Surfaces in Lorentzian space forms satisfying the condition $\Delta x = Ax + B$

Luis J. Alías, Angel Ferrández and Pascual Lucas Geometry and Topology of Submanifolds, vol. VI, pp. 3–15, 1993, World. Sci. Publ. Co.

(Partially supported by DGICYT grant PB91-0705)

1. Introduction

In [2] the authors have obtained a classification of surfaces in the 3-dimensional Lorentz-Minkowski space \mathbb{L}^3 satisfying the condition $\Delta x = Ax + B$, where x stands for the isometric immersion, A is an endomorphism of \mathbb{L}^3 and B is a constant vector. That condition was originally introduced by Dillen, Pas and Verstraelen in [5] for surfaces in the 3-dimensional Euclidean space and it has been studied by several authors for hypersurfaces in Riemannian space forms, [4], [6] and [8], who have obtained some interesting classification theorems. It should be noticed that those results obtained in the Riemannian cases strongly depend on the diagonalizability of the shape operator.

However, a surface in a Lorentzian space can be endowed with a Riemannian or Lorentzian metric, and in the last case its shape operator does not need to be diagonalizable. Therefore, it is worth bringing that condition to the non-flat Lorentzian space forms, that is, the De Sitter space $\mathbb{S}_1^3 \subset \mathbb{R}_1^4$ and anti De Sitter space $\mathbb{H}_1^3 \subset \mathbb{R}_2^4$, and it seems natural to hope for finding new classes of examples having no Riemannian counterpart. Moreover, in this new situation the codimension of the surface in the corresponding pseudo-Euclidean space is two and the proofs given in [2] do not work here, even so we follow the techniques developed there.

In this paper we are going to classify the surfaces in \mathbb{S}_1^3 and \mathbb{H}_1^3 with isometric immersion x satisfying the condition $\Delta x = Ax + B$, where A is an endomorphism of the corresponding 4-dimensional pseudo-Euclidean space and B is a constant vector. The classification is given by showing that the asked condition is a constant mean curvature condition and, under non-minimality hypothesis, it yields a flat surface with parallel second fundamental form in the pseudo-Euclidean space. We point out that in contrast to the case of surfaces in \mathbb{L}^3 , examples of surfaces in \mathbb{H}_1^3 satisfying that condition and having non-diagonalizable shape operator can be found (see Examples 5.1 and 5.2).

2. Preliminaries

Let us denote by $\overline{M}_1^3(c)$ the standard model of a 3-dimensional Lorentz space with constant curvature c = 1, -1, say the De Sitter space $\mathbb{S}_1^3 = \{x \in \mathbb{R}_1^4 : \langle x, x \rangle = 1\}$ and the anti De Sitter space $\mathbb{H}_1^3 = \{x \in \mathbb{R}_2^4 : \langle x, x \rangle = -1\}$, respectively, \langle, \rangle standing for the indefinite inner product in the corresponding pseudo-Euclidean space \mathbb{R}_q^4 , q = 1, 2, where $\overline{M}_1^3(c)$ is lying.

Let $x: M_s^2 \longrightarrow \overline{M}_1^3(c) \subset \mathbb{R}_q^4$ be a surface of index $s \ (s = 0, 1)$ satisfying the condition

$$\Delta x = Ax + B,$$

where A is an endomorphism of \mathbb{R}_q^4 and B a constant vector in \mathbb{R}_q^4 . Throughout this paper we will denote by H, N and α the mean curvature vector field of M_s^2 in \mathbb{R}_q^4 , the unit normal vector field of M_s^2 in $\overline{M}_1^3(c)$ and the mean curvature in the direction of N, respectively. Thus we may write

$$H = \alpha N - cx.$$

From above equations, using the well known Laplace-Beltrami formula $\Delta x = -2H$, we easily deduce that

$$Ax = -2\alpha N + 2cx - B.$$

Taking covariant derivative in (1) and using the formula for ΔH given in [3, Lemma 3] we have the following equations

$$AX = 2(\alpha SX + cX) - 2X(\alpha)N,$$

for any vector field X tangent to M_s^2 and

$$\alpha AN = 2S(\nabla \alpha) + 2\varepsilon \alpha \nabla \alpha + \{\Delta \alpha + \varepsilon \alpha \operatorname{tr}(S^2)\}N - 2c\varepsilon \alpha^2 x - cB_{\mathcal{A}}$$

where S stands for the shape operator of M_s^2 in $\overline{M}_1^3(c)$, $\nabla \alpha$ is the gradient of α , $\varepsilon = \langle N, N \rangle$ and $\operatorname{tr}(S^2) = \operatorname{trace}(S^2)$.

For later use, we are going to deduce a couple of useful equations. The first one is a straight consequence of (4),

$$\langle AX, Y \rangle = \langle X, AY \rangle$$

for any tangent vector fields X and Y. The second one can be obtained by taking covariant derivative in (6),

$$\langle A\sigma(X,Z),Y\rangle - \langle A\sigma(Y,Z),X\rangle = \langle \sigma(X,Z),AY\rangle - \langle \sigma(Y,Z),AX\rangle,$$

where σ is the second fundamental form of M_s^2 in \mathbb{R}^4_a .

3. Some examples

Before going into the study of the condition $\Delta x = Ax + B$, let us see some examples of surfaces in $\overline{M}_1^3(c)$ satisfying that condition. They will be useful later in order to give the classification results.

Example 3.1 It is clear that every minimal surface M_s^2 in $\overline{M}_1^3(c)$ satisfies the condition $\Delta x = Ax + B$. In fact, $\alpha = 0$ implies H = -cx in (2), which jointly with the Laplace-Beltrami equation gives $\Delta x = 2cx$. So, we have (1) with $A = 2cI_4$ and B = 0.

Example 3.2 Let M_s^2 be a totally umbilical surface in $\overline{M}_1^3(c)$. By using the classification theorem given by M.A. Magid in [7, Theorem 1.4] we get, according to $\langle H, H \rangle$ is positive, negative or zero, M_s^2 is an open piece of a pseudo-sphere $\mathbb{S}_s^2(r)$, a pseudo-hyperbolic space $\mathbb{H}_s^2(-r)$ or \mathbb{R}_s^2 , respectively. Moreover, in the last case the isometric immersion is explicitly given by $x : \mathbb{R}_s^2 \longrightarrow$

 $\overline{M}_1^3(c) \subset \mathbb{R}_{s+1}^4$, $x = f - x_0$, x_0 being a fixed vector and $f : \mathbb{R}_s^2 \longrightarrow \mathbb{R}_{s+1}^4$ the map defined by $f(u_1, u_2) = (q(u_1, u_2), u_1, u_2, q(u_1, u_2))$, where $q(u) = a_1 \langle u, u \rangle + \langle v_0, u \rangle + a_0, a_0, a_1 \in \mathbb{R}$ with $a_1 \neq 0$ and $v_0 \in \mathbb{R}_s^2$.

It is not difficult to see that pseudo-spheres and pseudo-hyperbolic spaces both satisfy the condition (1). Indeed, if \bar{x} is the standard immersion of $\mathbb{S}_s^2(r)$ or $\mathbb{H}_s^2(-r)$ in a hyperplane $\mathbb{R}_{s'}^3$ of \mathbb{R}_q^4 , we know from [1] that $\Delta \bar{x} = \bar{A}\bar{x}$, \bar{A} being an endomorphism of $\mathbb{R}_{s'}^3$. Now by embedding $\mathbb{R}_{s'}^3$ in \mathbb{R}_q^4 , the immersion \bar{x} becomes an immersion x from M_s^2 in $\bar{M}_1^3(c) \subset \mathbb{R}_q^4$ satisfying the condition $\Delta x = Ax$, where A is the 4×4 matrix obtained from \bar{A} with zeros for each of the additional entries. Therefore the most interesting case arises when $\langle H, H \rangle = 0$. Now the Laplacian operator of the surface is given by

$$\Delta = \sum_{i=1}^{s} \frac{\partial^2}{\partial u_i^2} - \sum_{j=s+1}^{4} \frac{\partial^2}{\partial u_j^2}$$

and a simple computation shows that $\Delta x = -4a_1(1, 1, 1, 1)$. Thus this surface satisfies (1) with A = 0 and $B = -4a_1(1, 1, 1, 1)$. We will refer it as a *flat totally umbilical surface*.

Example 3.3 An easy computation shows that the following pseudo-Riemannian products are all non-minimal surfaces in $\overline{M}_{1}^{3}(c)$ satisfying the condition $\Delta x = Ax + B$ with B = 0 (see the attached table).

1)
$$\mathbb{S}_1^1(r) \times \mathbb{S}^1(\sqrt{1-r^2}) \subset \mathbb{S}_1^3$$
, with $0 < r < 1$ and $r \neq \sqrt{1/2}$, immersed by $x : \mathbb{R}_1^2 \longrightarrow \mathbb{S}_1^3 \subset \mathbb{R}_1^4$
 $x(u_1, u_2) = (r \sinh \frac{u_1}{r}, r \cosh \frac{u_1}{r}, \sqrt{1-r^2} \cos \frac{u_2}{\sqrt{1-r^2}}, \sqrt{1-r^2} \sin \frac{u_2}{\sqrt{1-r^2}}),$

2) $\mathbb{S}^1(r) \times \mathbb{H}^1(-\sqrt{r^2-1}) \subset \mathbb{S}^3_1$, with r > 1, and the immersion $x : \mathbb{R}^2 \longrightarrow \mathbb{S}^3_1 \subset \mathbb{R}^4_1$ is given by

$$x(u_1, u_2) = (r \cos \frac{u_2}{r}, r \sin \frac{u_2}{r}, \sqrt{r^2 - 1} \cosh \frac{u_1}{\sqrt{r^2 - 1}}, \sqrt{r^2 - 1} \sinh \frac{u_1}{\sqrt{r^2 - 1}}),$$

3) $\mathbb{S}^1(r) \times \mathbb{H}^1_1(-\sqrt{1+r^2}) \subset \mathbb{H}^3_1$, r > 0, with the usual parametrization $x : \mathbb{R}^2 \longrightarrow \mathbb{H}^3_1 \subset \mathbb{R}^4_2$ given by

$$x(u_1, u_2) = \left(r \cos \frac{u_2}{r}, r \sin \frac{u_2}{r}, \sqrt{1 + r^2} \cos \frac{u_1}{\sqrt{1 + r^2}}, \sqrt{1 + r^2} \sin \frac{u_1}{\sqrt{1 + r^2}}\right),$$

4) $\mathbb{S}_1^1(r) \times \mathbb{H}^1(-\sqrt{1+r^2}) \subset \mathbb{H}_1^3$, with r > 0, immersed by $x : \mathbb{R}^2 \longrightarrow \mathbb{H}_1^3 \subset \mathbb{R}_2^4$,

$$x(u_1, u_2) = (r \sinh \frac{u_1}{r}, \sqrt{1+r^2} \cosh \frac{u_2}{\sqrt{1+r^2}}, r \cosh \frac{u_1}{r}, \sqrt{1+r^2} \sinh \frac{u_2}{\sqrt{1+r^2}}),$$

5) $\mathbb{H}^1(-r) \times \mathbb{H}^1(-\sqrt{1-r^2}) \subset \mathbb{H}^3_1$, with 0 < r < 1 and $r \neq \sqrt{1/2}$, parametrized by $x : \mathbb{R}^2 \longrightarrow \mathbb{H}^3_1 \subset \mathbb{R}^4_2$,

$$x(u_1, u_2) = (r \cosh \frac{u_1}{r}, \sqrt{1 - r^2} \cosh \frac{u_2}{\sqrt{1 - r^2}}, r \sinh \frac{u_1}{r}, \sqrt{1 - r^2} \sinh \frac{u_2}{\sqrt{1 - r^2}}),$$

We will refer them as the *non-minimal standard products*. Notice that all of them have diagonalizable shape operators. Geometry and Topology of Submanifolds, vol. VI, pp. 3-15, 1993, World. Sci. Publ. Co.

r	Surface	A
0 < r < 1	$\mathbb{S}^1_1(r) \times \mathbb{S}^1(\sqrt{1-r^2}) \subset \mathbb{S}^3_1$	$\left(egin{array}{cc} rac{1}{r^2}I_2 & 0 \ 0 & rac{1}{1-r^2}I_2 \end{array} ight)$
r > 1	$\mathbb{S}^1(r) \times \mathbb{H}^1(-\sqrt{r^2-1}) \subset \mathbb{S}^3_1$	$\left(egin{array}{cc} rac{1}{r^2}I_2 & 0 \ 0 & rac{1}{r^2-1}I_2 \end{array} ight)$
r > 0	$\mathbb{S}^1(r) \times \mathbb{H}^1(-\sqrt{1+r^2}) \subset \mathbb{H}^3_1$	$\left(egin{array}{ccc} rac{1}{r^2}I_2 & 0 \ 0 & rac{1}{1+r^2}I_2 \end{array} ight)$
r > 0	$\mathbb{S}^1_1(r) \times \mathbb{H}^1(-\sqrt{1+r^2}) \subset \mathbb{H}^3_1$	$\left(\begin{array}{cc} \frac{1}{r^2}I_2 & 0 \\ 0 & \frac{1}{1+r^2}I_2 \end{array}\right)$
0 < r < 1	$\mathbb{H}^1(-r) \times \mathbb{H}^1(-\sqrt{1-r^2}) \subset \mathbb{H}^3_1$	$\left(\begin{array}{cc} \frac{1}{r^2}I_2 & 0 \\ 0 & \frac{1}{1-r^2}I_2 \end{array}\right)$

4. First characterization results

The aim of this section is to show that the condition $\Delta x = Ax + B$ is a constant mean curvature condition and, under non-minimality hypothesis, it is also a flatness condition on the surface. First, let $x: M_s^2 \longrightarrow \overline{M}_1^3(c) \subset \mathbb{R}_q^4$ be a surface satisfying (1). From (4) we have $\langle AX, x \rangle = 0$ for any vector field tangent to M_s^2 , and taking covariant derivative here we get

$$\langle A\sigma(X,Y),x\rangle = -\langle AX,Y\rangle$$

for any tangent vector fields X and Y. Now equation (1), jointly with (3), (4) and (5), implies that

$$\langle SX - \varepsilon \alpha X, Y \rangle \langle B, x \rangle = 0.$$

Let $\mathcal{U} = \{p \in M_s^2 : \nabla \alpha^2(p) \neq 0\}$ be the open set of regular points of α^2 and assume that it is not empty. If $\mathcal{W} = \{p \in \mathcal{U} : \langle B, x \rangle \neq 0\}$ is a non-empty set, then from (4) and (2), we have

$$AX = 2(c + \varepsilon \alpha^2)X - 2X(\alpha)N,$$

at the points of \mathcal{W} . Let us choose a tangent vector field X orthogonal to $\nabla \alpha$, that is $X(\alpha) = \langle X, \nabla \alpha \rangle = 0$. By using (3), we obtain that $2(c + \varepsilon \alpha^2)$ is an eigenvalue of A and therefore locally constant on \mathcal{W} , which is a contradiction. Hence $\mathcal{W} = \emptyset$ and $\langle B, x \rangle = 0$ on \mathcal{U} . Taking covariant derivative here we deduce that B has not tangent component and thus $B = \varepsilon \langle B, N \rangle N$. Finally, as $\langle B, N \rangle^2 = \varepsilon \langle B, B \rangle$ is constant we deduce that $\langle B, N \rangle = 0$, because \mathcal{U} is not empty. Summing up, we have shown that if $x : M_s^2 \longrightarrow \overline{M}_1^3(c) \subset \mathbb{R}_q^4$ is an isometric immersion satisfying the condition $\Delta x = Ax + B$ and having non-constant mean curvature, then B = 0.

Now we are ready to prove the following result.

Proposition 4.1 Let $x : M_s^2 \longrightarrow \overline{M}_1^3(c) \subset \mathbb{R}_q^4$ be an isometric immersion such that $\Delta x = Ax + B$. Then M_s^2 has constant mean curvature.

Proof. If we assume that the mean curvature α is not constant, then we have just shown that B = 0. Using now equation (7), jointly with (3), (4) and (5), we obtain

$$TX(\alpha)SY = TY(\alpha)SX$$

on \mathcal{U} , for any tangent vector fields X and Y, where T denotes the self-adjoint operator given by $TX = 2\alpha X + \varepsilon SX$.

Case 1: $T(\nabla \alpha) \neq 0$ on \mathcal{U} . Then there exists a tangent vector field X such that $TX(\alpha) \neq 0$, which implies, by using (4), that S has rank one on \mathcal{U} . Thus we can choose a local orthonormal frame $\{E_1, E_2\}$ such that $SE_1 = 2\varepsilon \alpha E_1$, $SE_2 = 0$ and $\varepsilon_i = \langle E_i, E_i \rangle$. Also from (4) we have that $E_2(\alpha) = 0$ and E_1 is parallel to $\nabla \alpha$, and using again (3), (4) and (5) we obtain

$$AE_1 = 2(c + 2\varepsilon\alpha^2)E_1 - 2E_1(\alpha)N,$$

$$AE_2 = 2cE_2,$$

$$AN = 6\varepsilon\varepsilon_1E_1(\alpha)E_1 + \{\frac{\Delta\alpha}{\alpha} + 4\varepsilon\alpha^2\}N - 2c\varepsilon\alpha x,$$

$$Ax = -2\alpha N + 2cx.$$

Therefore, the associated matrix to the endomorphism $A^* = A|_{\text{span}\{E_1, N, x\}}$ is given by

$$\left(\begin{array}{ccc} 2(c+2\varepsilon\alpha^2) & 6\varepsilon\varepsilon_1E_1(\alpha) & 0\\ -2E_1(\alpha) & \frac{\Delta\alpha}{\alpha} + 4\varepsilon\alpha^2 & -2\alpha\\ 0 & -2c\varepsilon\alpha & 2c \end{array} \right),$$

whose invariants are

$$\lambda_{1} = \frac{\Delta \alpha}{\alpha} + 4(c + 2\varepsilon\alpha^{2}),$$

$$\lambda_{2} = 4(c + \varepsilon\alpha^{2})(\frac{\Delta \alpha}{\alpha} + 4\varepsilon\alpha^{2}) + 12\varepsilon\varepsilon_{1}E_{1}(\alpha)^{2} + 4c(c + 2\varepsilon\alpha^{2}) - 4c\varepsilon\alpha^{2},$$

$$\lambda_{3} = 4c(c + 2\varepsilon\alpha^{2})(\frac{\Delta \alpha}{\alpha} + 4\varepsilon\alpha^{2}) - 8c\varepsilon\alpha^{2}(c + 2\varepsilon\alpha^{2}) + 24\varepsilon\varepsilon_{1}cE_{1}(\alpha)^{2}.$$

Then we deduce that

$$2c\lambda_2 = \lambda_3 + 8(c + 2\varepsilon\alpha^2) + 4(\frac{\Delta\alpha}{\alpha} + 4\varepsilon\alpha^2) + 16c\alpha^4$$

and

$$\frac{\Delta\alpha}{\alpha} = \lambda_1 - 4(c + 2\varepsilon\alpha^2).$$

These two equations allow us to write

$$16\alpha^4 = 8 - 4c\lambda_1 + 2\lambda_2 - c\lambda_3,$$

and so α is locally constant on \mathcal{U} , which is a contradiction.

Case 2: There exits a point p in \mathcal{U} such that $T(\nabla \alpha)(p) = 0$. Then from (4) and (5) we have

$$\langle AX, N \rangle(p) = -2\varepsilon X(\alpha)(p) = \langle X, AN \rangle(p).$$

Moreover, since B = 0 we also obtain from (3), (4) and (5) that

which implies, jointly with (6) and (5), that A is a self-adjoint endomorphism of \mathbb{R}^4_q and thus equation (5) remains valid at every point in \mathcal{U} . Therefore, $T(\nabla \alpha) = 0$ on \mathcal{U} and $S(\nabla \alpha) = -2\varepsilon \alpha$.

Since $-2\varepsilon\alpha$ is an eigenvalue of S and $tr(S) = 2\varepsilon\alpha$, then S is diagonalizable and we can choose a local orthonormal frame $\{E_1, E_2\}$ such that $SE_1 = -2\varepsilon\alpha E_1$, with E_1 parallel to $\nabla\alpha$, and $SE_2 = 4\varepsilon\alpha E_2$. Thus, from (4) we get

$$AE_2 = 2(c + 4\varepsilon\alpha^2)E_2.$$

Then $2(c + 4\varepsilon \alpha^2)$ is an eigenvalue of A and therefore α is locally constant on \mathcal{U} , which is a contradiction.

Anyway, we deduce that \mathcal{U} is empty and then M_s^2 has constant mean curvature.

Now, let $M_s^2 \subset \overline{M}_1^3(c)$ be a surface satisfying the condition $\Delta x = Ax + B$ with non-zero constant mean curvature α in $\overline{M}_1^3(c)$. If M_s^2 is not totally umbilical we obtain from (2) that $\langle B, x \rangle = 0$ and reasoning as we did at the beginning of this section we get B = 0. Therefore, equations (3), (4) and (5) are rewritten as follows

$$AX = 2\alpha SX + 2cX, \tag{6}$$

$$AN = \varepsilon \operatorname{tr}(S^2)N - 2c\varepsilon\alpha x, \tag{7}$$

$$Ax = -2\alpha N + 2cx. \tag{8}$$

Then the trace of A is given by

$$\operatorname{tr}(A) = 4\varepsilon\alpha^2 + \varepsilon\operatorname{tr}(S^2) + 6c,$$

which implies that $tr(S^2)$ is also constant. Taking now covariant derivative in (7) we have

$$\tilde{\nabla}_X(AN) = -\varepsilon \operatorname{tr}(S^2)SX - 2\varepsilon\varepsilon\alpha X,$$

and using (6) we obtain

$$\tilde{\nabla}_X(AN) = -A(SX) = -2\alpha S^2 X - 2cSX.$$

Therefore the characteristic equation of the shape operator of M_s^2 is given by

$$S^{2} + \frac{2c - \varepsilon \operatorname{tr}(S^{2})}{2\alpha} S - c\varepsilon I_{2} = 0,$$

where I_2 stands for the identity operator on the tangent bundle of M_s^2 . Thus, $\det(S) = -c\varepsilon$ and the Gaussian curvature of M_s^2 is $K = c + \varepsilon \det(S) = 0$. Summing up, M_s^2 is a flat isoparametric surface in $\overline{M}_1^3(c)$ with parallel second fundamental form in \mathbb{R}_q^4 .

So, we have the following result.

Theorem 4.2 Let $x : M_s^2 \longrightarrow \overline{M}_1^3(c) \subset \mathbb{R}_q^4$ be a non-minimal isometric immersion satisfying $\Delta x = Ax + B$. Then M_s^2 is totally umbilical in $\overline{M}_1^3(c)$ or M_s^2 is a flat isoparametric surface in $\overline{M}_1^3(c)$ with parallel second fundamental form in \mathbb{R}_q^4 .

As a first interesting consequence of Theorem 4.2, we can give the following classification result for surfaces in $\overline{M}_1^3(c)$ with diagonalizable shape operator.

Corollary 4.3 Let $x: M_s^2 \longrightarrow \overline{M}_1^3(c) \subset \mathbb{R}_q^4$ be a non-minimal isometric immersion with diagonalizable shape operator. Then M_s^2 satisfies $\Delta x = Ax + B$ if and only if M_s^2 is an open piece of one of the following surfaces:

1) a totally umbilical surface in $\overline{M}_1^3(c)$.

2) a non-minimal standard product in $\overline{M}_1^3(c)$.

5. The classification theorem

All examples exhibited in Section 3, unless Example 3.1, have diagonalizable shape operator. However, it seems reasonable to look for Lorentzian surfaces in $\overline{M}_1^3(c)$ satisfying $\Delta x = Ax + B$ with non-diagonalizable shape operator. We find the two following examples.

Example 5.1 Let a and b be two real numbers such that $a^2 - b^2 = -1$ and $ab \neq 0$. Then the map $x : \mathbb{R}^2 \longrightarrow \mathbb{H}^3_1 \subset \mathbb{R}^4_2$, $x = (x^1, x^2, x^3, x^4)$, given by

$$\begin{aligned} x^{1}(u_{1}, u_{2}) &= b \cosh u_{2} \cos u_{1} - a \sinh u_{2} \sin u_{1}, \\ x^{2}(u_{1}, u_{2}) &= a \sinh u_{2} \cos u_{1} + b \cosh u_{2} \sin u_{1}, \\ x^{3}(u_{1}, u_{2}) &= a \cosh u_{2} \cos u_{1} + b \sinh u_{2} \sin u_{1}, \\ x^{4}(u_{1}, u_{2}) &= a \cosh u_{2} \sin u_{1} - b \sinh u_{2} \cos u_{1}, \end{aligned}$$

where (u_1, u_2) is the usual coordinate system in \mathbb{R}^2 , parametrizes a non-minimal flat surface in \mathbb{H}^3_1 whose shape operator is given, in the usual frame $\left\{\frac{\partial x}{\partial u_1}, \frac{\partial x}{\partial u_2}\right\}$, by

$$S = \left(\begin{array}{cc} \alpha & -\beta \\ \beta & \alpha \end{array}\right),$$

with $\alpha = \frac{2ab}{a^2 + b^2}$ and $\beta = \frac{-1}{a^2 + b^2}$. Magid, [7, Example 1.12], refers this surface as a *complex circle* of radius a + bi.

The Laplacian operator of a complex circle is given, in coordinates (u_1, u_2) , by

$$\Delta = \frac{1}{(a^2 + b^2)^2} \left(\frac{\partial^2}{\partial u_1^2} + 4ab \frac{\partial^2}{\partial u_1 \partial u_2} - \frac{\partial^2}{\partial u_2^2} \right),$$

and it is easy to see that it satisfies $\Delta x = Ax$, where A is the following matrix

$$\frac{1}{(a^2+b^2)^2} \left(\begin{array}{rrrr} -2 & 0 & -4ab & 0\\ 0 & -2 & 0 & -4ab\\ 4ab & 0 & -2 & 0\\ 0 & 4ab & 0 & -2 \end{array} \right).$$

Example 5.2 Next example exhibits a surface whose shape operator is not diagonalizable but it has only a double real eigenvalue. Let $x : \mathbb{R}^2 \longrightarrow \mathbb{H}^3_1 \subset \mathbb{R}^4_2$ be the map given by $x = (x^1, x^2, x^3, x^4)$

$$\begin{aligned} x^{1}(u_{1}, u_{2}) &= \frac{3}{2\sqrt{2}} \sin u_{2} - \frac{1}{\sqrt{2}} (u_{1} + \frac{u_{2}}{2}) \cos u_{2}, \\ x^{2}(u_{1}, u_{2}) &= \frac{3}{2\sqrt{2}} \cos u_{2} + \frac{1}{\sqrt{2}} (u_{1} + \frac{u_{2}}{2}) \sin u_{2}, \\ x^{3}(u_{1}, u_{2}) &= \frac{1}{2\sqrt{2}} \sin u_{2} + \frac{1}{\sqrt{2}} (u_{1} + \frac{u_{2}}{2}) \cos u_{2}, \\ x^{4}(u_{1}, u_{2}) &= \frac{1}{2\sqrt{2}} \cos u_{2} - \frac{1}{\sqrt{2}} (u_{1} + \frac{u_{2}}{2}) \sin u_{2}, \end{aligned}$$

where (u_1, u_2) is the usual coordinate system in \mathbb{R}^2 . Then x parametrizes a non-minimal flat surface in \mathbb{H}^3_1 whose shape operator is given by

$$S = \left(\begin{array}{cc} 1 & 1\\ 0 & 1 \end{array}\right),$$

(see [7, Example 1.13]).

It is not difficult to see that its Laplacian operator is given, in coordinates (u_1, u_2) , by

$$\Delta = -2\frac{\partial^2}{\partial u_1 \partial u_2},$$

and this surface satisfies $\Delta x = Ax$, where A is the following matrix

$$\left(\begin{array}{rrrr} -1 & 0 & -1 & 0 \\ 0 & -1 & 0 & -1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{array}\right)$$

Now, we are ready to show the main results of this paper.

Theorem 5.3 Let $x: M_s^2 \longrightarrow \mathbb{S}_1^3 \subset \mathbb{R}_1^4$ be an isometric immersion. Then $\Delta x = Ax + B$ if and only if one of the following statements holds true:

1) M_s^2 is a minimal surface in \mathbb{S}_1^3 .

2) M_s^2 is totally umbilical, and then it is an open piece of $\mathbb{H}^2(-r)$, $\mathbb{S}^2(r)$, $\mathbb{S}^2_1(r)$, r > 0, or a flat totally umbilical.

3) M_s^2 is an open piece of one of the non-minimal standard products in \mathbb{S}_1^3 : $\mathbb{S}^1(r) \times \mathbb{H}^1(-\sqrt{r^2-1})$, r > 1, and $\mathbb{S}_1^1(r) \times \mathbb{S}^1(\sqrt{1-r^2})$, 0 < r < 1 and $r \neq \sqrt{1/2}$.

Theorem 5.4 Let $x: M_s^2 \longrightarrow \mathbb{H}_1^3 \subset \mathbb{R}_2^4$ be an isometric immersion. Then $\Delta x = Ax + B$ if and only if one of the following statements holds true:

1) M_s^2 is a minimal surface in \mathbb{H}_1^3 .

2) M_s^2 is totally umbilical, and then it is an open piece of $\mathbb{H}^2(-r)$, $\mathbb{H}^2_1(-r)$, $\mathbb{S}^2_1(r)$, r > 0, or a flat totally umbilical.

3) M_s^2 is an open piece of one of the non-minimal standard products in \mathbb{H}^3_1 : $\mathbb{S}^1(r) \times \mathbb{H}^1_1(-\sqrt{1+r^2})$ and $\mathbb{S}^1_1(r) \times \mathbb{H}^1(-\sqrt{1+r^2})$, r > 0, and $\mathbb{H}^1(-r) \times \mathbb{H}^1(-\sqrt{1-r^2})$, 0 < r < 1 and $r \neq \sqrt{1/2}$.

4) M_1^2 is an open piece of the surface exhibited in Example 5.1.

5) M_1^2 is an open piece of the surface exhibited in Example 5.2.

Proof of Theorems 5.3 and 5.4. According to Corollary 4.3 it suffices to deal with nondiagonalizable case. Let $x: M_1^2 \longrightarrow \overline{M}_1^3(c) \subset \mathbb{R}_q^4$ be a non-minimal Lorentz surface in $\overline{M}_1^3(c)$ satisfying the condition $\Delta x = Ax + B$ with non-diagonalizable shape operator. By Theorem 4.2, we know that M_1^2 is a flat surface with parallel second fundamental form in \mathbb{R}_q^4 , and the characteristic equation of its shape operator is given by

$$S^{2} + \frac{2c - \operatorname{tr}(S^{2})}{2\alpha}S - cI_{2} = 0.$$

Therefore, the discriminant of its characteristic polynomial is written as

$$d_S = 4c + \left(\frac{2c - \operatorname{tr}(S^2)}{2\alpha}\right)^2,$$

which can be non-positive provided that c = -1. Then, by applying [7, Theorem 1.17] we get that M_1^2 is an open piece of a complex circle (Example 5.1) or the surface exhibited in Example 5.2.

Bibliography

- [1] L. J. Alías, A. Ferrández and P. Lucas. Submanifolds in pseudo-Euclidean spaces satisfying the condition $\Delta x = Ax + B$. Geom. Dedicata, 42 (1992), 345–354.
- [2] L. J. Alías, A. Ferrández and P. Lucas. Surfaces in the 3-dimensional Lorentz-Minkowski space satisfying $\Delta x = Ax + B$. *Pacific J. Math.*, **156** (1992), 201–208.
- [3] B. Y. Chen. Finite-type pseudo-Riemannian submanifolds. *Tamkang J. of Math.*, **17** (1986), 137–151.
- [4] B. Y. Chen and M. Petrovic. On spectral decomposition of immersions of finite type. *Bull. Austral. Math. Soc.*, **44** (1991), 117–129.
- [5] F. Dillen, J. Pas and L. Verstraelen. On surfaces of finite type in euclidean 3-space. Kodai Math. J., 13 (1990), 10–21.
- [6] T. Hasanis and T. Vlachos. Hypersurfaces of \mathbb{E}^{n+1} satisfying $\Delta x = Ax + B$. J. Austral. Math. Soc., Series A, 53 (1992), 377–384.
- [7] M. A. Magid. Isometric immersions of Lorentz space with parallel second fundamental forms. *Tsukuba J. Math.*, 8 (1984), 31–54.
- [8] J. Park. Hypersurfaces satisfying the equation $\delta x = rx + b$. To appear in Proc. A.M.S.