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1. Introduction

In [2] the authors have obtained a classification of surfaces in the 3-dimensional Lorentz-
Minkowski spacdl.?® satisfying the conditiom\z = Ax + B, wherex stands for the isometric
immersion,A4 is an endomorphism df3 andB is a constant vector. That condition was originally
introduced by Dillen, Pas and Verstraelen%hfor surfaces in the 3-dimensional Euclidean space
and it has been studied by several authors for hypersurfaces in Riemannian spacediofis, [
and B], who have obtained some interesting classification theorems. It should be noticed that
those results obtained in the Riemannian cases strongly depend on the diagonalizability of the
shape operator.

However, a surface in a Lorentzian space can be endowed with a Riemannian or Lorentzian
metric, and in the last case its shape operator does not need to be diagonalizable. Therefore, it is
worth bringing that condition to the non-flat Lorentzian space forms, that is, the De Sitter space
S% ¢ R{ and anti De Sitter spadé; c R, and it seems natural to hope for finding new classes
of examples having no Riemannian counterpart. Moreover, in this new situation the codimension
of the surface in the corresponding pseudo-Euclidean space is two and the proofs g&leioin [
not work here, even so we follow the techniques developed there.

In this paper we are going to classify the surface§irand H3 with isometric immersion
x satisfying the conditiomd\x = Ax + B, where A is an endomorphism of the corresponding
4-dimensional pseudo-Euclidean space &nid a constant vector. The classification is given by
showing that the asked condition is a constant mean curvature condition and, under non-minimality
hypothesis, it yields a flat surface with parallel second fundamental form in the pseudo-Euclidean
space. We point out that in contrast to the case of surfade$ iexamples of surfaces ifi; satis-
fying that condition and having non-diagonalizable shape operator can be found (see Examples 5.1
and 5.2).

2. Preliminaries

Let us denote by/3(c) the standard model of a 3-dimensional Lorentz space with constant cur-
vaturec = 1, —1, say the De Sitter spa8d = {r € R} : (z,z) = 1} and the anti De Sitter space
H$ = {z € R} : (z,x) = —1}, respectively,, ) standing for the indefinite inner product in the

corresponding pseudo-Euclidean spR(;eq = 1,2, whereM3(c) is lying.
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Letx : M? — M3 (c) C R} be a surface of index (s = 0, 1) satisfying the condition
Ax = Ax + B,

whereA is an endomorphism c}R;l and B a constant vector iﬁg. Throughout this paper we will
denote byH, N anda the mean curvature vector field Mf in R;‘, the unit normal vector field
of M2 in M3(c) and the mean curvature in the direction'of respectively. Thus we may write

H=aN —czx.

From above equations, using the well known Laplace-Beltrami fort\ula= —2H, we easily
deduce that
Axr = —2aN + 2cx — B.

Taking covariant derivative in (1) and using the formula fof given in [3, Lemma 3] we have
the following equations
AX =2(aSX 4+ cX) - 2X(a)N,

for any vector fieldX tangent taM/2? and
aAN = 25(Va) + 2caVa + {Aa + catr(S?)}N — 2cea’s — ¢B,

whereS stands for the shape operatoraf in M3(c), Va is the gradient ofy, ¢ = (N, N) and
tr(S?) = trace(S?).
For later use, we are going to deduce a couple of useful equations. The first one is a straight
consequence of (4),
(AX,Y) = (X, AY)

for any tangent vector fieldX andY. The second one can be obtained by taking covariant
derivative in (6),
<AU(X7 Z)7 Y) - <AO-(K Z)7 X> = <U(X7 Z)7 AY> - <U(Y7 Z)v AX>7

whereo is the second fundamental form bf? in Ry.

3. Some examples

Before going into the study of the conditidaw = Az + B, let us see some examples of surfaces
in M3(c) satisfying that condition. They will be useful later in order to give the classification
results.

Example 3.1 It is clear that every minimal surfack/? in M3 (c) satisfies the conditiohz =
Ax + B. Infact,a = 0 implies H = —cz in (2), which jointly with the Laplace-Beltrami
equation givef\x = 2czx. So, we have (1) witkd = 2¢I, andB = 0.

Example 3.2 Let M2 be a totally umbilical surface if/3(c). By using the classification theorem
given by M.A. Magid in [7, Theorem 1.4] we get, according {&/, H) is positive, negative or
zero, M2 is an open piece of a pseudo-sph8tér), a pseudo-hyperbolic spag (—r) or R2,
respectively. Moreover, in the last case the isometric immersion is explicitly given R —
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M3(c) C R, x = f — mo, zo being a fixed vector and : R? — R!,, the map defined by
flur,uz) = (q(u1, uz), ur, ug, q(ui, uz)), whereg(u) = ai(u, u) + (vg, u) + ag, ag, a; € R with
a1 # 0 anduvg € R2.

It is not difficult to see that pseudo-spheres and pseudo-hyperbolic spaces both satisfy the
condition (1). Indeed, if: is the standard immersion 88 (r) or HZ(—r) in a hyperplanéR?, of
R7, we know from [l that Az = Az, A being an endomorphism &f;,. Now by embedding?, in
Rg, the immersiorz becomes an immersionfrom M2 in M3 (c) C R; satisfying the condition
Az = Az, whereA is the4 x 4 matrix obtained fromA with zeros for each of the additional
entries. Therefore the most interesting case arises el ) = 0. Now the Laplacian operator
of the surface is given by

s 82 4 62
A=Y e Y g
i=1 Ou; j=s+1 8uj
and a simple computation shows tiat = —4a;(1,1,1,1). Thus this surface satisfies (1) with

A=0andB = —4a;(1,1,1,1). We will refer it as dflat totally umbilical surface

Example 3.3 An easy computation shows that the following pseudo-Riemannian products are all
non-minimal surfaces id/3(c) satisfying the conditiom\z = Az + B with B = 0 (see the
attached table).

1)Si(r) xSY(v1 —72) C S, with0 < r < 1 andr # /1/2, immersed by: : R? — S} C Rf,

. (75} (75} u9 . u9
= h — h—.1/1—172 —f A1 =72 S
:E(ul,UQ) (7“ Sin. , , T COS . 7 COoS W’ < Ssin W)a

2)SH(r) x HY(=v/r2 — 1) C S3, with » > 1, and the immersion : R? — S? C R} is given by

x(uy,uz) = (rcos@,rsin%7 r2 — lcoshL, V2 — lsinhL),
r r

r2 —1 r2 —1

3)Si(r) x Hi(—v1+172) C H3, r > 0, with the usual parametrization: R? — Hj C R}
given by

vV 1+r?sin

U . U2 D) Uy ul
m(ul,ug):(rcos7,rsm7, 1+7r Cosﬁa ﬁ)7
4)St(r) x H(—v/1 +r2) C H3, with r > 0, immersed by: : R? — H? ¢ R,

LUl U2 Uy . U2
x(uy,us) = (rsinh —, /1 + r2 cosh ———, 7 cosh —, /1 + 72 sinh ——),
(u1, u2) = ( oV e oV ﬁﬂa)

5) H!(—r) x H'(—v/1 —r2) C H?, with0 < < 1 andr # /1/2, parametrized by : R? —
H3 C R},

x(u1,uz) = (r cosh E, v 1 — 12 cosh ,7sinh ﬂ, v 1—r2sinh L),
r r

U2
V1—r? V1—1r2

We will refer them as tha@on-minimal standard productdNotice that all of them have diagonal-
izable shape operators.
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r Surface A

0<r<l1 Si(r) x S*(v1—7r2) C S}

r>1 S'(r) x HY (=72 —1) c $§

r>0 S*(r) x Hi(—v1 +r2) C H3

r>0 Si(r) x H' (=1 +r2) C H}

0<r<1|H(-r)xH(—V1I—7r2) CH}

/N /N VRS /N VS
i‘H
oV
S
-
- i;‘ﬂo ‘
o
N——— N——— N——— N——— N——

4. First characterization results

The aim of this section is to show that the conditidam = Ax + B is a constant mean curvature
condition and, under non-minimality hypothesis, itis also a flathess condition on the surface. First,
letz : M? — M?3(c) C R} be a surface satisfying (1). From (4) we hgveX, z) = 0 for any
vector field tangent td/2, and taking covariant derivative here we get

<AU(X7 Y)a JZ‘) = _<AX7 Y>
for any tangent vector field§ andY. Now equation (1), jointly with (3), (4) and (5), implies that
(SX —eaX,Y)(B,x) = 0.

LetU = {p € M?: Va?(p) # 0} be the open set of regular pointset and assume that it is not
empty. IfW = {p e U : (B, z) # 0} is a non-empty set, then from (4) and (2), we have

AX =2(c+ea?)X —2X(a)N,

at the points ofV. Let us choose a tangent vector fietd orthogonal toVe, that is X («a) =
(X,Va) = 0. By using (3), we obtain th&(c + ea?) is an eigenvalue oft and therefore locally
constant onV, which is a contradiction. Hend&) = () and(B, z) = 0 onl{. Taking covariant
derivative here we deduce thBthas not tangent component and thBis= ¢(B, N)N. Finally,
as(B, N)? = ¢(B, B) is constant we deduce th@, N) = 0, becausé/ is not empty. Summing
up, we have shown that if : M2 — M?(c) C R} is an isometric immersion satisfying the
conditionAx = Ax + B and having non-constant mean curvature, tBeg 0.

Now we are ready to prove the following result.

Proposition 4.1 Letz : M2 — M3(c) C R} be an isometric immersion such that: =
Az + B. ThenM?2 has constant mean curvature.
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Proof. If we assume that the mean curvaturis not constant, then we have just shown tHat 0.
Using now equation (7), jointly with (3), (4) and (5), we obtain

TX(a)SY =TY (a)SX

onU, for any tangent vector field¥ andY’, whereT denotes the self-adjoint operator given by
TX =2aX +e5X.

Case 1.7 (Va) # 0 onU. Then there exists a tangent vector fidldsuch thatl' X («) # 0,
which implies, by using (4), that has rank one otf. Thus we can choose a local orthonormal
frame{E, E»} such thatSE, = 2caE;, SE; = 0 ande; = (E;, E;). Also from (4) we have
that E2 (o) = 0 and E is parallel toV«, and using again (3), (4) and (5) we obtain

AE; = 2(c+2ea®)E) —2E1(a)N,

AEQ = 2CE2,
Ao 2
AN = 6ec1E(o)Er + {7 + 4ea”*} N — 2ceau,
Arx = —=2aN + 2cz.

Therefore, the associated matrix to the endomorphiSm= Alg,... (5, v.) IS given by

2(c+2ea?) 6ee1By(a) 0
2B (a) —2 44ea® —2a |,
«Q

0 —2cex 2c
whose invariants are
A
A= D2 4 d(e+ 2ea),

«
oy A 2 2 2 2
Ao = Ad(c+ea”)(— +4ea”) + 12ee1 By () + 4e(e + 2ea”) — desa”,

o

A
As = dc(c+ 25@2)(—a + 4ea?) — 8cea®(c + 2ea?) + 24ee1cEy ().
a
Then we deduce that
2 Aa 2 4
2chy = A3 + 8(c + 2ea®) + 4(— + 4ea”) + 16¢ca
e

and A
704 =\ — 4(c + 2ea?).

These two equations allow us to write
160* = 8 — deh; + 2)0a — e,

and sow is locally constant o, which is a contradiction.
Case 2:There exits a poing in ¢/ such thatfl'(Va)(p) = 0. Then from (4) and (5) we have

(AX, N)(p) = —2eX(a)(p) = (X, AN)(p).

5



Geometry and Topology of Submanifolds, vol. VI, pp. 3-15, 1993, World. Sci. Publ. Co.

Moreover, sincé3 = 0 we also obtain from (3), (4) and (5) that

(AX,z) = (X, Ax),
(Az,N) = (z,AN),

which implies, jointly with (6) and (5), thatl is a self-adjoint endomorphism dﬁ;‘ and thus
equation (5) remains valid at every pointif ThereforeI'(Va) = 0 onf andS(Va) = —2¢ca.

Since —2e¢« is an eigenvalue of andtr(S) = 2ecq«, thenS is diagonalizable and we can
choose a local orthonormal framdé’;, E»} such thatSE, = —2eaE,, with E; parallel toVa,
andSF, = 4eaF,. Thus, from (4) we get

AEy = 2(c + 4ea®)Es.

Then2(c + 4ea?) is an eigenvalue ofi and thereforex is locally constant o/, which is a
contradiction.

Anyway, we deduce that is empty and thed/? has constant mean curvatuse.

Now, let M2 C M3(c) be a surface satisfying the conditidw = Az + B with non-zero
constant mean curvature in M3(c). If M2 is not totally umbilical we obtain from (2) that
(B,z) = 0 and reasoning as we did at the beginning of this section wé3get 0. Therefore,
equations (3), (4) and (5) are rewritten as follows

AX = 2aSX 4+ 2cX, (6)
AN = etr(S?)N — 2ceax, (7)
Axr = —=2aN + 2cz. (8)

Then the trace ofl is given by
tr(A) = 4ea? + etr(S?) + 6c,
which implies thatr(S?) is also constant. Taking now covariant derivative in (7) we have
Vx(AN) = —¢tr(S?*)SX — 2cea X,
and using (6) we obtain
Vx(AN) = —A(SX) = —2a5?X — 2cSX.
Therefore the characteristic equation of the shape operafai’aé given by

2¢ — etr(S?)

52
+ 2

S —cely =0,
wherel; stands for the identity operator on the tangent bundl&/¢f Thus,det(S) = —ce and
the Gaussian curvature 812 is K = ¢ + edet(S) = 0. Summing upM? is a flat isoparametric
surface inM? (c) with parallel second fundamental formIi.

So, we have the following result.

Theorem 4.2 Letz : M2 — M3(c) C Rﬁ; be a non-minimal isometric immersion satisfying
Az = Ax + B. ThenM? is totally umbilical in M3 (c) or M2 is a flat isoparametric surface in
M?(c) with parallel second fundamental formRy.
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As a first interesting consequence of Theorem 4.2, we can give the following classification
result for surfaces if/3(c) with diagonalizable shape operator.

Corollary 4.3 Letz : M? — M3 (c) C R} be a non-minimal isometric immersion with diago-
nalizable shape operator. Thei? satisfiesAr = Ax + B if and only if M2 is an open piece of
one of the following surfaces:

1) a totally umbilical surface i3 (c).

2) a non-minimal standard product ib/3(c).

5. The classification theorem
All examples exhibited in Section 3, unless Example 3.1, have diagonalizable shape operator.
However, it seems reasonable to look for Lorentzian surfacésiitr) satisfyingAxr = Az + B

with non-diagonalizable shape operator. We find the two following examples.

Example 5.1 Let a andb be two real numbers such thet — v> = —1 andab # 0. Then the map
r:R? — H} C R}, z = (2!, 22,23, %), given by

x (up,uz) = beoshugcosu; — asinhugsinug,
z? (u1,uz) = asinhwugcosuj + bcoshugsinug,
x° (u1,uz) = acoshugcosu + bsinhugsinug,
:c4(u1, uz) = acoshugsinu; — bsinhug cosuy,

where (u1, uz) is the usual coordinate systemIit?, parametrizes a non-minimal flat surface in

H3 whose shape operator is given, in the usual fr r%%x—, Ox } by
Uy

s
(o B
S‘(ﬁ a)’

2ab -1 . .
. ribz andg = Pl Magid, [7, Example 1.12], refers this surface asamplex
circle of radiusa + bi.

The Laplacian operator of a complex circle is given, in coordingigsus), by

1 0? 0? 0?
Ae— (L pyp— T
(a? +1?)? (81@ * ab@ulauz 6u%) ’

with o =

and it is easy to see that it satisfidas = Ax, whereA is the following matrix

—2 0 —dab 0

1 0 —2 0 —dab
@+02)2 | 4ab 0 -2 0
0 4ab 0 -2
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Example 5.2 Next example exhibits a surface whose shape operator is not diagonalizable but

it has only a double real eigenvalue. Let: R? — H? C RJ be the map given by =

('/1:1? ‘/1727 x3’ x4)

ot(uy,up) = f sin ug — \}5(1“ + )Cos Us,
xz(ul, ug) = \[ cos Ua + \[(ul + )sinuz,
2(uy,up) = 2\[ sin ug + %(ul + )cosu2,
x4(u1,u2) = ﬁ coS Uy — \/§(u1 + )sin ug,

where (u1,us) is the usual coordinate systemR¥. Thenz parametrizes a non-minimal flat
surface inH$ whose shape operator is given by

11
s=(0 1)
(see [r, Example 1.13]).
It is not difficult to see that its Laplacian operator is given, in coordin@igsus), by
82
8U18UQ’
and this surface satisfigsc = Az, whereA is the following matrix
-1 0 -1 0
0 -1 0 -1
1 0 1 0
0 1 0 1

A=-2

Now, we are ready to show the main results of this paper.

Theorem 5.3 Letz : M2 — S} C R} be an isometric immersion. The\w = Az + B if and
only if one of the following statements holds true:

1) M2 is a minimal surface ir$3.

2) M?2 is totally umbilical, and then it is an open piecel@t(—r), S%(r), S3(r), » > 0, or a
flat totally umbilical.

3) M2 is an open piece of one of the non-minimal standard produ@&:is! (r) xH! (—v/r2 — 1),
r>1, andSl( ) x SY(V1 —712),0 <7 < Landr # /1/2.

Theorem 5.4 Letz : M2 — H$ C R} be an isometric immersion. Thexw = Ax + B if and
only if one of the following statements holds true:

1) M2 is a minimal surface iff3.

2) M2 is totally umbilical, and then it is an open piecel@t (—r), H3(—r), S?(r), r > 0, or
a flat totally umbilical.

3) M2 is an open piece of one of the non-minimal standard produd@irs! (r) x H} (—v/1 + r2)
andsSi (r ) x HY(—v1+72),r > 0, andH! (—r) x H'(=v1 —72),0 < r < L andr # /1/2.

4) M? is an open piece of the surface exhibited in Example 5.1.

5) M? is an open piece of the surface exhibited in Example 5.2.
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Proof of Theorems 5.3 and 5.4According to Corollary 4.3 it suffices to deal with non-
diagonalizable case. Let: M7 — M?(c) C R} be a non-minimal Lorentz surface i3 (c)
satisfying the conditiod\x = Az + B with non-diagonalizable shape operator. By Theorem 4.2,
we know thatM7 is a flat surface with parallel second fundamental forijnand the character-
istic equation of its shape operator is given by

2¢ — tr(S?)

512
+ 2x

S — CIQ =0.
Therefore, the discriminant of its characteristic polynomial is written as

2 — tr(52)>2 |

dg =4
S C+< %o

which can be non-positive provided that —1. Then, by applying, Theorem 1.17] we get that
M? is an open piece of a complex circle (Example 5.1) or the surface exhibited in Examysie 5.2.
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