# Surfaces in Lorentzian space forms satisfying the condition $\Delta x=A x+B$ 

Luis J. Alías, Angel Ferrández and Pascual Lucas<br>Geometry and Topology of Submanifolds, vol. VI, pp. 3-15, 1993, World. Sci. Publ. Co.<br>(Partially supported by DGICYT grant PB91-0705)

## 1. Introduction

In [2] the authors have obtained a classification of surfaces in the 3-dimensional LorentzMinkowski space $\mathbb{L}^{3}$ satisfying the condition $\Delta x=A x+B$, where $x$ stands for the isometric immersion, $A$ is an endomorphism of $\mathbb{L}^{3}$ and $B$ is a constant vector. That condition was originally introduced by Dillen, Pas and Verstraelen in [5] for surfaces in the 3-dimensional Euclidean space and it has been studied by several authors for hypersurfaces in Riemannian space forms, [4], [6] and [8], who have obtained some interesting classification theorems. It should be noticed that those results obtained in the Riemannian cases strongly depend on the diagonalizability of the shape operator.

However, a surface in a Lorentzian space can be endowed with a Riemannian or Lorentzian metric, and in the last case its shape operator does not need to be diagonalizable. Therefore, it is worth bringing that condition to the non-flat Lorentzian space forms, that is, the De Sitter space $\mathbb{S}_{1}^{3} \subset \mathbb{R}_{1}^{4}$ and anti De Sitter space $\mathbb{H}_{1}^{3} \subset \mathbb{R}_{2}^{4}$, and it seems natural to hope for finding new classes of examples having no Riemannian counterpart. Moreover, in this new situation the codimension of the surface in the corresponding pseudo-Euclidean space is two and the proofs given in [2] do not work here, even so we follow the techniques developed there.

In this paper we are going to classify the surfaces in $\mathbb{S}_{1}^{3}$ and $\mathbb{H}_{1}^{3}$ with isometric immersion $x$ satisfying the condition $\Delta x=A x+B$, where $A$ is an endomorphism of the corresponding 4-dimensional pseudo-Euclidean space and $B$ is a constant vector. The classification is given by showing that the asked condition is a constant mean curvature condition and, under non-minimality hypothesis, it yields a flat surface with parallel second fundamental form in the pseudo-Euclidean space. We point out that in contrast to the case of surfaces in $\mathbb{L}^{3}$, examples of surfaces in $\mathbb{H}_{1}^{3}$ satisfying that condition and having non-diagonalizable shape operator can be found (see Examples 5.1 and 5.2).

## 2. Preliminaries

Let us denote by $\bar{M}_{1}^{3}(c)$ the standard model of a 3-dimensional Lorentz space with constant curvature $c=1,-1$, say the De Sitter space $\mathbb{S}_{1}^{3}=\left\{x \in \mathbb{R}_{1}^{4}:\langle x, x\rangle=1\right\}$ and the anti De Sitter space $\mathbb{H}_{1}^{3}=\left\{x \in \mathbb{R}_{2}^{4}:\langle x, x\rangle=-1\right\}$, respectively, $\langle$,$\rangle standing for the indefinite inner product in the$ corresponding pseudo-Euclidean space $\mathbb{R}_{q}^{4}, q=1,2$, where $\bar{M}_{1}^{3}(c)$ is lying.

Let $x: M_{s}^{2} \longrightarrow \bar{M}_{1}^{3}(c) \subset \mathbb{R}_{q}^{4}$ be a surface of index $s(s=0,1)$ satisfying the condition

$$
\Delta x=A x+B,
$$

where $A$ is an endomorphism of $\mathbb{R}_{q}^{4}$ and $B$ a constant vector in $\mathbb{R}_{q}^{4}$. Throughout this paper we will denote by $H, N$ and $\alpha$ the mean curvature vector field of $M_{s}^{2}$ in $\mathbb{R}_{q}^{4}$, the unit normal vector field of $M_{s}^{2}$ in $\bar{M}_{1}^{3}(c)$ and the mean curvature in the direction of $N$, respectively. Thus we may write

$$
H=\alpha N-c x .
$$

From above equations, using the well known Laplace-Beltrami formula $\Delta x=-2 H$, we easily deduce that

$$
A x=-2 \alpha N+2 c x-B .
$$

Taking covariant derivative in (1) and using the formula for $\Delta H$ given in [3, Lemma 3] we have the following equations

$$
A X=2(\alpha S X+c X)-2 X(\alpha) N,
$$

for any vector field $X$ tangent to $M_{s}^{2}$ and

$$
\alpha A N=2 S(\nabla \alpha)+2 \varepsilon \alpha \nabla \alpha+\left\{\Delta \alpha+\varepsilon \alpha \operatorname{tr}\left(S^{2}\right)\right\} N-2 c \varepsilon \alpha^{2} x-c B,
$$

where $S$ stands for the shape operator of $M_{s}^{2}$ in $\bar{M}_{1}^{3}(c), \nabla \alpha$ is the gradient of $\alpha, \varepsilon=\langle N, N\rangle$ and $\operatorname{tr}\left(S^{2}\right)=\operatorname{trace}\left(S^{2}\right)$.

For later use, we are going to deduce a couple of useful equations. The first one is a straight consequence of (4),

$$
\langle A X, Y\rangle=\langle X, A Y\rangle
$$

for any tangent vector fields $X$ and $Y$. The second one can be obtained by taking covariant derivative in (6),

$$
\langle A \sigma(X, Z), Y\rangle-\langle A \sigma(Y, Z), X\rangle=\langle\sigma(X, Z), A Y\rangle-\langle\sigma(Y, Z), A X\rangle,
$$

where $\sigma$ is the second fundamental form of $M_{s}^{2}$ in $\mathbb{R}_{q}^{4}$.

## 3. Some examples

Before going into the study of the condition $\Delta x=A x+B$, let us see some examples of surfaces in $\bar{M}_{1}^{3}(c)$ satisfying that condition. They will be useful later in order to give the classification results.

Example 3.1 It is clear that every minimal surface $M_{s}^{2}$ in $\bar{M}_{1}^{3}(c)$ satisfies the condition $\Delta x=$ $A x+B$. In fact, $\alpha=0$ implies $H=-c x$ in (2), which jointly with the Laplace-Beltrami equation gives $\Delta x=2 c x$. So, we have (1) with $A=2 c I_{4}$ and $B=0$.

Example 3.2 Let $M_{s}^{2}$ be a totally umbilical surface in $\bar{M}_{1}^{3}(c)$. By using the classification theorem given by M.A. Magid in [7, Theorem 1.4] we get, according to $\langle H, H\rangle$ is positive, negative or zero, $M_{s}^{2}$ is an open piece of a pseudo-sphere $\mathbb{S}_{s}^{2}(r)$, a pseudo-hyperbolic space $\mathbb{H}_{s}^{2}(-r)$ or $\mathbb{R}_{s}^{2}$, respectively. Moreover, in the last case the isometric immersion is explicitly given by $x: \mathbb{R}_{s}^{2} \longrightarrow$
$\bar{M}_{1}^{3}(c) \subset \mathbb{R}_{s+1}^{4}, x=f-x_{0}, x_{0}$ being a fixed vector and $f: \mathbb{R}_{s}^{2} \longrightarrow \mathbb{R}_{s+1}^{4}$ the map defined by $f\left(u_{1}, u_{2}\right)=\left(q\left(u_{1}, u_{2}\right), u_{1}, u_{2}, q\left(u_{1}, u_{2}\right)\right)$, where $q(u)=a_{1}\langle u, u\rangle+\left\langle v_{0}, u\right\rangle+a_{0}, a_{0}, a_{1} \in \mathbb{R}$ with $a_{1} \neq 0$ and $v_{0} \in \mathbb{R}_{s}^{2}$.

It is not difficult to see that pseudo-spheres and pseudo-hyperbolic spaces both satisfy the condition (1). Indeed, if $\bar{x}$ is the standard immersion of $\mathbb{S}_{s}^{2}(r)$ or $\mathbb{H}_{s}^{2}(-r)$ in a hyperplane $\mathbb{R}_{s^{\prime}}^{3}$ of $\mathbb{R}_{q}^{4}$, we know from [1] that $\Delta \bar{x}=\bar{A} \bar{x}, \bar{A}$ being an endomorphism of $\mathbb{R}_{s^{\prime}}^{3}$. Now by embedding $\mathbb{R}_{s^{\prime}}^{3}$ in $\mathbb{R}_{q}^{4}$, the immersion $\bar{x}$ becomes an immersion $x$ from $M_{s}^{2}$ in $_{\bar{A}}^{1}{ }_{1}^{3}(c) \subset \mathbb{R}_{q}^{4}$ satisfying the condition $\Delta x=A x$, where $A$ is the $4 \times 4$ matrix obtained from $\bar{A}$ with zeros for each of the additional entries. Therefore the most interesting case arises when $\langle H, H\rangle=0$. Now the Laplacian operator of the surface is given by

$$
\Delta=\sum_{i=1}^{s} \frac{\partial^{2}}{\partial u_{i}^{2}}-\sum_{j=s+1}^{4} \frac{\partial^{2}}{\partial u_{j}^{2}}
$$

and a simple computation shows that $\Delta x=-4 a_{1}(1,1,1,1)$. Thus this surface satisfies (1) with $A=0$ and $B=-4 a_{1}(1,1,1,1)$. We will refer it as a flat totally umbilical surface.

Example 3.3 An easy computation shows that the following pseudo-Riemannian products are all non-minimal surfaces in $\bar{M}_{1}^{3}(c)$ satisfying the condition $\Delta x=A x+B$ with $B=0$ (see the attached table).

1) $\mathbb{S}_{1}^{1}(r) \times \mathbb{S}^{1}\left(\sqrt{1-r^{2}}\right) \subset \mathbb{S}_{1}^{3}$, with $0<r<1$ and $r \neq \sqrt{1 / 2}$, immersed by $x: \mathbb{R}_{1}^{2} \longrightarrow \mathbb{S}_{1}^{3} \subset \mathbb{R}_{1}^{4}$,

$$
x\left(u_{1}, u_{2}\right)=\left(r \sinh \frac{u_{1}}{r}, r \cosh \frac{u_{1}}{r}, \sqrt{1-r^{2}} \cos \frac{u_{2}}{\sqrt{1-r^{2}}}, \sqrt{1-r^{2}} \sin \frac{u_{2}}{\sqrt{1-r^{2}}}\right),
$$

2) $\mathbb{S}^{1}(r) \times \mathbb{H}^{1}\left(-\sqrt{r^{2}-1}\right) \subset \mathbb{S}_{1}^{3}$, with $r>1$, and the immersion $x: \mathbb{R}^{2} \longrightarrow \mathbb{S}_{1}^{3} \subset \mathbb{R}_{1}^{4}$ is given by

$$
x\left(u_{1}, u_{2}\right)=\left(r \cos \frac{u_{2}}{r}, r \sin \frac{u_{2}}{r}, \sqrt{r^{2}-1} \cosh \frac{u_{1}}{\sqrt{r^{2}-1}}, \sqrt{r^{2}-1} \sinh \frac{u_{1}}{\sqrt{r^{2}-1}}\right),
$$

3) $\mathbb{S}^{1}(r) \times \mathbb{H}_{1}^{1}\left(-\sqrt{1+r^{2}}\right) \subset \mathbb{H}_{1}^{3}, r>0$, with the usual parametrization $x: \mathbb{R}^{2} \longrightarrow \mathbb{H}_{1}^{3} \subset \mathbb{R}_{2}^{4}$ given by

$$
x\left(u_{1}, u_{2}\right)=\left(r \cos \frac{u_{2}}{r}, r \sin \frac{u_{2}}{r}, \sqrt{1+r^{2}} \cos \frac{u_{1}}{\sqrt{1+r^{2}}}, \sqrt{1+r^{2}} \sin \frac{u_{1}}{\sqrt{1+r^{2}}}\right)
$$

4) $\mathbb{S}_{1}^{1}(r) \times \mathbb{H}^{1}\left(-\sqrt{1+r^{2}}\right) \subset \mathbb{H}_{1}^{3}$, with $r>0$, immersed by $x: \mathbb{R}^{2} \longrightarrow \mathbb{H}_{1}^{3} \subset \mathbb{R}_{2}^{4}$,

$$
x\left(u_{1}, u_{2}\right)=\left(r \sinh \frac{u_{1}}{r}, \sqrt{1+r^{2}} \cosh \frac{u_{2}}{\sqrt{1+r^{2}}}, r \cosh \frac{u_{1}}{r}, \sqrt{1+r^{2}} \sinh \frac{u_{2}}{\sqrt{1+r^{2}}}\right),
$$

5) $\mathbb{H}^{1}(-r) \times \mathbb{H}^{1}\left(-\sqrt{1-r^{2}}\right) \subset \mathbb{H}_{1}^{3}$, with $0<r<1$ and $r \neq \sqrt{1 / 2}$, parametrized by $x: \mathbb{R}^{2} \longrightarrow$ $\mathbb{H}_{1}^{3} \subset \mathbb{R}_{2}^{4}$,

$$
x\left(u_{1}, u_{2}\right)=\left(r \cosh \frac{u_{1}}{r}, \sqrt{1-r^{2}} \cosh \frac{u_{2}}{\sqrt{1-r^{2}}}, r \sinh \frac{u_{1}}{r}, \sqrt{1-r^{2}} \sinh \frac{u_{2}}{\sqrt{1-r^{2}}}\right)
$$

We will refer them as the non-minimal standard products. Notice that all of them have diagonalizable shape operators.

| $r$ | Surface | $A$ |
| :---: | :---: | :---: |
| $0<r<1$ | $\mathbb{S}_{1}^{1}(r) \times \mathbb{S}^{1}\left(\sqrt{1-r^{2}}\right) \subset \mathbb{S}_{1}^{3}$ | $\left(\begin{array}{cc}\frac{1}{r^{2}} I_{2} & \mathbf{0} \\ \mathbf{0} & \frac{1}{1-r^{2}} I_{2}\end{array}\right)$ |
| $r>1$ | $\mathbb{S}^{1}(r) \times \mathbb{H}^{1}\left(-\sqrt{r^{2}-1}\right) \subset \mathbb{S}_{1}^{3}$ | $\left(\begin{array}{cc}\frac{1}{r^{2}} I_{2} & \mathbf{0} \\ \mathbf{0} & \frac{1}{r^{2}-1} I_{2}\end{array}\right)$ |
| $r>0$ | $\mathbb{S}^{1}(r) \times \mathbb{H}_{1}^{1}\left(-\sqrt{1+r^{2}}\right) \subset \mathbb{H}_{1}^{3}$ | $\left(\begin{array}{cc}\frac{1}{r^{2}} I_{2} & \mathbf{0} \\ \mathbf{0} & \frac{1}{1+r^{2}} I_{2}\end{array}\right)$ |
| $r>0$ | $\mathbb{S}_{1}^{1}(r) \times \mathbb{H}^{1}\left(-\sqrt{1+r^{2}}\right) \subset \mathbb{H}_{1}^{3}$ | $\left(\begin{array}{cc}\frac{1}{r^{2}} I_{2} & \mathbf{0} \\ \mathbf{0} & \frac{1}{1+r^{2}} I_{2}\end{array}\right)$ |
| $0<r<1$ | $\mathbb{H}^{1}(-r) \times \mathbb{H}^{1}\left(-\sqrt{1-r^{2}}\right) \subset \mathbb{H}_{1}^{3}$ | $\left(\begin{array}{cc}\frac{1}{r^{2}} I_{2} & \mathbf{0} \\ \mathbf{0} & \frac{1}{1-r^{2}} I_{2}\end{array}\right)$ |

## 4. First characterization results

The aim of this section is to show that the condition $\Delta x=A x+B$ is a constant mean curvature condition and, under non-minimality hypothesis, it is also a flatness condition on the surface. First, let $x: M_{s}^{2} \longrightarrow \bar{M}_{1}^{3}(c) \subset \mathbb{R}_{q}^{4}$ be a surface satisfying (1). From (4) we have $\langle A X, x\rangle=0$ for any vector field tangent to $M_{s}^{2}$, and taking covariant derivative here we get

$$
\langle A \sigma(X, Y), x\rangle=-\langle A X, Y\rangle
$$

for any tangent vector fields $X$ and $Y$. Now equation (1), jointly with (3), (4) and (5), implies that

$$
\langle S X-\varepsilon \alpha X, Y\rangle\langle B, x\rangle=0 .
$$

Let $\mathcal{U}=\left\{p \in M_{s}^{2}: \nabla \alpha^{2}(p) \neq 0\right\}$ be the open set of regular points of $\alpha^{2}$ and assume that it is not empty. If $\mathcal{W}=\{p \in \mathcal{U}:\langle B, x\rangle \neq 0\}$ is a non-empty set, then from (4) and (2), we have

$$
A X=2\left(c+\varepsilon \alpha^{2}\right) X-2 X(\alpha) N
$$

at the points of $\mathcal{W}$. Let us choose a tangent vector field $X$ orthogonal to $\nabla \alpha$, that is $X(\alpha)=$ $\langle X, \nabla \alpha\rangle=0$. By using (3), we obtain that $2\left(c+\varepsilon \alpha^{2}\right)$ is an eigenvalue of $A$ and therefore locally constant on $\mathcal{W}$, which is a contradiction. Hence $\mathcal{W}=\emptyset$ and $\langle B, x\rangle=0$ on $\mathcal{U}$. Taking covariant derivative here we deduce that $B$ has not tangent component and thus $B=\varepsilon\langle B, N\rangle N$. Finally, as $\langle B, N\rangle^{2}=\varepsilon\langle B, B\rangle$ is constant we deduce that $\langle B, N\rangle=0$, because $\mathcal{U}$ is not empty. Summing up, we have shown that if $x: M_{s}^{2} \longrightarrow \bar{M}_{1}^{3}(c) \subset \mathbb{R}_{q}^{4}$ is an isometric immersion satisfying the condition $\Delta x=A x+B$ and having non-constant mean curvature, then $B=0$.

Now we are ready to prove the following result.
Proposition 4.1 Let $x: M_{s}^{2} \longrightarrow \bar{M}_{1}^{3}(c) \subset \mathbb{R}_{q}^{4}$ be an isometric immersion such that $\Delta x=$ $A x+B$. Then $M_{s}^{2}$ has constant mean curvature.

Proof. If we assume that the mean curvature $\alpha$ is not constant, then we have just shown that $B=0$. Using now equation (7), jointly with (3), (4) and (5), we obtain

$$
T X(\alpha) S Y=T Y(\alpha) S X
$$

on $\mathcal{U}$, for any tangent vector fields $X$ and $Y$, where $T$ denotes the self-adjoint operator given by $T X=2 \alpha X+\varepsilon S X$.

Case 1: $T(\nabla \alpha) \neq 0$ on $\mathcal{U}$. Then there exists a tangent vector field $X$ such that $T X(\alpha) \neq 0$, which implies, by using (4), that $S$ has rank one on $\mathcal{U}$. Thus we can choose a local orthonormal frame $\left\{E_{1}, E_{2}\right\}$ such that $S E_{1}=2 \varepsilon \alpha E_{1}, S E_{2}=0$ and $\varepsilon_{i}=\left\langle E_{i}, E_{i}\right\rangle$. Also from (4) we have that $E_{2}(\alpha)=0$ and $E_{1}$ is parallel to $\nabla \alpha$, and using again (3), (4) and (5) we obtain

$$
\begin{aligned}
A E_{1} & =2\left(c+2 \varepsilon \alpha^{2}\right) E_{1}-2 E_{1}(\alpha) N \\
A E_{2} & =2 c E_{2} \\
A N & =6 \varepsilon \varepsilon_{1} E_{1}(\alpha) E_{1}+\left\{\frac{\Delta \alpha}{\alpha}+4 \varepsilon \alpha^{2}\right\} N-2 c \varepsilon \alpha x \\
A x & =-2 \alpha N+2 c x
\end{aligned}
$$

Therefore, the associated matrix to the endomorphism $A^{*}=\left.A\right|_{\operatorname{span}\left\{E_{1}, N, x\right\}}$ is given by

$$
\left(\begin{array}{ccc}
2\left(c+2 \varepsilon \alpha^{2}\right) & 6 \varepsilon \varepsilon_{1} E_{1}(\alpha) & 0 \\
-2 E_{1}(\alpha) & \frac{\Delta \alpha}{\alpha}+4 \varepsilon \alpha^{2} & -2 \alpha \\
0 & -2 c \varepsilon \alpha & 2 c
\end{array}\right)
$$

whose invariants are

$$
\begin{aligned}
& \lambda_{1}=\frac{\Delta \alpha}{\alpha}+4\left(c+2 \varepsilon \alpha^{2}\right) \\
& \lambda_{2}=4\left(c+\varepsilon \alpha^{2}\right)\left(\frac{\Delta \alpha}{\alpha}+4 \varepsilon \alpha^{2}\right)+12 \varepsilon \varepsilon_{1} E_{1}(\alpha)^{2}+4 c\left(c+2 \varepsilon \alpha^{2}\right)-4 c \varepsilon \alpha^{2} \\
& \lambda_{3}=4 c\left(c+2 \varepsilon \alpha^{2}\right)\left(\frac{\Delta \alpha}{\alpha}+4 \varepsilon \alpha^{2}\right)-8 c \varepsilon \alpha^{2}\left(c+2 \varepsilon \alpha^{2}\right)+24 \varepsilon \varepsilon_{1} c E_{1}(\alpha)^{2}
\end{aligned}
$$

Then we deduce that

$$
2 c \lambda_{2}=\lambda_{3}+8\left(c+2 \varepsilon \alpha^{2}\right)+4\left(\frac{\Delta \alpha}{\alpha}+4 \varepsilon \alpha^{2}\right)+16 c \alpha^{4}
$$

and

$$
\frac{\Delta \alpha}{\alpha}=\lambda_{1}-4\left(c+2 \varepsilon \alpha^{2}\right)
$$

These two equations allow us to write

$$
16 \alpha^{4}=8-4 c \lambda_{1}+2 \lambda_{2}-c \lambda_{3}
$$

and so $\alpha$ is locally constant on $\mathcal{U}$, which is a contradiction.
Case 2: There exits a point $p$ in $\mathcal{U}$ such that $T(\nabla \alpha)(p)=0$. Then from (4) and (5) we have

$$
\langle A X, N\rangle(p)=-2 \varepsilon X(\alpha)(p)=\langle X, A N\rangle(p)
$$

Moreover, since $B=0$ we also obtain from (3), (4) and (5) that

$$
\begin{aligned}
\langle A X, x\rangle & =\langle X, A x\rangle \\
\langle A x, N\rangle & =\langle x, A N\rangle
\end{aligned}
$$

which implies, jointly with (6) and (5), that $A$ is a self-adjoint endomorphism of $\mathbb{R}_{q}^{4}$ and thus equation (5) remains valid at every point in $\mathcal{U}$. Therefore, $T(\nabla \alpha)=0$ on $\mathcal{U}$ and $S(\nabla \alpha)=-2 \varepsilon \alpha$.

Since $-2 \varepsilon \alpha$ is an eigenvalue of $S$ and $\operatorname{tr}(S)=2 \varepsilon \alpha$, then $S$ is diagonalizable and we can choose a local orthonormal frame $\left\{E_{1}, E_{2}\right\}$ such that $S E_{1}=-2 \varepsilon \alpha E_{1}$, with $E_{1}$ parallel to $\nabla \alpha$, and $S E_{2}=4 \varepsilon \alpha E_{2}$. Thus, from (4) we get

$$
A E_{2}=2\left(c+4 \varepsilon \alpha^{2}\right) E_{2}
$$

Then $2\left(c+4 \varepsilon \alpha^{2}\right)$ is an eigenvalue of $A$ and therefore $\alpha$ is locally constant on $\mathcal{U}$, which is a contradiction.

Anyway, we deduce that $\mathcal{U}$ is empty and then $M_{s}^{2}$ has constant mean curvature.
Now, let $M_{s}^{2} \subset \bar{M}_{1}^{3}(c)$ be a surface satisfying the condition $\Delta x=A x+B$ with non-zero constant mean curvature $\alpha$ in $\bar{M}_{1}^{3}(c)$. If $M_{s}^{2}$ is not totally umbilical we obtain from (2) that $\langle B, x\rangle=0$ and reasoning as we did at the beginning of this section we get $B=0$. Therefore, equations (3), (4) and (5) are rewritten as follows

$$
\begin{align*}
A X & =2 \alpha S X+2 c X  \tag{6}\\
A N & =\varepsilon \operatorname{tr}\left(S^{2}\right) N-2 c \varepsilon \alpha x  \tag{7}\\
A x & =-2 \alpha N+2 c x \tag{8}
\end{align*}
$$

Then the trace of $A$ is given by

$$
\operatorname{tr}(A)=4 \varepsilon \alpha^{2}+\varepsilon \operatorname{tr}\left(S^{2}\right)+6 c
$$

which implies that $\operatorname{tr}\left(S^{2}\right)$ is also constant. Taking now covariant derivative in (7) we have

$$
\tilde{\nabla}_{X}(A N)=-\varepsilon \operatorname{tr}\left(S^{2}\right) S X-2 c \varepsilon \alpha X
$$

and using (6) we obtain

$$
\tilde{\nabla}_{X}(A N)=-A(S X)=-2 \alpha S^{2} X-2 c S X
$$

Therefore the characteristic equation of the shape operator of $M_{s}^{2}$ is given by

$$
S^{2}+\frac{2 c-\varepsilon \operatorname{tr}\left(S^{2}\right)}{2 \alpha} S-c \varepsilon I_{2}=0
$$

where $I_{2}$ stands for the identity operator on the tangent bundle of $M_{s}^{2}$. Thus, $\operatorname{det}(S)=-c \varepsilon$ and the Gaussian curvature of $M_{s}^{2}$ is $K=c+\varepsilon \operatorname{det}(S)=0$. Summing up, $M_{s}^{2}$ is a flat isoparametric surface in $\bar{M}_{1}^{3}(c)$ with parallel second fundamental form in $\mathbb{R}_{q}^{4}$.

So, we have the following result.
Theorem 4.2 Let $x: M_{s}^{2} \longrightarrow \bar{M}_{1}^{3}(c) \subset \mathbb{R}_{q}^{4}$ be a non-minimal isometric immersion satisfying $\Delta x=A x+B$. Then $M_{s}^{2}$ is totally umbilical in $\bar{M}_{1}^{3}(c)$ or $M_{s}^{2}$ is a flat isoparametric surface in $\bar{M}_{1}^{3}(c)$ with parallel second fundamental form in $\mathbb{R}_{q}^{4}$.

As a first interesting consequence of Theorem 4.2, we can give the following classification result for surfaces in $\bar{M}_{1}^{3}(c)$ with diagonalizable shape operator.

Corollary 4.3 Let $x: M_{s}^{2} \longrightarrow \bar{M}_{1}^{3}(c) \subset \mathbb{R}_{q}^{4}$ be a non-minimal isometric immersion with diagonalizable shape operator. Then $M_{s}^{2}$ satisfies $\Delta x=A x+B$ if and only if $M_{s}^{2}$ is an open piece of one of the following surfaces:

1) a totally umbilical surface in $\bar{M}_{1}^{3}(c)$.
2) a non-minimal standard product in $\bar{M}_{1}^{3}(c)$.

## 5. The classification theorem

All examples exhibited in Section 3, unless Example 3.1, have diagonalizable shape operator. However, it seems reasonable to look for Lorentzian surfaces in $\bar{M}_{1}^{3}(c)$ satisfying $\Delta x=A x+B$ with non-diagonalizable shape operator. We find the two following examples.

Example 5.1 Let $a$ and $b$ be two real numbers such that $a^{2}-b^{2}=-1$ and $a b \neq 0$. Then the map $x: \mathbb{R}^{2} \longrightarrow \mathbb{H}_{1}^{3} \subset \mathbb{R}_{2}^{4}, x=\left(x^{1}, x^{2}, x^{3}, x^{4}\right)$, given by

$$
\begin{aligned}
x^{1}\left(u_{1}, u_{2}\right) & =b \cosh u_{2} \cos u_{1}-a \sinh u_{2} \sin u_{1}, \\
x^{2}\left(u_{1}, u_{2}\right) & =a \sinh u_{2} \cos u_{1}+b \cosh u_{2} \sin u_{1}, \\
x^{3}\left(u_{1}, u_{2}\right) & =a \cosh u_{2} \cos u_{1}+b \sinh u_{2} \sin u_{1}, \\
x^{4}\left(u_{1}, u_{2}\right) & =a \cosh u_{2} \sin u_{1}-b \sinh u_{2} \cos u_{1},
\end{aligned}
$$

where $\left(u_{1}, u_{2}\right)$ is the usual coordinate system in $\mathbb{R}^{2}$, parametrizes a non-minimal flat surface in $\mathbb{H}_{1}^{3}$ whose shape operator is given, in the usual frame $\left\{\frac{\partial x}{\partial u_{1}}, \frac{\partial x}{\partial u_{2}}\right\}$, by

$$
S=\left(\begin{array}{rr}
\alpha & -\beta \\
\beta & \alpha
\end{array}\right),
$$

with $\alpha=\frac{2 a b}{a^{2}+b^{2}}$ and $\beta=\frac{-1}{a^{2}+b^{2}}$. Magid, [7, Example 1.12], refers this surface as a complex circle of radius $a+b i$.

The Laplacian operator of a complex circle is given, in coordinates $\left(u_{1}, u_{2}\right)$, by

$$
\Delta=\frac{1}{\left(a^{2}+b^{2}\right)^{2}}\left(\frac{\partial^{2}}{\partial u_{1}^{2}}+4 a b \frac{\partial^{2}}{\partial u_{1} \partial u_{2}}-\frac{\partial^{2}}{\partial u_{2}^{2}}\right),
$$

and it is easy to see that it satisfies $\Delta x=A x$, where $A$ is the following matrix

$$
\frac{1}{\left(a^{2}+b^{2}\right)^{2}}\left(\begin{array}{rrrr}
-2 & 0 & -4 a b & 0 \\
0 & -2 & 0 & -4 a b \\
4 a b & 0 & -2 & 0 \\
0 & 4 a b & 0 & -2
\end{array}\right) .
$$

Example 5.2 Next example exhibits a surface whose shape operator is not diagonalizable but it has only a double real eigenvalue. Let $x: \mathbb{R}^{2} \longrightarrow \mathbb{H}_{1}^{3} \subset \mathbb{R}_{2}^{4}$ be the map given by $x=$ $\left(x^{1}, x^{2}, x^{3}, x^{4}\right)$

$$
\begin{aligned}
x^{1}\left(u_{1}, u_{2}\right) & =\frac{3}{2 \sqrt{2}} \sin u_{2}-\frac{1}{\sqrt{2}}\left(u_{1}+\frac{u_{2}}{2}\right) \cos u_{2}, \\
x^{2}\left(u_{1}, u_{2}\right) & =\frac{3}{2 \sqrt{2}} \cos u_{2}+\frac{1}{\sqrt{2}}\left(u_{1}+\frac{u_{2}}{2}\right) \sin u_{2}, \\
x^{3}\left(u_{1}, u_{2}\right) & =\frac{1}{2 \sqrt{2}} \sin u_{2}+\frac{1}{\sqrt{2}}\left(u_{1}+\frac{u_{2}}{2}\right) \cos u_{2}, \\
x^{4}\left(u_{1}, u_{2}\right) & =\frac{1}{2 \sqrt{2}} \cos u_{2}-\frac{1}{\sqrt{2}}\left(u_{1}+\frac{u_{2}}{2}\right) \sin u_{2},
\end{aligned}
$$

where $\left(u_{1}, u_{2}\right)$ is the usual coordinate system in $\mathbb{R}^{2}$. Then $x$ parametrizes a non-minimal flat surface in $\mathbb{H}_{1}^{3}$ whose shape operator is given by

$$
S=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

(see [7, Example 1.13]).
It is not difficult to see that its Laplacian operator is given, in coordinates $\left(u_{1}, u_{2}\right)$, by

$$
\Delta=-2 \frac{\partial^{2}}{\partial u_{1} \partial u_{2}},
$$

and this surface satisfies $\Delta x=A x$, where $A$ is the following matrix

$$
\left(\begin{array}{rrrr}
-1 & 0 & -1 & 0 \\
0 & -1 & 0 & -1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right)
$$

Now, we are ready to show the main results of this paper.
Theorem 5.3 Let $x: M_{s}^{2} \longrightarrow \mathbb{S}_{1}^{3} \subset \mathbb{R}_{1}^{4}$ be an isometric immersion. Then $\Delta x=A x+B$ if and only if one of the following statements holds true:

1) $M_{s}^{2}$ is a minimal surface in $\mathbb{S}_{1}^{3}$.
2) $M_{s}^{2}$ is totally umbilical, and then it is an open piece of $\mathbb{H}^{2}(-r), \mathbb{S}^{2}(r), \mathbb{S}_{1}^{2}(r), r>0$, or a flat totally umbilical.
3) $M_{s}^{2}$ is an open piece of one of the non-minimal standard products in $\mathbb{S}_{1}^{3}: \mathbb{S}^{1}(r) \times \mathbb{H}^{1}\left(-\sqrt{r^{2}-1}\right)$, $r>1$, and $\mathbb{S}_{1}^{1}(r) \times \mathbb{S}^{1}\left(\sqrt{1-r^{2}}\right), 0<r<1$ and $r \neq \sqrt{1 / 2}$.
Theorem 5.4 Let $x: M_{s}^{2} \longrightarrow \mathbb{H}_{1}^{3} \subset \mathbb{R}_{2}^{4}$ be an isometric immersion. Then $\Delta x=A x+B$ if and only if one of the following statements holds true:
4) $M_{s}^{2}$ is a minimal surface in $\mathbb{H}_{1}^{3}$.
5) $M_{s}^{2}$ is totally umbilical, and then it is an open piece of $\mathbb{H}^{2}(-r), \mathbb{H}_{1}^{2}(-r), \mathbb{S}_{1}^{2}(r), r>0$, or a flat totally umbilical.
6) $M_{s}^{2}$ is an open piece of one of the non-minimal standard products in $\mathbb{H}_{1}^{3}: \mathbb{S}^{1}(r) \times \mathbb{H}_{1}^{1}\left(-\sqrt{1+r^{2}}\right)$ and $\mathbb{S}_{1}^{1}(r) \times \mathbb{H}^{1}\left(-\sqrt{1+r^{2}}\right), r>0$, and $\mathbb{H}^{1}(-r) \times \mathbb{H}^{1}\left(-\sqrt{1-r^{2}}\right), 0<r<1$ and $r \neq \sqrt{1 / 2}$.
7) $M_{1}^{2}$ is an open piece of the surface exhibited in Example 5.1.
8) $M_{1}^{2}$ is an open piece of the surface exhibited in Example 5.2.

Proof of Theorems 5.3 and 5.4. According to Corollary 4.3 it suffices to deal with nondiagonalizable case. Let $x: M_{1}^{2} \longrightarrow \bar{M}_{1}^{3}(c) \subset \mathbb{R}_{q}^{4}$ be a non-minimal Lorentz surface in $\bar{M}_{1}^{3}(c)$ satisfying the condition $\Delta x=A x+B$ with non-diagonalizable shape operator. By Theorem 4.2, we know that $M_{1}^{2}$ is a flat surface with parallel second fundamental form in $\mathbb{R}_{q}^{4}$, and the characteristic equation of its shape operator is given by

$$
S^{2}+\frac{2 c-\operatorname{tr}\left(S^{2}\right)}{2 \alpha} S-c I_{2}=0
$$

Therefore, the discriminant of its characteristic polynomial is written as

$$
d_{S}=4 c+\left(\frac{2 c-\operatorname{tr}\left(S^{2}\right)}{2 \alpha}\right)^{2}
$$

which can be non-positive provided that $c=-1$. Then, by applying [7, Theorem 1.17] we get that $M_{1}^{2}$ is an open piece of a complex circle (Example 5.1) or the surface exhibited in Example 5.2.

## Bibliography

[1] L. J. Alías, A. Ferrández and P. Lucas. Submanifolds in pseudo-Euclidean spaces satisfying the condition $\Delta x=A x+B$. Geom. Dedicata, 42 (1992), 345-354.
[2] L. J. Alías, A. Ferrández and P. Lucas. Surfaces in the 3-dimensional Lorentz-Minkowski space satisfying $\Delta x=A x+B$. Pacific J. Math., 156 (1992), 201-208.
[3] B. Y. Chen. Finite-type pseudo-Riemannian submanifolds. Tamkang J. of Math., 17 (1986), 137-151.
[4] B. Y. Chen and M. Petrovic. On spectral decomposition of immersions of finite type. Bull. Austral. Math. Soc., 44 (1991), 117-129.
[5] F. Dillen, J. Pas and L. Verstraelen. On surfaces of finite type in euclidean 3-space. Kodai Math. J., 13 (1990), 10-21.
[6] T. Hasanis and T. Vlachos. Hypersurfaces of $\mathbb{E}^{n+1}$ satisfying $\Delta x=A x+B$. J. Austral. Math. Soc., Series A, 53 (1992), 377-384.
[7] M. A. Magid. Isometric immersions of Lorentz space with parallel second fundamental forms. Tsukuba J. Math., 8 (1984), 31-54.
[8] J. Park. Hypersurfaces satisfying the equation $\delta x=r x+b$. To appear in Proc. A.M.S.

