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We propose a two step variational principle to describe helical structures in nature.
The first one is governed by an energy action which is a linear function in both
curvature and torsion allowing to describe nonclosed structures including elliptical,
spherical, and conical helices. These appear as rhumb lines in right cylinders con-
structed over plane curves. The model is completed with a conformal alternative
which, in particular, gives a description of closed structures. The energy action is
linear in the curvatures when computed in a conformal spherical metric. Now,
helices appear as making a constant angle with a Villarceau flow and so they are
loxodromes in surfaces which are stereographic projections of Hopf tubes, in par-
ticular, anchor rings, revolution tori, and Dupin cyclides. The model satisfies the
requirements of simplicity and beauty as reflected in the three main principles that
head its construction: least action, topological, and quantization. According to the
latter, the main entities and quantities associated with the model should not be
multiplied unnecessarily but they are quantized. In this sense, a quantization prin-
ciple, a la Dirac, is obtained for closed structures and also for the critical levels of
energy. © 2009 American Institute of Physics. �doi:10.1063/1.3236683�

I. INTRODUCTION: HELICAL CONFIGURATIONS IN NATURE

Helical configurations are structures commonly found in nature. They appear in microscopic
systems �biomolecules, bacterial fibers, nanosprings, protein chains in particular DNA, etc.� as
well as in macroscopic phenomena �strings, ropes, climbing plants, coiled springs, horns of moun-
tain goats, vortices, etc.� �see, for example, Refs. 2, 5, 10–12, 21, and 25 and references therein�.
In particular, they are very important and ubiquitous in biology as a consequence of the following
known, in the biological community since the work of Pauling, theorem: Identical objects, regu-
larly assembled, form a helix �see Ref. 6 and references therein�. These structures are so basic
ingredients of the spectacle of the universe, which becomes so much grander and so much beau-
tiful when one gets a small number of laws, most wisely established, which will suffice to obtain
mathematical models to describe the experimental phenomena. Several mathematical models have
been proposed to describe helices and protein fold, including lattice models, statistical mechanical
models, random energy models, and molecular dynamics simulations �see references in Refs. 19
and 20�. In general, perhaps for simplicity, helical structures are usually identified, in the literature,
with the simplest idea of circular helix �see, for example, Ref. 8�. However, that does not fit the
real world. Nobody can believe that squirrels chasing one another up and around tree trunks follow
a path of circular helix. First because the cross section of a tree trunk is not circular, but also
because the axis of a three trunk is not exactly a straight line. As another example we find many
types of bacteria, such as certain strains of Escherichia coli or Salmonella typhimorium, swim by
rotating flagellar filaments. These are polymers which are flexible enough to switch between
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different helical forms, which are really far from circular helices. Therefore the question is: What
kind of helices are there in nature? In this paper we try to answer this question by proposing a two
steps variational model to describe helices in nature.

�1� The first step describes a wide class of helices. That made up of Lancret helices or curves
making a constant angle with a flow of Euclidean parallel straight lines. They can be geo-
metrically seen as geodesics of right cylinders whose cross section lies in a plane orthogonal
to the flow. Furthermore, they appear, variationally, as extremals of an energy action whose
density is a linear function in both curvature and torsion. A quantization principle works for
critical values of that functional: “the energy of a helix is not arbitrary, but it comes as a
natural multiple of some basic quantity of energy.” In particular, the energy is constant if the
homotopy class of the cross section is preserved.

�2� The submodel we have just described is very rich in solutions. However, it does not allow to
get closed helical structures due, in part, to noncompactness of their flow lines. Then, we
have to consider a second step which, in particular, should allow us to describe closed
structures. Let us draw up the main ingredients to create it.

�1� Note first that the helical concept is related to a vector field or flow lines. Therefore, under
obvious considerations, it is preserved under conformal mappings.

�2� Then change the topology of the space in order to close Euclidean parallel straight lines. The
simplest way to do that is reached by adding a point at infinity to get a round three-sphere.

�3� The new space is endowed with a kind of parallelism of great circles, which is known as
Clifford parallelism. Then we use the flow of Clifford parallel great circles to solve the
problems associated with helices and, in particular, the so-called closed curve problem. We
will see, for instance, that helices will appear as geodesics of certain flat surfaces known as
Hopf tubes and they can be closed provided Hopf tubes are compact genus one surfaces, i.e.,
Hopf tori. Furthermore, helices will also be extremals of an energy action whose density is
a linear function in both curvature and torsion.

�4� Now, use the stereographic projection, which is known to be conformal, to view the Clifford
parallelism as a flow of Villarceau circles. Then, Villarceau helices will be curves making a
constant angle with a Villarceau flow and they will appear as loxodromes in surfaces which
are stereographic projection images of Hopf tubes.

�5� We will finally exhibit a new quantization principle working out for closed Villarceau heli-
ces. The corresponding moduli space can be identified with a certain domain in the plane
�see Fig. 1�.

II. THE FIRST STEP: A LEAST ACTION PRINCIPLE FOR HELICES

The intuitive idea of helical structure, as a one-dimensional configuration, is a curve that
makes a constant angle with an axis. The simplest idea of axis is a unit vector, say x�. These curves
are known in the literature as generalized helices, Lancret helices or curves with constant slope,

L = x

y = 2A

∆

Rhq ≡ y = hx + qπ

π

(1/2)π

(1/4)π

−(1/2)π

−π

�

The boundary corresponds with small circles

giving rectangular tori

FIG. 1. Closed extremals for a given slope. The y-intersect points are rational multiples of �.
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Böschungslinien �see, for instance, Ref. 3 and references therein�. They are analytically charac-
terized by the constancy of the ratio between torsion and curvature. Geometrically, they are
characterized as geodesics of right cylinders over plane curves. As those surfaces are flat, a
Lancret helix is completely determined from the following data: first the curvature function of a
plane curve which makes the role of cross section in the cylinder and then the ratio between
torsion and curvature which works as the slope of the helix regarded as a geodesic in this cylinder.
Next, we give a simple variational characterization of Lancret helices.

Least action. Lorsqu’il arrive quelque changement dans la Nature la quantité d’action, néces-
saire pour ce changement, est la plus petite possible (Pierre Louis Moreau de Maupertuis, Lyon
1756, Vol IV, p. 36). Admissible helical structures in Nature should be, as possible, extremals of a
reasonable elastic energy action. Obviously the choice of such an energy action involves some
requirements. Therefore, it must be invariant not only by reparametrizations but also by motions of
the Euclidean space.22 Consequently, it yields to choose a Lagrangian density that is a function of
the geometrical invariants: arc length s, curvature �, and torsion �,

E��� = �
�

F��,��ds .

The Euler–Lagrange equations, also called field equations, for these kind of functionals, acting on
suitable spaces of curves, can be obtained using standard arguments that involve several integra-
tions by parts. Actually, they were obtained in Ref. 19 for more general actions where density also
involves the first derivatives with respect to s, i.e., F�� ,� ,�� ,���. These equations have been
manipulated in Refs. 19 and 20, having no outstanding progress, even in special cases. For
example, the case where the energy is a linear combination of both length, total bending, and total
twisting,

F��,�� = m + n� + p� m,n,p � R ,

is not sufficiently exploited there. The authors affirm that the only solutions, of the Euler–
Lagrange equations in this model, are circular helices. However, this is quite false. Precisely the
case where m=0 provides a simple model, with a wide space of field configurations, which is able
to describe a lot of helices in nature.

Let � be the space of curves connecting two points x ,y�R3 in the Euclidean space and
having the same Frenet frame at those points �clamped curves�. For any three real numbers,
m ,n , p�R, we consider the action

Fmnp:�→ R, Fmnp��� = �
�

�m + n� + p��ds .

The field equations for these functionals have been computed in several places, including Ref. 19,
getting

m� + �n� − p��� = 0, n�� − p�� = 0.

These equations can be easily solved. If m�0, the solutions are circular helices �both curvature
and torsion are constant� as asserted in Ref. 19. However, when m=0, the space of field configu-
rations consists, up to motions in R3, of those curves such that the ratio between torsion and
curvature is a constant, namely,

�

�
=

p

n
.

Hence, given a pair of real numbers, n , p�R, the space of field configurations of the energy
action,
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Fnp:�→ R, Fnp��� = �
�

�n� + p��ds ,

is, up to congruences in the Euclidean space, that of Lancret helices with slope p /n. Consequently,
it can be identified with the space of plane curves. In other words, the corresponding moduli space
is just the space of real valued functions of one variable, each function working as the curvature
function of a cross section. The following algorithm allows one to construct all helical configu-
rations of the model Fnp.

�1� Choose any plane curve, say ��s�, s being the arc length parameter, and let �� be a unitary
vector normal to the plane that contains the curve.

�2� The right cylinder C�, with cross section ��s�, is defined by the map

��s,v� = ��s� + v�� .

�3� In C� we choose the geodesic with slope h= p /n, that is,

�h�t� = ��nt,pt� = ��nt� + pt�� .

Then �h is a Lancret helix which is an extremal of Fnp. Furthermore, each extremal of this
energy action is constructed in this way.

It should be noted that if the weight of the twisting effect, in the action, increases, then the
slope of helical configurations of the model also increases. However, if the weight of bending
effect increases then, the slope of helical configurations decreases. As it was pointed out in Ref. 19
�see also Ref. 28� besides circular helices there are many different shapes of helical configurations
that might also be of considerable interest for protein folding, including elliptical, spherical, and
conical. Then, as an illustration, they exhibited conical helices and tried to get them as extremal of
energy actions, however, the result is confused and unnecessary complicated. In our model, not
only conical but also elliptical and spherical helices appear naturally as extremals. Next, we
exhibit these helical structures as an illustration. Namely, we get elliptical, spherical, and conical
helices in the space of field configurations associated with the energy action Fnp for any pair of
real numbers n , p.

Elliptical helices. Besides protein folding, they apply to different contexts, from construction
of antennas �see, for instance, Ref. 31� to nanotechnology �see, for instance, Ref. 18�. These
helical structures appear as geodesics, with slope h= p /n, of right cylinders with elliptic cross
section. Therefore, we start with an ellipse, say in the plane z=0,

��u� = �r1 cos u,r2 sin u,0� .

The arc length function is given by s�u�=r2�0
u�1−	 sin2 
d
, which is the elliptic integral of

second kind, where 	=1−r1
2 /r2

2 and r2�r1. This function, as well as its inverse, can be numeri-
cally handled because they are standard in mathematical software. For instance, one can use
MATHEMATICA as in Ref. 14 to get numerical solutions of elliptical helices.

Spherical helices. Energy functionals such as Fnp have extremals lying in spheres. They are
essentially geodesics of right cylinders with cross sections being epicycloids. An epicycloid is a
planar curve traced out by a point on a circle �of radius b� rolling outside another circle �of radius
a�.9 In fact, pick out a Lancret helix �h, with slope h= p /n, which is an extremal of Fnp. Then
�=h�. Moreover, �h is contained in a sphere of radius, say r, if and only if R2+ �TR��2=r2, where
R=1 /� and T=1 /�. We can solve both equations to obtain

� =
1

�r2 − h2s2
, � =

h
�r2 − h2s2

.

An easy computation allows one to see that the corresponding cross section is the epicycloid,
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��u� = ��a + b�cos u − b cos
�a + b�u

b
;�a + b�sin u − b sin

�a + b�u
b

	 ,

where radii are a=rh /�1+h2 and b= �r /2��1−rh /�1+h2�. The arc length function is given by
s�u�=−�4�a+b� /ab�cos�au /2b�. Therefore,

�h�t� = ��a + b�cos t�ns� − b cos
�a + b�t�ns�

b
;�a + b�sin t�ns� − b sin

�a + b�t�ns�
b

;t�ps�	 ,

t being the function defined by t�r�= �2b /a�arccos�−�ab /4�a+b��r�.
Conical helices. They appear as geodesics of right cylinders whose cross section is either a

logarithmic spiral �like that given in Ref. 19� or an Archimedean spiral. Therefore, consider the
former

��u� = �au cos�b ln u�;au sin�b ln u��, u� 0,

where u works, up to a scaling constant, as the arc length parameter. Now, given the energy action
Fnp, we choose in the right cylinder ��u ,v�=��u�+v��z, the geodesic with slope h= p /n to get

�h�t� = �ant cos�b ln�nt��;ant sin�b ln�nt��;pt� ,

which is a conical helix, lying in the cone x2+y2= �a2n2 / p2�z2, which is an extremal of Fnp. Other
conical helices being extremals of this energy action can be obtained starting from an
Archimedean spiral. The simplest one is

��u� = �au cos u;au sin u� ,

then choose in the right cylinder, with cross section �, the geodesic

�h�t� = �ant cos�nt�;ant sin�nt�;pt�

with slope h= p /n.
Remark: The set of solutions of the Euler–Lagrange equations associated with Fmnp is sum-

marized in the following table. For simplicity of interpretation, we have represented different
cases according to the values of the three coupling parameters specifying the free energy proposed
model.

m n p Moduli space of trajectories
�0 =0 =0 Geodesics �=0
=0 =0 �0 Circles � constant and �=0
=0 �0 =0 Plane curves �=0

�0 �0 =0 Helices with �= −n�2

m

�0 =0 �0 Helices with arbitrary � and �= m
p

=0 �0 �0 Lancret curves with �= p
n�

�0 �0 �0 Helices with �= −na2

m+ap , �= ma
m+ap and a�R−
− m

p
�

A quantization principle for energy critical values. Pluralitas non est ponenda sine neccesitate
(William of Ockham logician and franciscan friar of the 14th cetury). Let �h�t�=��nt , pt�
=��nt�+ pt��, with h= p /n, be a critical point of the action Fnp. Denote by 
T=�� ,N� and ���s� a
Frenet frame and the curvature function of the cross section �, which we have assumed to be arc
length parametrized, respectively. As for the Frenet apparatus of �h in R3 we have

Th =
n

�n2 + p2
T +

p
�n2 + p2

�� .

To compute the unit normal and the curvature, one proceeds as usual,
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�Th
Th = �Nh =

n2

n2 + p2�TT =
n2

n2 + p2��N ,

so that

Nh = � N, � =
n2

n2 + p2 ���� .

Finally, the unit binormal and the torsion are given by

Bh = Th ∧ Nh =
n

�n2 + p2
�� −

p
�n2 + p2

T ,

�Th
Bh = − �Nh = −

np

n2 + p2�TT = −
np

n2 + p2��N ,

and

� =
np

n2 + p2 ���� .

Assume now that � : �0,L�→R2 is parametrized by the arc length, then the Lancret curve �h�t�
=��nt�+ pt��, with h= �p /n�, is parametrized by �h : �0,L /n�→R3 with arc length function s̄ satis-
fying ds̄=�n2+ p2 /nds=�n2+ p2dt. Then

Fnp��h� = �
�h

�n� + p��ds̄ = �
0

L/n �n +
p2

n
	��t��h��t�dt .

Now �h��t�=�n2+ p2 and �= �n2 / �n2+ p2������, so that

Fnp��h� = n�1 + h2�
�

����ds .

Therefore, up to a constant, the energy critical values are provided by the total absolute curvature
of the cross section.

To describe an explicit situation, let P and Q be any two points in R3 and �� = �Q− P� / �Q
− P�. Choose a coordinate system in R3 with P in the plane z=0 and �� parallel to the z-axis. Now,
pick up a unit vector, say v� , and define a space � of clamped curves  : �a ,b�→R3 satisfying

�a� = P, �b� = Q, T�a� = T�b� = v� and �N�a�,��� = �N�b�,��� = 0.

Let h be the slope of v� measured with respect to the plane z=0 and consider the energy action
Fnp :�→R with h= p /n. The critical points of �� ,Fnp� are Lancret helices with slope h and cross
section being a closed curve in the plane z=0. Therefore, start with a closed curve � : �0,L�
→R2, in the plane z=0, with length L�0, such that the corresponding Lancret helix �h�t�
=��nt�+ pt��, starting at P ��h�0�= P� with slope h, reaches the point Q after d consecutive liftings,
i.e., �h�Ld /n�=Q. Now, to compute the critical value Fnp��h� we must evaluate the total absolute
curvature of the d-fold of �. To do it, we consider a convex curve �̃ in the plane z=0. Geometri-
cally this curve is obtained from � by a process of symmetrization, namely, reflecting concave
parts by using straight lines at the inflection points of �. In other words, �̃ is the arc length
parametrized curve with curvature function ��̃= ����. After these remarks we obtain

Fnp��h� = 2�nd�1 + h2i��̃� ,

where i��̃� is the rotation number of �̃.
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Thus, we get the following Dirac quantization principle for extremals: The energy of a helical
configuration is not arbitrary but it comes only in natural multiples of some basic quantity of
energy, 2�n�1+h2. In particular, it only depends on the homotopy class of the corresponding
cross section.

An open problem and a conjecture. In Ref. 8 the authors proposed a model to study protein
chains which is governed by a Lagrangian whose density is a linear function in �, the curvature of
the centerline of the protein molecule, namely, F�� ,��=m+n�. This is supported in the spiral
stationary form of the protein chains. The helical structure of proteins implies the choice of a
Lagrangian whose extremals would be only helices. However, the extremals of the corresponding
energy are circular helices �see the table above�.

On the other hand, several arguments could be given in order to include the torsion in the
Lagrangian governing the protein model, even in a linear way as a variable of the energy density.
Perhaps, it is enough to mention that, in this way, it is an essential ingredient in the equations of
Calugareanu7 and White,30 which have became very important in connection with the theory of
DNA supercoiling.

Consequently, an interesting, and still open, problem is to determine those energy densities
F�� ,��, such that the extremals of E are Lancret curves. We already know that F�� ,��=m+n�
+ p�, with m ,n , p�R, provide nice solutions to the above stated problem. Although it is open, we
have a conjecture in the sense that linear densities are the only solutions. We know partial answers
to this conjecture. In fact, it is true when energy density is linear in either the curvature F�� ,��
=m�+G��� or the torsion F�� ,��=H���+ p�. We will give the details in a forthcoming paper.

III. THE SECOND STEP: A CONFORMAL EXTENSION IS NEEDED

The above model certainly covers a wide variety of helical structures. However, there exist
helical configurations which are not yet modeled. To clarify that we start making the following
considerations.

�1� The first new ingredient to be considered is that related with the axis. To be precise, the
notion of Lancret helix can be nicely expressed in mathematical form as follows. First,
observe that the axis x�, via parallel transport, defines in the space a Killing vector field of
constant length, i.e., an infinitesimal translation, say X, which generates a flow of curves,
namely, straight lines parallel to x�. Now, X-helices are those curves crossing this flow at the
same angle. Certainly, this idea may be extended to a more complicated axis. Any vector
field X in the Euclidean space R3 generates, at least locally and via integration, a flow of
integral curves. Then we call X-helices those curves crossing this flow under a constant
angle. In this case, X works as an axis. Therefore, it seems natural to look at the helices in
nature as curves making a constant angle with some geometrical flow. It should be noted that
when the helix lies in a certain surface S of R3 and the axis is tangent to S, then we get the
notion of loxodrome �also called rhumb line� relative to X�X�S�. In this way, circular
helices �Lancret helices with both curvature and torsion constant� admit a second axis, a
rotational Killing vector field Y, perpendicular to x�, which is tangent to the cross sections of
the right cylinders containing circular helices. However, the role played by both axes is quite
different. In fact, it is clear that Lancret helices are loxodromes in cylinders over plane
curves. Now, this property is obtained from the existence of the first axis. The existence of an
axis being a rotational Killing vector field does not imply that the helix was contained in a
cylinder over a plane curve.

�2� Moreover, it is clear that Lancret helices can never be closed. This happens because the
tangent vector field of a Lancret helix always has a positive component, just that in the
direction of the axis. On the other hand, cyclic peptides, such as the antibiotic gramicidin S
and the immunodepressive agent cyclosporin, have been known for some time in contrast
with circular proteins that were little known a decade ago. In recent years, a great number of
circular proteins have been discovered in bacteria, plants, and animals. This class includes
the so-called rounded proteins or cyclotides �see, for example, Ref. 5�. A priori, it could
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seem natural to admit that circular protein chains are modeled by some kind of helices with
a circular axis.

For a better understanding of these difficulties, consider the following test due to Weiner.29

For any n�N, the curve �n :R→R3 defined by

�n�t� = ��n − cos t

n
	cos� t

n
	 ;�n − cos t

n
	sin� t

n
	 ;

sin t

n
	 ,

which is closed with period 2�n, winds n times around the anchor ring obtained when revolving
the circle with center �1,0,0� and radius 1 /n about the z-axis. Thus, it admits an axis being a
rotational Killing vector field which is orthogonal to the revolution axis. In addition, these curves
have the following curious property �see Ref. 29�. For a curve � : �0,L�→R3 define the function
� : �0,L�→R by ��t�=��t� /��t� and then the breadth of the graph of �,

B��� = max
�0,L�

� − min
�0,L�

� .

If �n denotes the breadth of �n in a period, say �0,2�n�, then

lim
n→�


B��n�� = 0,

so that, in this sense, these curves can be regarded as a sort of Lancret at the infinity.
In this section, we propose a conformal variational model to solve those difficulties. It will

allow us to describe circular proteins as well as other more complicated helical configurations of
protein chains. To this end, we draw up the main ideas and ingredients to create it.

�1� The nonexistence of closed helices in the submodel that we have just exhibited is due, in
part, to the noncloseness of the straight lines that constitute its axis flow lines. To close
parallel straight lines, we need to change the topology of R3. In this sense, it seems natural
to choose its once-point compactification, that is, the three-sphere S3=R3� 
�o�. Roughly
speaking, we add the infinity point.

�2� Then, we equip S3 with a metric as similar as possible to that Euclidean in R3. Certainly, the
answer is obvious. Choose one in the same conformal class in order to preserve the angles.
In addition, we dispose of metrics with constant curvature which allow to see S3 as a round
sphere.

�3� In this background, the straight lines are geodesics, i.e., great circles. Furthermore, we have
a classical structure which allows one to talk about parallel straight lines, the so-called
Clifford parallelism. Now, flows of Clifford parallel great circles are well described through
Hopf vector fields, i.e., infinitesimal translations which can be regarded as the vertical flows
of Hopf maps. In this way, we have a kind of cylinders or tubes in the round three-sphere,
playing the role of right cylinders, that are obtained by lifting, via a Hopf map, curves in the
two-sphere which work as cross sections for tubes. Then we can characterize Lancret helices
in the three-sphere, i.e., curves which admit an axis being an infinitesimal translation, or a
Hopf vector field, as those curves that are geodesics in a Hopf tube.

�4� However, the surprise continues. We can exhibit Lancret helices in S3 as extremals of an
energy action involving the corresponding geometrical invariants. Moreover, we obtain the
whole space of closed Lancret configurations. Said otherwise, solve the so-called closed
curve problem for Lancret helices in S3.

�5� Once the problem is solved in the three-sphere, project conformally over the Euclidean
space. To do it, we use a stereographic projection, for example, from the added point �o. The
Hopf flow goes to a Villarceau flow, so conformal helices make a constant angle with this
flow, the axis being a conformal Killing vector field. They can be viewed as loxodromes in
conformal Hopf tubes including anchor rings. However, we can stereographically project
from an arbitrary point to nicely deform surfaces and helices which can appear as rhumb
lines in Dupin cyclides.
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�6� Roughly speaking, the underlying idea in the new geometrical picture we are proposing is to
see Villarceau flow of circles, which is the conformal image of the Clifford parallelism in the
three-sphere, replacing Euclidean flow of parallel straight lines. In this sense, the whole
model provides solutions which are helical structures with axis being either a flow of Eu-
clidean parallel straight lines or a flow of Clifford parallel Villarceau circles.

Therefore, once we have chosen the three-sphere with a metric of constant curvature, i.e., a
round sphere, without loss of generality we may assume that it has radius one and all this
framework will be denoted simply by S3. From now on, we give some details on the above stated
program.

IV. THE CLIFFORD PARALLELISM IN THE THREE-SPHERE

The Hopf map S3→S2 is a very important object not only in mathematics but also in physics
�see Ref. 27, for a nice survey�. In this section, we use this map to describe a classical structure in
the three-sphere, the Clifford parallelism, which is reminiscent of the classical parallelism of lines
in the Euclidean space.

In the three-sphere, S3= 
�= �z1 ,z2��C2 : ���2= �z1�2+ �z2�2=1�, we consider the usual action S1

�S3→S3 defined by

�eit,�� � eit� = �eitz1,eitz2� .

The orbits under this action are great circles �geodesics� of S3. If C and C� denote any two orbits
and d stands for the distance in S3, then we have

d��,C�� = d��,C�� for any �,�� C .

Moreover, if ��C and ���C� satisfy d�� ,���=d�C ,C��, then any great circle containing � and ��
intersects orthogonally both C and C�. This leads to the following definition. Two great circles, C
and C�, in S3 are Clifford parallel if d�� ,C�� does not depend on ��C. If this is the case, then we
write C C�. Given a great circle C and 
� �0,��, define

C
 = 
�� S3:d��,C� = 
� .

If C� denotes the great circle associated with the plane, through the origin, that is, orthogonal to
that corresponding to C, then C0=C, C�/2=C�, C�−
=−C
, and C�/2−
=C


�. Therefore, it is
enough to consider 
� �0,� /2� to describe the geometry of these subsets as follows.

�1� For any 
� �0,� /2�, the set C
 is the intersection of S3 with a cone in R4=C2. More
precisely, in a suitable coordinate system �z1 ,z2� in C2, we can check that C
=S3��
, where

�
 = 
� = �z1,z2� � C2:�z1�2sin2 
 − �z2�2cos2 
 = 0� .

�2� Even more, C
 can be identified with the following torus:

C
 = 
� = �z1,z2� � C2:�z1� = cos 
, �z2� = sin 
� .

�3� For any 
� �0,� /2�, any great circle C and ��C
, there exist exactly two great circles
through �, C�, and C�, that are Clifford parallel to C. This shows that the Clifford parallelism
is not an equivalence relation.

Despite that, the Clifford parallelism can be decomposed in two equivalence relations. Let us
sketch how to do it. Given a great circle C, we have C�, so that the planes through the origin P
and P�, containing these two great circles, satisfy P � P�=R4. We also fix an orientation on P and
P� to get the canonical orientation in R4 according to the above decomposition. Next, define
subgroups of O+�P��O+�P���O+�R4� by

GC
+ = 
��; f+ � � � f+

−1�:�� O+�P�� ,
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GC
− = 
��; f− � � � f−

−1�:�� O+�P�� ,

where f+�Iso+�P ,P�� �f−�Iso−�P ,P��� is an orientation preserving �nonpreserving� isometry. It
should be noticed that this construction does not depend on f+ �or f−�. Now, an orbit under the
GC

+-action is a great circle, say C�, that is called a Clifford parallel to C of the first kind, while
second kind of Clifford parallels, C�, is obtained via the second subgroup. These are two equiva-
lence relations which are denoted by C+C� and C−C�. Furthermore, we have the following facts.

�1� The condition C  C̃ is equivalent to either C+C̃ or C−C̃.
�2� For each ��S3, there exist two great circles through � that are Clifford parallel to C, one of

the first kind, C�, and one of the second, C�. Furthermore, C��C� if ��S3 \ �C�C��.

The great circle Clifford parallel to C of first kind �second kind� can be viewed as orbits of a
standard action of the group GC

+ �GC
− �. In fact, in the appropriate coordinate system, the action of

GC
+ on S3 is the usual one described by the action

GC
+ � S3 → S3, ��t,�� � �t��� = eit · � .

Hence, the orbits under this action, i.e., the first kind great circles Clifford parallel to C, are
nothing but the fibers of the usual Hopf map � :S3→S2�1 /2�, ��z1 ,z2�= �z1z2 , 1

2 ��z1�2− �z2�2��,
where z̄2 is the complex conjugate of z2. To simplify, we write GC

+ = 
�t : t�R�.
Next, we deal with second kind Clifford parallel circles. As before, in a suitable coordinate

system, write GC
− = 
�t : t�R� and the action of GC

− on S3 is described by

GC
− � S3 → S3, ��t,�z1,z2�� � �t�z1,z2� = �eitz1,e−itz2� .

Similarly to the usual Hopf map, the projection map to the quotient space is

�−:S3 → S2�1/2�, �−�z1,z2� = �z1z2, 1
2 ��z1�2 − �z2�2�� .

As before, the fibers of �− are nothing but the second kind circles Clifford parallel to C.
Now, we just need to see that the isometry J :S3→S3, J�z1 ,z2�= �z1 , z̄2� yields to the following

commutative diagram:

S3
→

J
S3

�↓ ↓�−

S2�1/2� →
Id

S2�1/2� .

Then, up to small changes, we can reduce ourselves to the case of first kind Clifford parallel great
circles.

V. LANCRET HELICES IN THE SPHERE

Once we have established the general ideas governing the second part of this model and the
main technical ingredient provided by the Clifford parallelism, it should be considered the follow-
ing program.

• Find the meaning of a helical structure or a Lancret helix in S3.
• Obtain Lancret helices in S3 geometrically, i.e., use geometry to solve the natural equations

for Lancret helices in S3.
• Characterize Lancret helices in S3 as solutions of a variational principle associated with an

action that involves only geometrical invariants of trajectories.
• Find an explicit algorithm to characterize the closed Lancret curves in S3, i.e., solve the

so-called closed curve problem for Lancret helices in S3.
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To answer this program, we first observe that the natural way to define the notion of Lancret
helix, not only in S3 but also in any Riemannian manifold, say M, was given in Ref. 3. A curve �
in a Riemannian manifold M is a Lancret one if it makes constant slope with respect to a Killing
vector field in M which has constant length along �. In other words, there exists a Killing vector
field V in M satisfying

V���s�� = constant and
�V�s�,���s��

���s�
= constant.

It should be noted that this is the natural extension of the classical Lancret curve notion in
Euclidean three-space. In this sense we will say that V is an axis of the Lancret helix � anywhere.

Analytical approach. Lancret helices in S3, like those in Euclidan three-space, can be nicely
characterized in terms of the geometrical invariants, curvature, and torsion �see Ref. 3�. Therefore,
a curve, � in S3 is a Lancret one if and only if either �1� �=0 and so � lies in a totally geodesic
round two-sphere S2 or �2� the curvature and the torsion of � are constrained as follows:

� = h� � 1 for some constant h .

In general, when one works in a round three-sphere with radius R�0, then the above equation
should be changed by �=h��1 /R.

Geometrical approach. Lancret helices in S3 can be also nicely characterized as geodesics in
some flat tubes. To better understand this geometrical meaning, note first that the Hopf map
becomes a Riemannian submersion by choosing in the two-sphere the metric with constant cur-
vature 4 �see Refs. 4 and 23, for details on Riemannian submersions�. Now, the one-parameter
group GC

+ = 
�t : t�R� generates the following vector field on S3,

V��� = � d

dt
��t�����

t=0
= i�, ∀ �� S3,

which is a Killing vector field with constant length that defines the vertical flow of that Riemann-
ian submersion. This kind of fields in S3 is usually called Hopf fields.

Now, for a curve � : I�R→S2�1 /2� in the round two-sphere with radius of 1/2, its complete
lifting T�=�−1��� is a flat surface in S3, the Hopf tube over � or the Hopf tube with cross section
�. This surface can be nicely parametrized by

X:I� R → T� � S3, X�s,t� = eit�̄�s� ,

where �̄ stands for a horizontal lifting of �. Thus, the coordinate curves are, respectively,
�-horizontal liftings �t=constant� and orbits or fibers �s=constant�. Now, the following result �see
Ref. 3� shows, in particular, that the natural equations for Lancret helices in S3 can be integrated
by quadratures.

Theorem 1: A curve � in S3 is a Lancret helix if and only if, up to motions in S3, it is a
geodesic of a Hopf tube.

Proof: Note first that a geodesic � in a Hopf tube T� has curvature and torsion given by

� =
�� + 2h

1 + h2 , � =
− 1 + h�� + h2

1 + h2 ,

where �� is the curvature function of � in S2�1 /2� and h denotes the slope, measured with respect
to fibers, of � as a geodesic in the flat surface T�. This automatically implies that � is a Lancret
helix in S3.

Conversely, if � is a Lancret helix in S3, we have �=h��1 for some constant h. Now,
consider in S2�1 /2� a curve �, with curvature function ��= �1+h2���2h �this curve is unique up
to motions in the two-sphere�. Now, in the Hopf tube T�, choose the geodesic �h, making an angle
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� with fibers, where cot �=�h �the geodesic with slope h�. It is not difficult to see that � and �h

have the same curvature and the same torsion and so, up to parametrization, they are congruent in
S3.

Corollary 2: Up to motions in S3, Lancret helices can be described by one of the following
equivalent two moduli.

�1� �� ,��: The curvature and torsion functions which must satisfy a well known constraint.
�2� ��� ,h�: The curvature function in S2�1 /2� of the cross section � and the slope as a geodesic

in T�.

In any case, the moduli space of complete Lancret helices can be identified with the space
C��R��R.

Variational approach. To complete a round, Lancret helices in S3 can be also characterized as
solutions of a variational principle. In fact, like in Sec. III for Euclidean space, let q1 ,q2

�S3�R� �the three-sphere with radius R� and 
x�1 ,y�1�, 
x�2 ,y�2� orthonormal vectors in Tq1
S3�R� and

Tq2
S3�R�, respectively. We consider the space of clamped curves,

� = 
�:�t1,t2� → S3�R�:��ti� = qi,T�ti� = x�i,N�ti� = y� i,1� i� 2� .

In this space of curves, one has the following three-parameter family of functionals, 
Fmnp :�
→R :m ,n , p�R�, defined by

Fmnp��� = �
�

�m + n� + p��ds . �1�

The field equations associated with these Lagrangians, for curves in the three-sphere using a
standard method �see Ref. 1�, are given by

− m� + p�� + n�1 − R2�2

R2 	 = 0,

�p� − n��� = 0,

which can be nicely integrated. Moduli spaces of solutions are represented in the following table
where, for simplicity, we have distinguished different cases according to the values of parameters.

m n p Moduli space of configurations in S3�R�
�0 =0 =0 Geodesics �=0
=0 =0 �0 Circles � constant and �=0
=0 �0 =0 Horizontal lifts, via the Hopf map, of curves in S2

�0 �0 =0 Helices with � =
n�1 − R2�2�

mR2

�0 =0 �0 Helices with arbitrary � and � =
m

p

=0 �0 �0 Helices with � =
n�1 − a2R2�

apR2 and � =
1

aR2 and a � R − 
0�

�0 �0 �0

Helices with � =
n�1 − a2R2�
�m + ap�R2 , � =

p + maR2

�m + ap�R2, and

a � R −�−
m

p
�

�0 �0 �0 Lancret helices with � =
p

n
� −

m

p
and R = �

p

m

As a consequence, we have the following variational approach for Lancret helices in the three-sphere.
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Theorem 3: A curve in the round three-sphere is a Lancret helix if and only if it is an extremal
for some action Fmnp when acting on a suitable space of curves.

Quantization principle for closing Lancret helices. To finish the Lancret program in S3, we
need to describe closed Lancret helices. This is done through the following argument which
culminates in a quantization principle.

• Since Lancret helices are geodesic of Hopf tubes which are flat surfaces, one needs to start
from a closed curve � in S2�1 /2�. Now, if the cross section closes then it is not difficult to see
that T� is a torus. To determine the isometry type of this flat torus, we consider the covering
map,

X:R2 → T�, X�s,t� = eit�̄�s� ,

and use a well known machinery �see Refs. 15 and 24� to obtain that T� is isometric to R2 /�,
where � is the lattice in the Euclidean plane spanned by �L ,2A� and �0,2��. Here L�0
denotes the length of � and A� �−� ,�� is the oriented area enclosed by � in the two-sphere.

• Consequently, a Lancret helix in S3 closes if and only if its slope h satisfies the following
quantization constraint:

h =
1

L
�2A + q��, q � Q rational.

• The existence of closed Lancret helices in any Hopf torus is guaranteed by the isoperimetric
inequality in S2�1 /2�. In fact, the length and the enclosed area for an embedded closed curve
are related by

L2 + 4A2 − 4�A� 0,

which can be written as

L2 + �2A − ��2��2.

Therefore, in the plane �L ,2A�, define the region

� = 
�L,2A�:L2 + �2A − ��2��2 and 0� A��� .

Then for any point a= �L ,2A��� there exists an embedded closed curve �a in S2�1 /2� with
length L and enclosed area A. We compare with the above slope quantization principle to see
that the geodesic with slope h in the Hopf torus T�a closes if and only if the straight line in
the �L ,2A�-plane with slope h cuts the 2A-axis at a height which is a rational multiple of �.
Therefore, the moduli space of closed Lancret helices in S3 is identified with the following
region of the plane:

�� ��q�Q� p

n
L − 2A = q�		 .

VI. SOME EXAMPLES

In this section, we give a general method to construct Hopf tubes in S3�C2. First of all, we
note that the Hopf mapping can be written as

�:S3 � C2 → S2�1/2� � C� R, ��z1,z2� = �z1z̄2, 1
2 ��z1�2 − �z2�2�� .

Now, given a point p= �a+ ib ,c��S2�1 /2�, its fiber, in S3, is given by
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�−1�p� = ���1 + 2c
�2

eit,
�2

�1 + 2c
�aeit + bei�t−�/2��	:t � R� .

Let � : I�R→S2�1 /2� be a curve ��s�= �a�s� ,b�s� ,c�s��. Then its Hopf tube is the following set:

T� =�−1��� = ���1 + 2c�s�
�2

eit,
�2

�1 + 2c�s�
�a�s�eit + b�s�ei�t−�/2��	:s � I,t � R� .

To parametrize T�=�−1��� as above, i.e., by means of fibers and horizontal lifts of the cross

section �, we need to determine a horizontal lift �̄ of �. To do that, we put t=��s� in the above

formula and then determine ��s� from the horizontality condition �i�̄�s� , �̄��s��=0. We proceed in
this way to obtain

���s� = B��s�A�s� − A��s�B�s�, where A�s� =
�2a�s�

�1 + 2c�s�
, B�s� =

�2b�s�
�1 + 2c�s�

.

Then

�̄�s� = ��1 + 2c�s�
�2

ei��s�,A�s�ei��s� + B�s�ei���s�−�/2�	 ,

where

��s� = �
so

s

�A�s�B��s� − A��s�B�s��ds ,

so that

T� =�−1��� � X�s,t� = eit��1 + 2c�s�
�2

ei��s�,A�s�ei��s� + B�s�ei���s�−�/2�	 .

Let us exhibit some explicit examples of Hopf tubes.
The Clifford torus as a Hopf tube. Perhaps, the more popular compact surface, at least of

genus one, in the three-sphere is the so-called Clifford torus. It appears in a lot of problems and
there are some interesting and old conjectures in relation with that torus. The simplest way to
define a Clifford torus is given by the map

Y:R2 → C2, Y�u,v� =
�2

2
�ei�2u,ei�2v� . �2�

It is clear that Y�R2��S3. Moreover, the map is biperiodic with period �2�, and consequently, it
defines an embedding, which is also denoted by Y, of the squared torus or the Riemannian product
of two circles with radii �2 /2 into the unit three-sphere, that is,

Y:S1��2/2�� S1��2/2� → S3, Y�u,v� =
�2

2
�ei�2u,ei�2v� ,

this is the well known Clifford torus.
Now, we wish to see the Clifford torus as a Hopf tube with cross section being a geodesic of

S2�1 /2�. Therefore, we choose

�:R → S2�1/2�, ��s� = � 1
2cos 2s, 1

2sin 2s,0� .

We use the above stated argument to see that ��s�=s and so
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�̄:R → S3, �̄�s� =
�2

2
�eis,e−is� ,

is a horizontal lift. Now, the Clifford torus can be parametrized by horizontal lifts �t=constant� and
fibers �s=constant� as follows:

X:R2/�→ S3 � C2, X�s,t� =
�2

2
�ei�s+t�,ei�−s+t�� ,

where � is the lattice, in R2, spanned by �� ,�� and �0,2��.
It is obvious that X�s , t�=Y��1 /�2��s+ t� , �1 /�2��−s+ t��, and so we have

Xs =
1
�2

Yu −
1
�2

Yv, Xt =
1
�2

Yu +
1
�2

Yv.

Since the curves u=constant and v=constant are geodesic in the Clifford torus, they are Lancret
helices in S3 with slope h=1 and h=−1, respectively �in this case they are circular helices because
� has constant curvature�.

Rectangular tori as Hopf tubes with cross sections geodesic circles. The above example can
be extended to Rectangular tori in the three-sphere which can be regarded as Hopf tubes over
geodesic circles in S2�1 /2�. Those tori can be defined by

Y:S1�r1�� S1�r2� → S3, Y�u,v� = �r1eiu/r1,r2eiv/r2� ,

with r1
2+r2

2=1. As above, the coordinate curves u=constant and v=constant are geodesics in these
tori Y�S1�r1��S1�r2���S3.

On the other hand, consider a geodesic circle in S2�1 /2�, i.e., a small circle, say

�:R → S2�1/2�, ��s� = �r cos
s

r
,r sin

s

r
,m	, r2 + m2 =

1

4
.

In this case, we see that ��s�=	s with 	=��1−2m� / �1+2m�, and so the curve,

�̄�s� = ��1 + 2m

2
ei	s,�1 − 2m

2
ei�	−1/r�s	 ,

constitutes a horizontal lift of �.
Therefore, the rectangular torus parametrized as a Hopf tube is given by

X:R2/�→ S3 � C2, X�s,t� = ��1 + 2m

2
ei�	s+t�,�1 − 2m

2
ei��	−1/r�s+t�	 ,

where � is either �i� the lattice in R2 spanned by ���1−4m2 ,��1−2m�� and �0,2�� if m�0 or �ii�
the lattice in R2 spanned by ���1−4m2 ,��1+2m�� and �0,2�� if m�0.

It is clear that

r1 =�1 + 2m

2
, r2 =�1 − 2m

2
, and X�s,t� = Y�r1�	s + t�,r2��	 − 1/r�s + t�� ,

so that

Xs = 	r1Yu + r2�	 − 1/r�Yv, Xt = r1Yu + r2Yv.

As the curves u=constant and v=constant are geodesics in the rectangular torus, they are Lancret
helices in S3 �in this case they are circular helices because � has constant curvature�.

The Hopf tube with cross section the Viviani curve. In 1692, Vincenzo Viviani �1622–1703�, a
student of Galileo, proposed the following problem: How is it possible that a hemisphere has four
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windows of such a size that the remaining surface can be exactly squared?
The answer to this question involves the so-called Viviani curve. This curve, regarded in

S2�1 /2�, is obtained when intersecting this sphere with the right cylinder �x−1 /4�2+y2=1 /16.26

Therefore, we get the curve,

��s� = �1 + cos s

4
,
sin s

4
,

sin
s

2

2
� ,

which closes with period 4�, for example, in −2��s�2�. It should be noted that this curve is
not parametrized by the arc length, however, in the above argument to obtain the Hopf tube with
a given cross section the parametrization does not matter. Consequently, we can follow step by
step the stated argument to obtain

��s� =
1

4
�s + 2 cos

s

2
	 .

Now a horizontal lifting of the Viviani curve can be computed to be

�̄�s� =��1 + sin
s

2
�2

ei��s�;
�2

4�1 + sin
s

2

�ei��s� + ei���s�−s��� .

This allows one to compute a nice parametrization of the Hopf torus over the Viviani curve,

X:�− 2�,2��� R → T� � S3 � C2,

given by

X�s,t� =��1 + sin
s

2
�2

ei���s�+t�;
�2

4�1 + sin
s

2

�ei���s�+t� + ei���s�−s+t��� .

VII. VILLARCEAU FLOWS: A CONFORMAL FIELD THEORY TO DESCRIBE PROTEIN
CHAINS

Let T be a revolution torus �or anchor ring� in R3. It is well known that T contains two
families of circles, the parallels of latitude, and the meridians. However, it is less known that T
contains other kind of circles, called Villarceau circles, as they were first discovered by A. J. Yvon
Villarceau �1813–1883� in 1848. Villarceau circles in T can be found by intersecting T with a
bitangent plane. In this way, one can find two families, F1= 
��t�� and F2= 
 �t��, of these exotic
circles. Two circles from different families intersect in exactly two points, while two circles in the
same family not only do not intersect but they are also always linked.13

Clifford parallel great circles are nicely related with Villarceau circles through a suitable
stereographic projection. We take �o�S3�R4 and consider the stereographic projection
Eo :S3 \ 
�o�→R3 which, as it is well known, is the restriction of an inversion in R4 with pole �o.
Now, fix a great circle, say C, going through �o. We choose in R3 a coordinate system 
x ,y ,z�,
such that the z-axis will be Eo�C \ 
�o�� and then Eo�C�� will be the unit circle in the 
x ,y�-plane.

In this setting, it is not difficult to see that T
=Eo�C
�, 
� �0,� /2�, is a revolution torus
around Eo�C \ 
�o�� in R3. Furthermore, up to similarities, every revolution torus in R3 is of the
form Eo�C
� for a suitable value 
� �0,� /2�. Now, both families of Villarceau circles in T
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=Eo�C
� are obtained as images under the stereographic projection Eo of the two kinds of great
circles in C
 that are Clifford parallel to C. Then all Villarceau circles in R3 \ �z−axis� can be
described as follows:

F1 = 
��t�� = 
Eo�C��:C� is first kind Clifford parallel to C�

and

F2 = 
 �t�� = 
Eo�C��:C� is second kind Clifford parallel to C� .

From now on, we will refer to these circles as first and second kind Villarceau circles according to
they lie in F1 or F2, respectively. It should be observed that F1 �F2� defines a foliation on
R3 \ �z−axis�.

Note that in F1 and in F2 we have included a circle which is not of Villarceau type in a
revolution torus around the z-axis. That circle is Eo�C��. However, we will treat it as a Villarceau
circle.

The Clifford parallelism is projected down to R3, and so it can be described in terms of
Villarceau circles. Indeed, as C is the orbit through �o�C and we have chosen Eo�C� to be the
z-axis in R3, we have a group of orientation preserving conformal maps in R3 \ �z−axis� associated
with C, and defined by

HC
+ = Eo � GC

+ � Eo
−1 = 
!t = Eo � �t � Eo

−1:t � R� .

In this setting, the orbits in R3 \ �z−axis� associated with HC
+ are just the first kind Villarceau

circles over a family of revolution tori around the z-axis.
Note that, given a pair of first kind Villarceau circles, say �1 and �2, then �1=Eo�C1� and

�2=Eo�C2� for certain great circles which satisfy C+C1, C+C2, and so C1+C2. In other words,
those Villarceau circles are images, via a stereographic projection, of two Hopf fibers. However,
they can lie on either the same revolution torus or two different revolution tori. The former occurs
when d�C ,C1�=d�C ,C2�, while the latter happens when d�C ,C1��d�C ,C2�.

Similarly, let

HC
− = Eo � GC

− � Eo
−1 = 
Eo � �t � Eo

−1:t � R�

be the group of conformal maps that leave invariant the second kind Villarceau circles over a
family of revolution tori around the z-axis.

From now on, we will restrict ourselves to first kind Villarceau flows even though a similar
theory works for second kind Villarceau flows. Therefore, once we have solved the variational
problem whose solutions are Lancret helices in S3, we project down, via a stereographic map, to
obtain helices in Euclidean space whose axis is a conformal vector field �it generates a one-
parameter group of conformal transformations in Euclidean space�. To be explicit, and without
loss of generality, consider �o= �0, i��S3�C2. Then, in the above setting, the stereographic pro-
jection with pole �o is given by

Eo:S3 \ 
�o� → R3 � C� R, Eo�z1,z1� = � z1

1 − Im�z2�
;

Re�z2�
1 − Im�z2�	 .

Now, choose, for instance, a Clifford torus TClifford�Y�u ,v�, parametrized as a Riemannian prod-
uct of circles �2�. It is not difficult to see that its stereographic image, Eo�TClifford�, is an anchor
ring in R3 whose meridians are the curves Eo�u=constant� and latitude parallels are Eo�v
=constant�.

On the other hand, that torus viewed as a Hopf tube TClifford�X�s , t� is projected in the
conformally flat surface Eo�TClifford�, proving that this is foliated by first kind Villarceau circles,
the images under Eo of fibers s=constant. Now, the Lancret helices in TClifford make a constant
angle with fibers and so with the curves v=constant. As Eo is a conformal map, the stereographic
projection of a Lancret helix makes a constant angle with the latitude parallels in the anchor ring
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Eo�TClifford�. Choosing, in particular, closed Lancret helices in the Clifford torus and projecting
them by Eo, we get nice closed configurations which are good candidates to model circular protein
chains.

The story, however, does not finish here. It continues, since what we made with the Clifford
torus also works for rectangular tori and more generally for any Hopf tube �in particular, any Hopf
tori�. In fact, the chief point in this discussion is a conformal vector field in the Euclidean space.
It is the corresponding stereographic image of the Hopf vector field V���= i� that governs the
theory of Lancret helices in S3. Therefore, we define in R3 \ �z−axis� the following vector field:

W � ��R3 \ �z − axis��, W = dEo�V� .

This is a vector field providing the Villarceau flow F1. Alternatively, it is a conformal one,
generating the one-parameter group of conformal transformations HC

+ .
First kind Villarceau flows, i.e., W-flows in R3 \ �z−axis�, can be explicitly obtained as follows.

Observe that any Villarceau circle intersects in exactly one point the half plane P= 
�x ,0 ,z� :x
�0� and recall that two Villarceau circles of the same kind do not intersect. Then, for any p
= �x ,0 ,z�� P, the first kind Villarceau circle, �p : �−� ,��→R3, going through p, is given by

�p�t� = Eo�eitx1,eit��x2 + iy2�� ,�

where Eo
−1�x ,0 ,z�= �x1 ,0 ,x2 ,y2� and consequently

�p�t� =
1

1 − x2 sin t − y2 cos t
�x1 cos t,x1 sin t,x2 cos t − y2 sin t� .

The length and the radius of this circle are, respectively,

L =
1 + p2

x
�, r =

1 + p2

2x
.

Now, given any regular curve � in S2�1 /2�, consider its Hopf tube T�, which is a flat surface in S3.
Then project it, via the stereographic map, to obtain a surface M�=Eo�T���R3 which we call the
conformal Hopf tube with conformal cross section �. These surfaces are tangent to W=dEo�V� and
so they are foliated by Villarceau circles, that is,

M� = Eo�T�� = �p�M�
Eo�CEo

−1�p�� ,

where CEo
−1�p� stands for the fiber in S3 through Eo

−1�p�.
Given a Lancret helix � in S3, it is a geodesic in some Hopf tube T�, and it makes a constant

angle with the Hopf vector field V, which is a Killing vector field on the whole three-sphere.
Consequently, its stereographic image =Eo��� �we call these curves conformal Lancret helices�
lies in the conformal Hopf tube M�=Eo�T�� and it makes a constant angle with the conformal
vector field W=dEo�V�. Sais otherwise, the conformal Lancret helices lie in conformal Hopf tubes
and they make a constant angle with the Villarceau circles.

In the model that we are proposing to describe helical configurations in nature the solutions
are conformal Lancret helices. They are conformal images in Euclidean space of curves in the
three-sphere that are extremals of an action involving linearly in its Lagrangian density both
bending and twisting effects.16,17 As a culmination of this discussion, we obtain the following
result which from a geometrical point of view can be considered as a conformal Lancret integra-
tion theorem.

Theorem 4: A curve  in Euclidean space is a conformal Lancret helix if and only if it makes
a constant angle with the conformal Hopf vector field W=dEo�V�. Moreover, conformal Lancret
helices lie in conformal Hopf tubes and they make a constant angle with the Villarceau circles.

Remark 5:
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�i� It should be noted that when the Hopf vector field is provided by the second Hopf map �−,
we obtain helices associated with the second kind Villarceau flow.

�ii� Also, we can project down from a different point in the three-sphere, say �. Now helical
structures appear as loxodromes, with respect to a conformal vector field, in deformed
conformal Hopf tubes such as Dupin cyclides.

VIII. CONCLUSIONS

In the variational model that we are proposing, helices in Nature appear as either �A� Lancret
helices, that is, critical points of an action which is linear in both curvature and torsion. In this case
helices are loxodromes, with respect to an infinitesimal translation, in right cylinders over plane
curves; or �B� conformal Lancret helices, that is, conformal images of critical points in the
three-sphere of an action which is linear in both curvature and torsion.

Furthermore, they are either helices with respect to a kind of Villarceau flow and so loxo-
dromes in conformal Hopf tubes �anchor rings, revolution tori� or helices with respect to a de-
formed Villarceau flow and so loxodromes in deformed conformal Hopf tubes �Dupin cyclides�.

In both cases, the space of helical structures is completely determined, up to either rigid
motions in the submodel �A� or conformal motions in the submodel �B�, by two moduli.

• The cross section of either the right cylinder or the Hopf tube, which can be determined from
a real valued function playing the role of its curvature function in the plane or in the
two-sphere, respectively.

• A real number playing the role of slope. The geometrical meaning of this moduli is obvious.
However, it also has an important variational meaning. The slope of a helix measures the
ratio between twisting and bending weights in the energy actions admitting that helix as an
extremal.

In both submodels, helices appear as solutions of a simple variational problem. In the former,
helices appear directly in the Euclidean space, while in the later they appear in the three-sphere
and then we have to project down, conformally, in the Euclidean space. However, the main
difference between both submodels comes from the topology. The second submodel admits closed
structures while this cannot hold in the first one. Besides these two principles, least action and
topological, which are two requirements of our model, a third one must be remarked. A quanti-
zation principle works for the main entities of the model. Therefore, the energy of an extremal,
i.e., a helical configuration, is not arbitrary but it comes only in natural multiples of some basic
quantity of energy. So energy critical values only depend on the homotopy class of cross sections.

The moduli space of closed helical structures in this model is also obtained from a rational
constraint between both moduli, the cross section, and the slope. Assume, for instance, we wish to
determine the space of closed W-helices with slope h, where W=dEo�V� is a certain Villarceau
flow. These helices are images, under Eo, of closed Lancret helices with slope h in the three-
sphere. To construct the corresponding cross sections we need essentially two ingredients: �1� the
isoperimetric inequality in the two-sphere S2�1 /2�. This allows us to determine the region �
= 
�x ,y� :x2+ �y−��2��2 ,x�0 and 0�y�2�� in the 
x ,y�-plane with the following property:
the coordinates of any point a= �x ,y��� provide the length and the enclosed oriented area of a
simple closed curve in the two-sphere according to L=x and 2A=y. �2� The isometry type of the
associated Hopf tori. It allows one to obtain, in terms of the slope, the constraint to close a Lancret
helix. Therefore, for any rational number q�Q, consider the straight line Rhq given by y=hx
+q�. Now, for any point a= �x ,y����Rhq, there exists a closed curve �hq

a �S2�1 /2� with length

L=x and enclosed area A=y /2. The Lancret helix �hq
a �t�=eipt�̄a�nt�, with slope h= p /n, is closed.

Moreover, the moduli space of closed W-helices having W-slope h is obtained as 
�hq
a :q

�Q and a���Rhq�.
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