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a b s t r a c t

We show that Hopf tubes on Lancret curves shaped over an epicycloid are Hamiltonian
minimal surfaces in the complex quadric. Moreover they are the only Hopf tubes that are
Hamiltonian minimal there. This allows one to connect two apparently unrelated topics,
such as Hamiltonian minimal surfaces and curves with constant precession, and more
generally slant helices. Furthermore, Hamiltonian minimal Hopf tubes encode the phases
of particles described according to the gyroscopic force theory.

© 2009 Elsevier B.V. All rights reserved.

1. Hamiltonian minimal surfaces

LetM be a surface and let I(M, S3) be the space of immersions ofM into the three-dimensional unit sphere S3. The Gauss
map gφ : M → G2(R4) of an immersion φ ∈ I(M, S3), taking values in the Grassmannian of two planes G2(R4) in R4, is
given by

gφ(p) = φ(p) ∧ Nφ(p),

where Nφ stands for the unit normal vector field of (M, φ) in S3. Hence, gφ maps any point of M to its normal plane, via
φ, in R4. It is well known that this Grassmannian is naturally identified with S2( 1√

2
) × S2( 1√

2
). It can be regarded as a

complex hypersurface of CP3(4), more precisely, it is the only compact nonlinear complex hypersurface of the complex
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projective three space, with constant holomorphic sectional curvature 4, which is Einstein. In this sense, it is usually known
as the complex quadric. The corresponding Kaehler formω defines a symplectic structure on the complex quadric such that
g∗φ(ω) = 0 along each Gauss map. ThenH = {gφ : φ ∈ I(M, S3)} provides a class of Lagrangian surfaces in (G2(R4), ω).
Actually each Lagrangian immersion in the complex quadric locally arises as the Gauss map of an immersion in the unit
three sphere (see [1]). Furthermore,H is a Hamiltonian submanifold of I(M,G2(R4)), that is, any vector field tangent toH
appears as the ω-gradient of a smooth function. Therefore, one has a correspondence between Hamiltonian variations of gφ
and variations of gφ through Gauss maps.
Let A : I(M, S3) → R be the functional measuring the area of Gauss mappings, i.e. A(φ) = Area(gφ(M)). It is not

difficult to see that

A(φ) =

∫
M

√
det(dN2φ + I) dA,

where dNφ stands for the shape operator of (M, φ) in S3 and dA is the area element of φ∗(h), h being the metric on S3.
Then, the critical points of

(
I(M, S3),A

)
correspond to the Gauss maps φ ∈ H with vanishing the first variation of area for

Hamiltonian variations. These surfaces were called Hamiltonian minimal surfaces (see [2]). It is known that if φ is minimal,
then gφ is also minimal. These critical points will be called trivial ones. Hence, it is natural to analyze the existence of
nontrivial critical points of

(
I(M, S3);A

)
. This problem was studied in [1] whenM is a compact surface. Actually the main

result there showed that the only compact critical points are the trivial ones which are regularly homotopic to an embedded
surface or whose genus is either zero or an odd number. In particular, embedded minimal tori in S3 are the only immersed
Hamiltonian minimal tori in the three sphere. On the other hand, a popular conjecture by Lawson, [3], states that the only
minimally embedded in S3 is the Clifford torus (see [4] for related problems). Consequently if Lawson’s conjecture holds,
then the Clifford torus should be the only Hamiltonian minimal torus in the three sphere. It seems natural to study this
constrained variational problem for tubes, and more generally for surfaces with boundary.
In [5], the Hamiltonian minimal variational problem of extremizing the area among surfaces in C2, that are Lagrangian

and fill in a given boundary, was considered. This question is, on the other hand, motivated by issues arising in nonlinear
elasticity andmirror symmetry. Now,we introduce the corresponding constrained variational problem for tubes in the three
sphere. A tube is a cylinder with boundary made up of two regular closed curves. Nevertheless, the extension to other kinds
of boundaries can be introduced similarly.
The first order boundary conditions. Let Γ (t) = {α1(t), α2(t)} be a pair of nonintersecting regular closed curves in S3.

For a unit vector field η(t) along Γ (t) with 〈Γ ′(t), η(t)〉 = 0, we have the field of two planes in R4 along Γ (t) defined by
R(t) = Γ (t) ∧ η(t).
The boundary value problem. Associated with the first order boundary data (Γ , R), we have the following boundary value

problem. LetM = [a1, a2] × S1 be the surface with boundary ∂M = C1 ∪ C2 and Cj = {aj} × S1, 1 ≤ j ≤ 2. Let IB(M, S3)
denote the space of immersions φ : M → S3 satisfying the following boundary conditions

1. φ(∂M) = Γ , or φ(Cj) = αj, 1 ≤ j ≤ 2, and
2. gφ(p) = R(φ(p)), ∀p ∈ ∂M .

The dynamics associated with the Hamiltonian minimal variational problem with boundary
(
IB(M, S3);A

)
can be

roughly stated as follows. By identifying each immersion φ ∈ IB(M, S3) with its graph φ(M), viewed as a surface with
boundary in S3, we propose the study of the LagrangianA in the class of tubes with the same boundary and the same Gauss
map along the common boundary. In this sense, it could be considered as a nonlinear SO(4) sigma model with boundary
(see [6]).

2. Hamiltonian minimal Hopf tubes

LetΠ : S3 → S2( 12 ) be the usual Hopfmap,wherewe have considered the two spherewith radius 1/2 so thatΠ becomes
a Riemannian submersion. Let γ : I ⊂ R→ S2( 12 ) be an immersed curve which we can assume, without loss of generality,
arc length parametrized. The complete liftMγ = Π−1(γ ) of γ is a surface in S3 that can be covered by the following map

Φ : I × R→ Mγ , Φ(s, t) = eit γ̄ (s),

where γ̄ stands for a horizontal lift of γ . This map can be used to parametrize the surface whose coordinate curves are the
horizontal lifts of γ (t constant) and the fibres (s constant), respectively. Then 〈Φs,Φs〉 = 〈Φt ,Φt〉 = 1 and 〈Φs,Φt〉 = 0,
showing thatMγ = Π−1(γ ) is a flat surface in S3 which we will call the Hopf tube on γ . Its unit normal vector field in S3 is
N = iΦs.
The shape operator ofMγ , relative to the frame {Φs,Φt}, is given by

dNγ ≡
(
κ̄ 1
1 0

)
,

κ and κ̄ = κ ◦Π being the curvature functions of γ and γ̄ in S2(1/2) and S3, respectively.
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Choose now a pair Γ (t) = {α1(t), α2(t)} of nonintersecting equidistant geodesics in S3. Certainly, up to motions in S3,
they can be seen as fibres, via the Hopf map, over a couple of different points

αj = Π
−1(pj), pj ∈ S2(1/2), 1 ≤ j ≤ 2, p1 6= p2.

Then, take a unit vector field η(t), along Γ (t), such that 〈η(t), α′j(t)〉 = 0 and invariant under the action of S
1 on S3. Note, in

particular, that η(t) is horizontal along Γ (t) and it projects onto the two sphere to give a pair of unit vectors yj ∈ TpjS
2( 12 ),

1 ≤ j ≤ 2. Finally, we define the boundary Gauss map associated with the field R(t) = Γ (t) ∧ η(t) of two planes along
Γ (t).

Remark. In [7], K. Enomoto observed that the Gauss map of any flat surface in S3, which is obviously non-degenerate, is
locally the Riemannian product of two curves δ1 and δ2, where δ1 lies in the first factor of G2(R4) = S2 × S2 and δ2 in the
second one. Later, J. L. Weiner, [8] (see also [9]), obtained the complete classification of those Riemannian products, δ1× δ2,
of closed curves in G2(R4) = S2 × S2 which are images under the Gauss maps of flat tori in S. This characterization is given
in terms of both the total curvature of δi in the two sphere, which must be zero, and the total curvature of any sub-arc of
δi, which must be less than π/2. In particular, when the torus is a Hopf torus, then one of the curves, say δ1, is a great circle
in the corresponding two-sphere factor. As we are considering Hopf cylinders with boundary, the curve δ2 is a curve in S2
connecting two points which are obtained from the boundary conditions. They satisfy, following the same computations as
in [8], that the total curvature of any sub-arc is always less than π/2.

With this choice of S1-invariant boundary conditions, we consider the constrained variational problem
(
IB(M, S3);A

)
,

whereM = [a1, a2] × S1 and [a1, a2] ⊂ I , and state the following

Problem. How canwe choose γ so thatMγ = Π−1(γ )will be Hamiltonianminimal, i. e., a critical point of
(
IB(M, S3);A

)
?

It is clear that the unit circle S1 acts on S3 through isometries to get S2( 12 ) as space of orbits. This action can be naturally
extended to IB(M, S3). In fact, for any φ ∈ IB(M, S3) and t ∈ R, we define eit ◦ φ ∈ IB(M, S3) by

(eit ◦ φ)(p) = eitφ(p).

The set of immersions invariant under this action, i.e.

SB(M, S3) = {φ ∈ IB(M, S3) : eit ◦ φ = φ, ∀t ∈ R},

constitutes a submanifold of IB(M, S3)which we will call the submanifold of symmetric points.
On the other hand, as A(eit ◦ φ) = A(φ), the variational problem

(
IB(M, S3);A

)
is also invariant under that action,

which provides a setting where the principle of symmetric criticality [10] works out. As a consequence, the critical points of(
IB(M, S3);A

)
which are symmetric, that is, the symmetric Hamiltonian minimal surfaces, in the sense of [2], are nothing

but the critical points of
(
SB(M, S3);A

)
.

The space of symmetric points is just that of Hopf tubes on curves in S2( 12 ) that are defined in [a1, a2] ⊂ I ⊂ R, and
whose tangent vectors at the ending points are orthogonal to yj, 1 ≤ j ≤ 2, respectively,

SB(M, S3) ≡
{
Mγ = Π−1(γ ) | γ : [a1, a2] → S2

(
1
2

)
, 〈γ ′(aj), yj〉 = 0, 1 ≤ j ≤ 2

}
.

To compute the restriction ofA on SB(M, S3), it should be observed that the corresponding Lagrangian density is√
det(dN2γ + I) =

√
κ2 + 4 ◦Π .

Now, we have

A(Mγ ) =
∫
γ×S1

(√
κ2 + 4 ◦Π

)
ds dt = 2π

∫
γ

√
κ2 + 4 ds,

so the problem is reduced to that for clamped curves to get
Answer: A Hopf tube Mγ = Π−1(γ ) is Hamiltonian minimal if and only if it comes from a curve γ in S2( 12 ) which is a critical
point of the action C : Λ→ R defined by

C(γ ) =

∫
γ

√
κ2 + 4 ds,

whereΛ = {γ : [a1, a2] → S2(1/2) | 〈γ ′(aj), yj〉 = 0, 1 ≤ j ≤ 2}.
Therefore, the problem of finding out Hamiltonian minimal Hopf tubes with boundary is reduced to that of looking for

clamped curves in the two sphere which are critical points of an energy action C that measures the total curvature of these
curves in the Euclidean space. This variational problem was considered in [11], where it was shown that critical points are
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just plane curves. However,C only acts on curves in the two sphere (comparewith [12]). Then, we can state a general action,
with Lagrangian density P(κ) satisfying P ′(κ) = dP

dκ 6= 0 anywhere, defined by

Q(γ ) =

∫
γ

P(κ(s)) ds,

acting on a space C of curves defined in some interval I ⊂ R and so, in principle, without any boundary conditions (see for
example [13,14]). The first variation δQγ : TCγ → R can be computed as usual to get

δQγ (W ) =
∫
I
〈Ω(γ ),W 〉ds+

∫
I

d
ds

B(γ ,W )ds, W ∈ TCγ ,

whereΩ(γ ) andB(γ ,W ) stand for the Euler–Lagrange and the, a priori, boundary operators, respectively. One can use the
Frenet equations for curves in the two sphere to get the following expressions for these operators [13,15]

Ω(γ ) =

[
d2

ds2
(
P ′(κ)

)
+ (κ2 + 4)P ′(κ)− κP(κ)

]
ξ,

and

B(γ ,W ) = P ′(κ)〈ξ,∇TW 〉 −
d
ds

(
P ′(κ)

)
〈ξ,W 〉 +

(
P(κ)− κ P ′(κ)

)
〈T ,W 〉,

where {T = dγ
ds , ξ} stands for a Frenet frame along the curve γ and ∇ denotes the Levi-Civita connection of the round two

sphere.
The critical points are those curves γ satisfying δQ(γ )[W ] = 0 for any variational field W along γ . Hence, suitable

choices ofW yield the Euler–Lagrange equationΩ(γ ) = 0. Conversely, to get a characterization of critical points, we need
some boundary conditions. For example, by considering the variational problem associated with a functional Q acting on
the spaceΛ = {γ : [a1, a2] → S2( 12 ) | 〈γ

′(aj), yj〉 = 0, 1 ≤ j ≤ 2} of clamped curves, we have∫ a2

a1

d
ds

B(γ ,W )ds = [B(γ ,W )]a2a1 .

On the other hand, a variation of γ within Λ, that is, along clamped curves, is a proper variation, soW (a1) = W (a2) = 0.
Moreover, a direct computation gives

∇TW = ∇WT +W (log v) T ,

where v denotes the speed of curves in the variation associated with the variational fieldW . Then

[B(γ ,W )]a2a1 = 0,

and so the formula for the first variation of the actionQ on the space of clamped curvesΛ is

δQ(γ )[W ] =
∫
I
〈Ω(γ ),W 〉ds.

Then the critical points of (Λ,Q) are just the solutions of the Euler–Lagrange equationΩ(γ ) = 0.
In particular, when the action is C, that is P(κ) =

√
κ2 + 4, then the field equation turns out to be

d2

ds2

(
κ

√
κ2 + 4

)
= 0.

To summarize, the critical points are described as follows.
The critical points of the variational problem (Λ,C) are closed pieces of the class of maximal curves described as follows. For

any couple of constant a > 0 and b, the arc length parametrized curve

γab :

(
−1− b
a

,
1− b
a

)
⊂ R→ S2(1/2),

with curvature function

κab(s) =
2(as+ b)√
1− (as+ b)2

is a critical point of the functional C acting on suitable curves in S2( 12 ). Furthermore, all critical points are obtained in this way.
These solutions γab are completely determined from its curvature function in S2( 12 ). Now, they can be seen in R3, where

such curvature functions are given by

κ̄ab(s) =
√
κ2ab + 4 =

2√
1− (as+ b)2

.
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So the action C measures the total curvature of curves in Euclidean space. To completely determine them we also have
to know the torsion function τab, which is given by

τ̄ab =
2

κ̄ab
√
κ̄ab − 4

(
d
ds
κ̄ab

)
,

yielding

τ̄ab =
a√

1− (as+ b)2
.

As a consequence, we have

τab =
a
2
κ̄ab,

showing that the solutions are Lancret curves in the Euclidean space with slope cot θ = a/4 (see [16] and references
therein). From a classical result [17], we know that any spherical Lancret curve in Euclidean space projects down onto a
plane orthogonal to its axis to gives an epicycloid.
Then, we have obtained a 4-step geometric algorithm to construct all Hamiltonian minimal Hopf tubes. For the sake of

simplicity, as the parameter b does not play an essential role, we choose it to be zero.
1. In a plane P ⊂ R2, let us choose a one-parameter family {βθ : θ ∈ R} of epicycloids which are determined by a couple
of radii R1 = 1

2 cos θ and R2 =
1
4 (1− cos θ).

2. Let Cθ be the right cylinder shaped on the epicycloid βθ and choose the geodesic γθ with slope θ in Cθ . This curve is a
Lancret one in the Euclidean space with curvature and torsion given, in terms of its arc length s, by

κ̄θ (s) =
2

√
1−m2s2

, τ̄θ (s) =
m

√
1−m2s2

,

wherem = 2 cot θ .
3. The curves {γθ : θ ∈ R} lie in S2( 12 ) and they are determined, up tomotions in S2( 12 ), by the following curvature function

κθ (s) =
2m s

√
1−m2s2

.

This family of curves constitutes the moduli space of solutions of the variational problem (S2( 12 );C).
4. The class of Hopf tubes {Π−1(γθ ) : θ ∈ R} constitutes the whole space of Hopf tubes which are Hamiltonian minimal.

3. Some applications

The family of Hamiltonian minimal Hopf tubes, that we have just obtained, can also be constructed using curves of
constant precession. This method presents a double advantage. On one hand, it allows us to connect Hamiltonian minimal
Hopf tubes with the precessional genesis of atomic structure. On the other hand, it will provide Hamiltonian minimal Hopf
tori with a finite number of singular circles.
Let δ(s) be a unit speed curve in R3 with Frenet apparatus {Tδ,Nδ, Bδ, κδ, τδ}. When the curve is traversed, an

instantaneous rotation appears which is determined by an angular velocity vector, the Darboux vector Ωδ(s). It is usually
called the centrode of the curve, which is given byΩδ = τδ Tδ + κδ Bδ.
The curve δ(s) is said to be of constant precession if its centrode revolves about a fixed line, in R3, with constant angle

and constant speed. A curve is of constant precession if and only if κδ(s) = p sin qs and τδ(s) = p cos qs, up to reflection or
phase shift or arclength, for constants p and q. The solving natural equations problem and the closed curve problem for curves of
constant precessionwere solved in [18]. In particular, it was proved that a curve of constant precession lies on the one-sheet
hyperboloid of revolution

x2 + y2 −
q2

p2
z2 =

4q2

p4
.

Furthermore it closes if and only if q√
p2+q2

is rational.

Now, the main point is that the tangent indicatrix Tδ(s) of a curve δ(s) of constant precession is a Lancret curve with axis
Aδ = Ωδ(s) − q N(s). In fact, it is clear that if δ(s) is of constant precession, then A′ = 0, so A is actually a fixed vector. On
the other hand, the angle (i.e. the slope) θ that the tangent indicatrix Tδ(s)makes with A satisfies that

cos θ =
q√
p2 + q2

.

Therefore, the tangent indicatrix of any curve of constant precession is a spherical Lancret helix, sometime called three-
dimensional epicycloid.
Observe, however, that for our purposes, we have to select spherical Lancret helices in the sphere with radius 12 . Then, in

the above argument regarding a curve of constant precession, we will consider the spherical Lancret helix 12 Tδ(s) in S2( 12 ).
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For any Pythagorean triple (p, q, r =
√
p2 + q2) = (n2 − m2, 2mn,m2 + n2), m, n ∈ N, we have a closed curve,

δ(s) = (x(s), y(s), z(s)) of constant precession in R3

x(s) =
1
2r

[
r + q
r − q

sin(r − q)s−
r − q
r + q

sin(r + q)s
]
,

y(s) =
1
2r

[
−
r + q
r − q

cos(r − q)s+
r − q
r + q

cos(r + q)s
]
,

z(s) =
p
qr
sin qs.

The curve 12 Tδ(s) is a closed piecewise smooth curve. Namely, it is a sequence of arcs of spherical Lancret helices in S2( 12 )
joining each other by cusps at their endpoints, just those points where κδ(s) = 0.
Now, it should be observed that the variational problem describing Hamiltonian minimal Hopf tubes can be easily

extended to piecewise smooth curves. We can also consider the free closed version where surfaces are tori. Then
Π−1( 12 Tδ(s)) provides a rational one-parameter class of Hamiltonian minimal tori with a finite number of singular orbits.
This result should be compared with that in [1], where any Hamiltonian minimal torus must be minimal and so trivial.
The class of curves of constant precession is a subclass of that of slant helices [19]. They are curves without inflection

points and whose principal normal lines makes a constant angle with a fixed direction. It is known that the tangent and
binormal spherical indicatrices of a slant helix are both Lancret curves. Then, we can reobtain Hamiltonian minimal Hopf
tubes as the Hopf tubes shaped on either the tangent indicatrix or the binormal indicatrix of slant helices.
In the quantum mechanical formalism, three of the four essential quantum numbers involve angular momentum. Of

course, this is unacceptable from a classical point of view. The gyroscopic force theory provides a reasonable classical
explanation of the angular momentum approach (see [20]). The seminal principle of this framework is that all motion, even
rectilinear one, is comprised of some component of angular momentum and therefore all motions and their concomitant
forcesmay be expressed in terms of such. In this context, one has a precessional genesis of atomic structure and according to
which the orbital path of an electron in an atom is characterized as the centrode of a curve undergoing constant precession.
Therefore, theHamiltonianminimal Hopf tubes can be regarded as surfaces encoding all possible phases of thewavefunction
of an electric charge moving into a vicinity of a magnetic monopole.
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