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Área de Geometrı́a y Topologı́a, Universidad de Murcia

http://www.um.es/geometria

INVITED SPEAKERS:
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Preface
Introduction: Helices in Nature

Generalized helices
A geometric way to see helices

But ... still more
Turning over the classic idea of a helix

Dirac dixit

In 1939 Paul Dirac wrote: The research worker, in his effort to express
the fundamental laws of Nature in mathematical form, should strive
mainly for mathematical beauty. It often happens that the requirements
of simplicity and beauty are the same, but where they clash the latter
must take precedence.
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Preface
Introduction: Helices in Nature

Generalized helices
A geometric way to see helices

But ... still more
Turning over the classic idea of a helix

An intuitive vision of curvature and torsion

Helices everywhere

Helical configurations are structures commonly found in Nature. They
appear in microscopic systems (biomolecules, bacterial fibers,
nanosprings, protein chains in particular DNA,...) as well as in
macroscopic phenomena (strings, ropes, climbing plants, coiled springs,
horns of mountain goats, vortices,...).
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Helices everywhere

Famous helices are, for example, those of Leonardo da Vinci, as a
forerunner of the helicopter.
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Helices everywhere

In architecture: Gaudi’s Güell park and tree-shaped columns of the
Sagrada Familia); Frank Lloyd’s Guggenheim museum in New York,
etc.
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Generalized helices
A geometric way to see helices

But ... still more
Turning over the classic idea of a helix

An intuitive vision of curvature and torsion

Helices everywhere

In technology: screws, corkscrews, coils, turbins, etc.

Anywhere, even macaroni or stirring soup or coffee up!
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But ... still more
Turning over the classic idea of a helix

An intuitive vision of curvature and torsion

Helices in Biology

In particular, they are very important and ubiquitous in Biology as a
consequence of the following known, in the biological community since
the work of Pauling, theorem: Identical objects, regularly assembled,
form a helix.

It seems that the success of helical configurations, seen as a popular
shape of molecules, it is because Nature tries to adapt to the external
conditions. The spiral shape of the DNA obeys to the available space
into the cell, as well as the shape of a spiral staircase obeys to the size of
the apartment.
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An intuitive vision of curvature and torsion

Preliminaries: curvature and torsion of a helix

Curvature

By squashing a helix on the plane perpendicular to its axis, we know that
its curvature κ is a function measuring at a what extent the plane curve
moves away, at each point, from its tangent line.

Torsion

Looking at the helix, the torsión τ is a function measuring, at a point,
the extent of the lifting of the curve regarding that plane.

Example of a straight circular helix

It is well known that for the helix f (t) = (a cos t, a sen t, b t), we get

κ =
a2

a2 + b2
τ =

ab

a2 + b2
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Looking for the model

In order to build our model, we will identify a helicoidal structure with its
central line to see it as a one-dimensional object or curve. Perhaps, for
simplicity, helical structures are usually identified, in the literature, with
the simplest idea of circular helices.

However, that does not fit the real world. Nobody can believe that
squirrels chasing one another up and around tree trunks follow a path of
circular helix. First because the cross section of a tree trunk is not
circular, but also because the axis of a tree trunk is not exactly a straight
line.

As another example, we find many types of bacteria, such as certain
strains of Escherichia coli or Salmonella typhimorium swim by rotating
flagellar filaments. These are polymers which are flexible enough to
switch among different helical forms, which are really far from circular
helices.

Therefore, the question states as follows:
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The characterization

How to build a mathematical model to describe helicoidal
configurations in Nature?

A generalized or Lancret helix (hereafter helix) is defined as a curve
γ(s) whose tangent vector γ′(s) forms a constant angle with a fixed
direction ~v , the axis of the helix, and ‖~v‖ = const.

Lancret’s theorem: A curve is a (generalized) helix if, and only if,
the ratio of curvature to torsion be constant

τ

κ
= const.
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Under construction

Let α : [0, L] ⊂ R → E2 be a planar regular curve, parametrized by the
arc-length, lying in the plane Π orthogonal to a unit vector ~x ∈ E3. The
right circular cylinder Cα, whose generatrices are parallel to ~x and cross
section α, can be parametrized by

φ : I × R → E3, φ(s, u) = α(s) + u ~x .

It is well known that Cα is a flat surface whose geometry is encoded in
the geometry of α. In particular, the geodesics of Cα are the images by φ
of straight lines, i. e.,

γ(t) = φ(at, bt) = α(at) + bt ~x ,

where b/a is the slope of the corresponding straight line.
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A straightforward computation yields

κγ =
a2

a2 + b2
κα and τγ =

ab

a2 + b2
κα.

Then

τγ

κγ
=

b

a
.

As a consequence
Any geodesic of a right cylinder over a planar
curve is automatically a helix whose axis is
that of the cylinder.

Angel Ferrández-Izquierdo Principles governing helices in Nature



Preface
Introduction: Helices in Nature

Generalized helices
A geometric way to see helices

But ... still more
Turning over the classic idea of a helix

Therefore,
Given regular curve γ in E3, the following statements are equivalent:

1 γ is a helix, i. e., it makes a constant angle with a fixed
direction.

2 The ratio of curvature to torsion is constant, the slope.

3 γ is a geodesic of a right cylinder over a planar curve.
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A variational problem

Lorsqu’il arrive quelque changement dans la Nature la quantité d’action,
nécessaire pour ce changement, est la plus petite possible (Pierre Louis
Moreau de Maupertuis, Lyon 1756, Vol IV, page 36).

Problem

Look for functions F (κ, τ) so that the critical points of the energy
functional, over a suitable space Λ of curves,

F : Λ → R, F(γ) =

∫
γ

F (κ, τ) ds,

be helices.
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A simple case

Fmnp(γ) =

∫
γ

(m + nκ + pτ)ds,

The critical points for that action when m = 0, are just helices with
slope h = p/n.
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Main aim: explaining closed helices

It is clear that there exist no closed helices E3, because its tangent field
always has a positive component, precisely in the axis direction.

Now, there are known many cases of circular proteins in bacteria, plants
and animals whose components form closed helices.

Then we have to propose a model to describe either circular proteins or
any other more complicated configuration involving protein chains.
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Closed helices: Weiner’s curves

Given n ∈ N, the curve

γn(t) =

(
(
n − cos t

n
) cos (

t

n
); (

n − cos t

n
) sin (

t

n
);

sin t

n

)
,

is closed of period 2πn, and gets wound n times around the revolution
torus obtained when rotating the circle centred at (1, 0, 0) and radius 1/n
around the z-axis.

Those closed curves look like helices which can be found in Nature.
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Closed helices

Given a curve γ : [0, L] → E3, let us define the function µ : [0, L] → R by
µ(t) = τ(t)/κ(t). Then consider the width of its graphic

B[µ] = max
[0,L]

µ−min
[0,L]

µ.

By computing the width B[µn] of the function µn corresponding to the
curve γn in a turn, say [0, 2πn], then

lim
n→∞

{B[µn]} = 0.

So, those curves can be seen as a kind of helices at the infinity.
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The axis, the key element.

We have to change the classic concept of helix in a obvious way. To do
that we will relax the condition that the axis should be a straight line.

Could the axis be a vector field?

A crucial detail. The above curves γn form a constant angle with a
rotational field, i. e., with a vector field whose integral curves are circles.

Definition

Given a regular vector field X , the helices with axis X (also called
X -helices) will be the curves making a constant angle with the integral
curves of X .
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Closed helices: some remarks

non-closed spherical helix closed toric helix
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Closed helices: going from E3 to S3

Program

To describe closed helices we will try to make use of our knowledge in E3

to modify and improve that we deem appropriate.

(Step 1) The axis: the vector field whose integral curves are parallel
straight lines (a Killing vector field) will be replaced by a vector field
whose integral curves are parallel circles (a rotational or conformal Killing
vector field).

Questions to be solved:

(1) Going from straight lines to circles; and

(2) Going from parallel straight lines to “parallel circles”.

(Step 2) Cylinders in E3 will be replaced by Hopf tubes in S3.
Problem: Building Hopf tubes throughout Hopf map.

(Step 3) The results obtained in S3 will be brought to E3 via the
stereographic projection.
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Generalized helices
A geometric way to see helices

But ... still more
Turning over the classic idea of a helix

Closed helices: more remarks

cutting torus off by bitangent planes
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First characterization of helices in S3

Helices in S3 (curvature version)

First of all, M. Barros [General helices and a theorem of Lancret. Proc.
AMS, 125 (1997), 1503-1509] proved that

a curve γ en S3 is a helix if and only if either

(i) τ = 0 and so γ lies in S2, totally geodesic in S3; or

(ii) The curvatures of γ satisfy

τ = λ κ± 1, λ being a constant.
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The Hopf fibration: S3 → S2

We will see the 3-dimensional sphere S3 of radius 1 in R4 as

S3 = {(x1, y1, x2, y2) ∈ R4 : x2
1 + y2

1 + x2
2 + y2

2 = 1}.

It is better thinking of (xk , yk) as a complex number zk = xk + iyk , so
that S3 in R4 can be seen as

S3 = {(z1, z2) ∈ C× C : |z1|2 + |z2|2 = 1}.
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The Hopf fibration: S3 → S2

We sketch S3 as a planar circle in a complex plane. Then the z1-axis, for
instance, is a complex line, i. e., a real plane which intersects the sphere
S3 in the circle {(z1, 0) : |z1|2 = 1} = S1. The same happens for the
z2-axis, as well as for any other straight line throughout the origin, i. e.,
for any straight line of the form z2 = λ z1, λ being a complex number.

Then, any number λ ∈ C defines a complex line z2 = λ z1 cutting S3 off
in a circle. Indeed, there exists a circle in S3 for any complex number λ.
Furthermore, though the the equation of the z2-axis is not as above, it
can be viewed as the corresponding λ = ∞, because the slope of the
vertical axis is ∞.
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The Hopf fibration: S3 → S2

The Hopf map is defined as follows

h : S3 ⊂ C× C → S2 = C ∪ {∞}

(z1, z2) 7→
z2

z1

For each point λ ∈ S2, the fibre h−1(λ), which is a great circle in S3, is
called a Hopf circle.
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The Hopf fibration: S3 → S2

Therefore, S3 is made of circles, so that we have a circle for each point of
S2. Any two of them, for different values of λ, do not meet each other.
This splitting of the sphere S3 in circles is known as the Hopf fibration.

Lyons 14

R
3

S2

P
Q

h

s

s ◦ h−1(Q)
s ◦ h−1(P )

S3

h−1(P )
h−1(Q)

stereographic
projection

Hopf fibration

Figure 10: Stereographic projections of Hopf fibers. Any two projected fibers are linked

circles, except s ◦ h−1(1, 0, 0) is a line.

has been an independent study research project for two of our undergraduate stu-

dents. Figure 11 shows an image from the software written by Nick Hamblet (see

Acknowledgment below). The left panel shows a set of points lying on a circle in

the codomain S2 of the Hopf fibration. The right panel shows, via stereographic

projection, the fibers corresponding to those points. An ongoing project is to build

a web tutorial site featuring the animations. The reader who finds topics in this ar-

ticle appealing will enjoy a related article [17]. For general inspiration, and more on

the geometry of R
3 and rotations, see Hermann Weyl’s lovely book Symmetry [15].

Figure 11: Screenshot of Hopf fiber software.

Acknowledgment. We are grateful to Lebanon Valley College for summer sup-

port for Nick Hamblet’s software development project. Nick Hamblet is a student

at Lebanon Valley College, class of 2004. Nick’s work continues a similar project

 

 

Any two projected fibres are linked circles,

except s ◦ h−1(0, 0, 1) is a line
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The Hopf fibration: S3 → S2

Remark. Fixing a parallel ℘ in S2 is the same as fixing the modulus of a
complex number, so the preimage of a parallel is described by an equation
of the form |z2/z1| = constant. For example, let us choose 1 for this
constant so that z1 and z2 have the same modulus. But don’t forget that
|z1|2 + |z2|2 = 1, so the modulus of z1 and of z2 are both equal to

√
2/2.

Therefore, h−1(℘) consists of the (z1, z2) where z1 and z2 are chosen
arbitrarily on the circle centered at the origin with radius

√
2/2. Thus we

see that the preimage of the parallel is a torus of revolution.
 

 

A practical vision of the 3-sphere
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The Hopf fibration: S3 → S2

X The “parallel” passing through (z1, z2) is the set of points of the
form (λ z1, z2), where λ belongs to the circle of complex numbers of
modulus 1.
X The “meridian” passing through (z1, z2) is the set of points of the
form (z1, λ z2).
X The Hopf circle passing through (z1, z2) is the set of points of the
form (λ z1, λ z2).
X We don’t stop here either; through each point (z1, z2) we can also
consider the “symmetric” circle of points of the form (λ z1, λ

−1 z2) which
gives us a fourth circle traced on the torus of revolution.

We have just shown that through each point of a torus of revolution one
can draw four circles: a “meridian”, a “parallel”, a Hopf circle and the
symmetric circle of a Hopf circle.

Compare with a torus in E3.
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Hopf tubes

δ : I ⊂ R → S2

Tδ = h−1(δ)

is a flat surface in S3, which we call the Hopf tube over δ.
It can be parametrized by X (s, t) = e it δ̄(s), where δ̄ is a horizontal
lifting of δ.

Helices in S3 (geodesic version)

A curve γ in S3 is a helix if, and only if, up to congruences in S3, is a
geodesic of a Hopf tube.
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Hopf vector field

S3 = {z = (z1, z2) ∈ C : |z |2 = |z1|2 + |z2|2 = 1}

S1 × S3 → S3

e itz = (e itz1, e
itz2)

d

dt
(e itz)|t=0 = iz

X ∈ X(S3), X (z) = iz
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Clifford paralellism

Def 1. Let d be the metric on S3 defined as

d(u, v) = cos−1(u, v),

i. e., d(u, v) is the length of the shorter arc, between u and v , of the
great circle of S3 through u and v .
Def 2. Let C be a great circle of S3. Define

d(u,C ) = ı́nf{d(u, v) , v ∈ C}.
Def 3. For any two circles C1 and C2 of S3, define

d(C1,C2) = ı́nf{d(u,C2) , v ∈ C1}.

Def 4. Two great circles C1 and C2 of S3, are Clifford parallel if

d(u,C2) = d(v ,C2), ∀u, v ∈ C1.

Then we will write C ||C ′.
Angel Ferrández-Izquierdo Principles governing helices in Nature
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Clifford paralellism

Two Hopf circles C and C ′ are Clifford parallel.

This follows from the fact that the action of S1 on S3,
λ · (u, v) = (λu, λv), λ ∈ S1, is isometric and transitive.

Given a Hopf circle C = h−1(a) in S3 and θ ∈ [0, π], we define

Cθ = {x ∈ S3 : d(z ,C ) = θ}.
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Remarks.

(i) C0 = C , Cπ
2

= C⊥, Cπ−θ = Cθ, Cπ
2 −θ = C⊥θ , where C⊥ states for

the great circle obtained when cutting S3 off by the plane which is
orthogonal to the plane containing C .

(ii) Cθ = {z = (z1, z2) : |z1| = cosθ, |z2| = senθ}, that is, is a torus.

(iii) Given a great circle C in S3 and θ ∈ [0, π], for each z ∈ Cθ, there
exist exactly two great circles C ′ (of the first kind) and C ′′ (of the
second kind) through z which are Clifford parallel to C . Furthermore,
C ′ 6= C ′′ if z ∈ S3 − {C ∪ C⊥}.

(iv) Clifford parallelism is not an equivalence relation, however it can be
split in two of them.
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Villarceau circles

The flow of great circles Clifford parallel to C can be obtained from the
action of an isometry group of S3. That is just that getting the Hopf
fibration. Therefore, that flow is generated by the Hopf vector field
(infinitesimal translation of the 3-sphere)

H(z) = i z .

Clifford parallelism points out two families (first and second kind) of
circles, the so-called Villarceau circles.
It is enough to consider one of them, that of the first kind, for instance,
which generates the Villarceau field V , which we have got by
stereographic projection of the Hopf vector field H.
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Villarceau flow

Given z0 ∈ S3, take a great circle C through z0 and consider the
stereographic projection

E0 : S3 − {z0} → R3.

In E3 we will take a coordinate system such that the Z -axis of E0(C ).

Then, ∀θ ∈ (0, π
2 ), E0(Cθ) = Tθ is a revolution torus around Z -axis in E3

with radii 1
cos θ and sin θ

cos θ , so that

{Tθ : θ ∈ (0,
π

2
)}

is a foliation of E3 − {Z − axis}.
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Summing up

When considering the Villarceau flow to study helices in E3 we really are
changing the Euclidean parallelism of parallel lines flow (generatrices of
cylinders) by the conformal projection (angle preserving) of Clifford
parallelism.

The advantage is clear, because the flow lines are circles, which is the
prelude to get closed helices.
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In this context, the two families of Villarceau circles in Tθ are obtained as
the images by E0 of the two families of great circles in Cθ which are
Clifford parallel to C .

Each one is a foliation of E3 − {Z − axis}.

Then we have got the Villarceau vector field

V = dEo(H), H = Hopf,

whose integral curves are the Villarceau circles.

The V -helices are the Villarceau helices, among then we find out
the quotes Weiner curves γn.

Anyway, they are geometrically described by the following result.
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Villarceau helices

The V -helices are loxodromes, regarding the Villarceau flow, in
conformal Hopf tubes. So, they are completely determined by:

(1) A function playing the role of the curvature function of the
conformal cross section; and

(2) A real number determining the slope with respect to the flow.

The closed V -helices will come determined by a rational link on
the slope.
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The variational problem in S3

We have just seen that V -helices are exactly the geodesics of Hopf
tubes. Then, they are determined by a function playing the role of
the curvature, in S2, of the cross section of the tube and a
constant giving the slope of the geodesic in the tube.

Helices in S3 (variational version)

These helices are, also, extremals of an energy functional of the
following type

Fnp : Λ → R, Fnp (γ) =

∫
γ

(p + n κ + p τ)ds.

p/n being the slope of the helices.
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Closing helices

Let δ be a curve in S2(1/2) and Tδ a torus.
To find its isometry group we will consider the covering map

X : E2 → Tδ, X (s, t) = e it δ̄(s),

and we see that Tδ is isometric to E2/Γ, where Γ is the planar lattice
spanned by (L, 2A) and (0, 2π), L > 0 is the length of δ and A ∈ (−π, π)
is the enclosed area by δ in S2(1/2). As a consequence, a helix in S3 is
closed if, and only if, its slope h satisfies

h =
1

L
(2A + qπ), q ∈ Q rational.

The existence of closed helices in a Hopf torus is guaranteed by means of
the isoperimetric inequality in S2(1/2). Indeed,

L2 + (2A− π)2 ≥ π2.
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Closing helices

Therefore, in the plane (L, 2A) we define the region

∆ = {(L, 2A) : L2 + (2A− π)2 ≥ π2 and 0 ≤ A ≤ π}.

For any point a = (L, 2A) ∈ ∆ there exists an embedded and closed
curve δa in S2(1/2) of length L and enclosing an area A. The geodesic of
slope h in the Hopf torus Tδa is closed if, and only if h = 1

L (2A + qπ), i.
e., the straight line in the plane (L, 2A) of slope h meets the 2A-axis at a
height which is a rational multiple of π. Then, the space of closed helices
in S3 is the planar region

∆ ∩
(
∪q∈Q

(p

n
L− 2A = qπ

))
.
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Closing helices

The space of closed helices has been obtained via a quatization
principle and it is sketched in the figure.

L = x

y = 2A

Δ

Rhq ≡ y = hx + qπ

π

(1/2)π

(1/4)π

−(1/2)π

−π

�

The boundary corresponds with small circles

giving rectangular tori

Closed extremals for a given slope.

The y -coordinates are rational multiples of π.
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The principles

We have found out three principles to explain helices in Nature

Variational

The helicoidal structures in Nature are critical points of a certain energy.

Topological

Topology becomes essential to explain closed helicoidal structures.

Quantization

For a given slope h, the helices close provided the y -coordinate of the
straight line from which they come is a rational multiple of π.

Angel Ferrández-Izquierdo Principles governing helices in Nature


	Preface
	Introduction: Helices in Nature
	
	
	An intuitive vision of curvature and torsion

	Generalized helices
	

	A geometric way to see helices
	But ... still more
	Turning over the classic idea of a helix

