) = 0) null scrolls.

H(s, t) = −r(s)ϕ′(s) = 0 if and only if ϕ′(s) = 0, i. e., the lightlike ruling flow consists

of parallel rulings.

In other words, the angular function associated with this flow is constant ϕ(s) = ϕo ∈
R. Then

1. We first need a lightlike base curve, γ(s), defined on a certain interval I ⊂ R. To

get it, we build its tangent vector field in the light cone and recuperate the curve,

up to congruences, by quadratures. However

γ′(s) = c(s) (cosω(s), sinω(s), 1), s ∈ I,

therefore, to find the base curve we need two functions c, ω : I ⊂ R → R, defined in

a suitable interval, one of them positive, c(s) > 0 anywhere.

2. To construct the ruling flow we need, a priori, a real number, say ϕo ∈ R, and a

function r : I ⊂ R → R, r(s) > 0 anywhere. Then write

B(s) = r(s) (cosϕo, sinϕo, 1).
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However, these data should obey the normalization condition, which allows one to

determine the function r(s) in terms of the remaining data by

r(s) =
csc2

(
ω(s)−ϕo

2

)
2 c(s)

.

3. Therefore, to determine a stationary null scroll we need three parameters:

(i) a positive function c ∈ F+(I),

(ii) a function ω ∈ F(I), and

(iii) a real number ϕo ∈ R.

With these data, the stationary null scroll S(c, ω, ϕo) will be parametrized byX(γc ω, Bϕo),

where

γc ω(s) =

∫ s

0

c(t) (cosω(t), sinω(t), 1) dt

and

Bϕo(s) =
csc2

(
ω(s)−ϕo

2

)
2 c(s)

(cosϕo, sinϕo, 1).
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4. The nonlinear sigma model with boundary

Definition. Let Σ be an oriented riemannian manifold and let X be an oriented

pseudo-riemannian manifold. Let us first assume that Σ has no boundary. The sigma model

is a theory of maps ϕ : Σ → (X, g) governed by the following action

S[ϕ] :=
1

2

∫
Σ

||dϕ||2dvolΣ.

Σ is called the base space and its dimension is the dimension of the sigma model.

X is called the target space and its isometry group is the symmetry group of the sigma

model, which gives its name to the model.

The solutions of the Euler-Lagrange equation associated to the above action are called

the solutions of the sigma model.

For instance

(1) Σ and X are Riemannian, the solutions are harmonic maps.

(2) O(3) 2-dimensional sigma model means that Σ is a surface and X = S2.

(3) O(2, 1) 2-dimensional sigma model means that Σ is a surface and Iso(X) = O(2, 1),

which has a twofold version:

(3.1) X = S2
1, (3.2) X = H2.
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We consider the 2-dimensional O(2, 1) nonlinear sigma model with boundary, as a

natural continuation of the papers

M. Barros, A geometric algorithm to construct new solitons in the O(3) nonlinear

sigma model, Phys. Lett. B 553 (2003), 325-331,

M. Barros, M. Caballero and M. Ortega, Rotational Surfaces in L3 and Solutions of

the Nonlinear Sigma Model, Comm. Math. Phys. 290 (2009), 437-477.

S a surface with boundary ∂S

φ : S → L3 timelike immersion

Nφ : φ(S) → S2
1 its Gauss map

We will consider immersions fixing ∂S

Start with a set Γ of nonnull regular curves in L3 and a spacelike unit normal vector

field No along Γ.

Then we consider the space IΓ(S,L3) of timelike immersions satisfying the following

first order boundary conditions

φ(∂S) = Γ, Nφ/Γ = No.

Roughly speaking, if we identify each immersion φ ∈ IΓ(S,L3) with its graph, φ(S),

viewed as a surface with boundary in L3, then IΓ(S,L3) can be viewed as the space of

timelike surfaces in L3 having the same boundary and being tangent along the common

boundary.

10



The energy governing the model D : IΓ(S,L3) → R is now written as

D(φ) =

∫
S

‖dNφ‖2dAφ

where dAφ stands for the element of area of (S, φ∗(ḡ))

The solutions of these models are those satisfying the following vectorial field equation

∆Nφ − (Nφ.∆Nφ)Nφ = 0 (1)

which are the critical points of (IΓ(S,L3);D).

This way to see the model has several advantages, perhaps the more interesting is that

it allows us to describe the solutions in terms of their geometrical invariants.

It will be convenient to introduce, on the same space of elementary fields, the Willmore

problem with boundary (see [1, 2, 7, 13] and references therein), which is associated with

the Willmore energy W : IΓ(S,L3) → R defined by

W(φ) =

∫
S

H2
φ dAφ −

∫
∂S

κφ

The critical points, i. e., the solutions of this model are known as Willmore surfaces

in L3.
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This variational problem is invariant under conformal changes in L3, so it is actually

stated in the conformal class, [ḡ], of the Lorentz-Minkowski metric ḡ.

It will be convenient to remark that, in both cases, a critical point means a critical point

for the corresponding induced problems on reasonable compact pieces or nonnull polygons.

More precisely, a connected, simply connected, with nonempty interior, compact domain,

Ω ⊂ S, is said to be a nonnull polygon if it has a piecewise smooth boundary, ∂Ω, which

consists of a finite number of nonnull curves.

Both theories are equivalent. The solutions of the 2-dimensional O(2, 1) nonlinear

sigma model are just the Willmore surfaces. In particular, the nonlinear sigma model is

invariant under conformal changes in L3.

Proof.

‖dNφ‖2 = 4H2
φ − 2Kφ, ∀φ ∈ IΓ(S,L3)

Apply the Gauss-Bonnet formula for general nonnull polygons (see [2] for details)

−
∫
P

Kψ dAψ +

∫
∂P

κ(s) ds+
r∑
j=1

θj = 0
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Then

D(P ) = 4W(P ) + 2

∫
∂P

κ(s) ds− 2
r∑
j=1

θj

The boundary conditions imply
∫
∂P

κ(s) ds−
∑r

j=1 θj is constant under corresponding

variations, which concludes the proof.

The two-dimensional O(2, 1) nonlinear sigma model with boundary is invariant under

conformal changes in the Lorentz-Minkowski space.

The solutions of this model, that is, the solutions of the equation ∆Nφ−(Nφ.∆Nφ)Nφ =

0 are Willmore surfaces with boundary.

Using the boundary conditions we get

∂D(φ)[V ] = 4 ∂W(φ)[V ].

The Euler-Lagrange equation is computed in [2]

∂W(φ)[V ] =

∫
S

(
∆φHφ + 2Hφ

(
H2
φ −Kφ

))
ḡ(Nφ, V ) dAφ
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Threfore, equations ∆Nφ − (Nφ.∆Nφ)Nφ = 0 and

∆Hφ + 2Hφ

(
H2
φ −Kφ

)
= 0 (2)

have the same solutions.

Null scrolls as solutions

Theorem 4.1 (1) Every null scroll is a Willmore surface in L3.

(2) Null scrolls provide solutions of the two-dimensional O(2, 1) nonlinear sigma model.

Corollary 4.2 Let S be a Lorentzian surface, with constant mean curvature, in L3. Then,

it is a solution of the two-dimensional O(2, 1) nonlinear sigma model if and only if either

(1) S is stationary; or

(2) S is a B-scroll.
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Corollary 4.3 Let φ(S) be a ruled surface, with constant mean curvature in L3. Then,

it is a solution of the O(2, 1) nonlinear sigma model if and only if one of the following

statements holds:

1. φ(S) has nonnull ruling flow and then it is congruent to a surface in the following

list

(1.1) A Lorentzian plane;

(1.2) A helicoid of the 1st kind;

(1.3) A helicoid of the 2nd kind;

(1.4) A helicoid of the 3rd kind;

(1.5) The conjugate surface of Enneper of the 2nd kind.

2. φ(S) has null ruling flow and then it is congruent to a surface in the following list

(2.1) A Lorentzian plane;

(2.2) A B-scroll.
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5. Polyakov’s extrinsic string action

The discussion of strings historically began with the Nambu-Goto action which is

defined, on the space of immersions that fix the boundary but need not be tangent along

the common boundary, by

NG(φ) = co

∫
S

dAφ = co

∫
S

√
−det

∂X i

∂uα
∂Xj

∂uβ
ηij d

2u

Strings are curves that evolve in the target space generating surfaces that provide

extremals of this energy action. This topic, from a geometric point of view, is well under-

stood for a long time and the string solutions correspond with those surfaces with zero

mean curvature Hφ = 0.

The Nambu-Goto action is not easy to manage due to the presence of the square root.

Then, A. M. Polyakov [10] proposed to replace the area action by an equivalent action

that involves an intrinsic hαβ metric besides the induced one from the ambient spacetime

metric:

P(φ) =
co
2

∫
S

√
−dethαβ h

αβ ∂X
i

∂uα
∂Xj

∂uβ
ηij d

2u
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Both theories provide the so called classical string solutions that correspond with

stationary surfaces (H = 0). It should be noted that the new Polyakov action is still

intrinsic from its own origin.

From a geometric point of view, this intrinsic-extrinsic disagreement between action

and solutions is not satisfactory. If we wish to evolve curves in a target spacetime to

generate surfaces being extremals of a certain action, it seems natural to involve the

extrinsic geometry of surfaces in the density of the action.

This idea was materialized in 1986 independently by A. M. Polyakov [11] and H.

Kleinert [9]. Both authors introduced the same new string action using different moti-

vations and methods. Kleinert defined the action trying to imitate the elastic functional

for membranes, obviously in a Eucliden context, introduced in 1973 by W. Helfrich (Z.

Naturforsch 33a, 305). In this way the so called Polyakov extrinsic action was born as a

string action. Then we call Polyakov-Kleinert-Helfrich action.

More precisely, this action is defined on IΓ(S,L3) and it measures the total extrinsic

curvature of the pair (φ(S), φ(∂S)) in L3,

PKH : IΓ(S,L3) → R, PKH(φ) =

∫
S

H2
φ dAφ −

∫
∂S

κφ ds

where Hφ stands for the mean curvature of the immersion φ(S) and κφ is the geodesic

curvature of φ(∂S) in φ(S).
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We deal with the dynamics associated with this Polyakov extrinsic string action, which

is the flat version of the Willmore functional.

On the space of boundary immersed timelike surfaces, which are tangent along the

common boundary, in a generic spacetime, say M , it works as

W(φ) =

∫
S

(H2
φ +Rφ) dAφ −

∫
∂S

κφ ds

Putting all together, we look for critical points of the WPKH action, which in differ-

ential geometry we know as Willmore surfaces for the prescribed boundary conditions.

In the context of string theories, they are worldsheets of the Polyakov extrinsic string

action and so, bearing in mind the original extrinsic nature of the action, they will be

called extrinsic string solutions.

However, the concept of critical point needs some extra technical considerations. A

critical point of such a problem means a critical point of the induced problem on non-

null polygons. Now, φ ∈ IΓ(S,L3) provides a classical string solution if for any nonnull

polygon Ω ⊆ S, the restriction φ|Ω is a critical point of the Polyakov extrinsic action on

Iφ(∂Ω)(Ω,L3).

The field equation associated with this variational problem, computed in [2], is

∆φHφ + 2Hφ

(
H2
φ −Kφ

)
= 0, (3)
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where Kφ denotes the Gaussian curvature of φ(S). In particular, every stationary surface

(H = 0) is automatically Willmore and consequently the NGP string theory can be

regarded as a sub-theory of the WPKH string theory. Said otherwise, in the moduli space

of the extrinsic string solutions one can find a sub-moduli space made up of the classical

string solutions.

It should be noted that, in particular, the surface S could be boundary free and in

this case no boundary condition is needed. Let us give, as an illustration, a pair of explicit

examples (see [6]):

Example 5.1 A rotational stationary surface: The hyperbolic catenoid.

Choose S = R+ × R and define the timelike immersion φ ∈ I(S,L3) by

φ(s, t) = (sinh s sinh t, s, sinh s cosh t).

Then we obtain a stationary surface and consequently it is a classical string solution as

well as an extrinsic string solution.

Example 5.2 A ruled stationary surface: The helicoid of the third kind.

Take S = R2 and the timelike immersion φ ∈ I(S,L3) given by

φ(s, t) =

(
t

cosh s
,−t tanh s, sinh s

)
.
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It is easy to check that its mean curvature function vanishes identically and so it provides

a string solution in both theories.

Besides those classical string solutions that correspond with stationary surfaces, other

extrinsic string solutions with non-zero constant mean curvature are known (see [12]).

Null scrolls as extrinsic string solutions

Remember that for a null scroll S(γ,B) we have got that

∆H(s, t) = 0, and H2(s, t)−K(s, t) = 0.

Then

Theorem 5.3 Every null scroll is an extrinsic string solution in the Lorentz-Minkowski

conformal structure.

The above result can be paraphrased as: Whenever a curve propagates in L3 trans-

versely through a geodesic null vector field, it is generating the worldsheet of an extrinsic

string solution.
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An algorithm to build the big zoo of scroll solutions

We are going to provide a simple method to explicitly construct the scroll solutions

for the WPKH string theory, as well as an algorithm to build as many extrinsic string

solutions as we wish.

As we have seen

H(s, t) = f(s) = −r(s)ϕ′(s). (4)

Remark 5.4 Remember that the mean curvature of a null scroll only depends on the

lightlike ruling flow. In particular, stationary null scrolls (H = 0) correspond with parallel

lightlike ruling flow, that is, ruling flow with ϕ(s) constant. In this sense, they can be

regarded as cylinders with lightlike generatrices. The moduli space of stationary null scrolls

has been obtained in [3]. It can be viewed as a kind of circle bundle over the space of

congruence classes of lightlike curves in L3. This result deeply contrast with the case of

stationary cylinders with nonnull generatrices, where we only get a Lorentzian plane.

The algorithm.

We can explicitly construct the complete class of extrinsic string solutions with pre-

scribed Polyakov extrinsic density, say a function h ∈ C∞(I, R).
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To do it, we first choose any positive function, r(s), defined on the same interval and

use (4) to compute a third function by

ϕ(s) =

∫ 0

s

h(s)

r(s)
.

Then, we have the following lightlike flow

B(s) = r(s) (cosϕ(s), sinϕ(s), 1),

which can be used as the ruling flow to generate all of extrinsic solutions corresponding

to scroll string solutions whose Polyakov extrinsic density is the given function h(s).

Then, the profile strings of these solutions have an arbitrary positive time function

c(s) and an angular function which must be determined from

ω(s) = ϕ(s) + arc cos

(
1− 1

c(s) r(s)

)
.

Now, use quadratures to obtain the profile strings as

γ(s) =

∫ s

0

c(u)(cosω(u), sinω(u), 1)du.

In this way, we get that the scroll extrinsic string solution S(γ,B) has mean curvature

function h(s).

To illustrate this algorithm we give the following
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Example 5.5 Suppose that we wish to obtain all scroll extrinsic string solutions, with

constant mean curvature, say h = 1, which are generated when propagating, in L3, the

lightlike helix γ(s) = (sin s,− cos s, s).

To solve this problem, we need to construct the lightlike ruling flows, that allow one to

propagate the string in order to get the solutions. We put

B(s) = r(s) (cosϕ(s), sinϕ(s), 1),

which must satisfies the following two constraints

cos (s− ϕ(s)) = 1− 1

r(s)
(normalization condition),

ϕ′(s) = − 1

r(s)
(constant mean curvature condition).

Consequently, the angular function ϕ(s) must be a solution of the following differential

equation
dϕ(s)

ds
= cos [s− ϕ(s)]− 1.

We use the change ψ(s) = s− ϕ(s) to reduce it to

dψ(s)

ds
= 2− cosψ(s),
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which can be easily solved by separation of variables

dψ

2− cosψ
= ds,

finding the following general solution

ψ(s) = 2 arctan

{√
3

3
tan

[√
3

2
s+ C

]}
, C ∈ R,

which provides the following parameters for the lightlike ruling flows

ϕ(s) = s− 2 arctan

{√
3

3
tan

[√
3

2
s+ C

]}
,

r(s) =
1

1− cos
{

2 arctan
{√

3
3

tan
[√

3
2
s+ C

]}} .
Consequently, there exists just a one-parameter class of lightlike flows that allow us to

propagate the lightlike helix γ(s) = (sin s,− cos s, s) to generate extrinsic string solutions

with constant mean curvature h = 1.
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