${ }^{1}$ A conformal variational approach for helices in nature

Manuel Barros ${ }^{1, \mathrm{a})}$ and Angel Ferrández ${ }^{2, \mathrm{~b})}$
${ }^{1}$ Departamento de Geometría y Topología, Facultad de Ciencias, 3
Universidad de Granada, 18071 Granada, Spain 4
${ }^{2}$ Departamento de Matemáticas, Universidad de Murcia Campus de Espinardo, 5 30100 Murcia, Spain
(Received 23 July 2009; accepted 31 August 2009; published online xx xx xxxx)

We propose a two step variational principle to describe helical structures in nature. 8 The first one is governed by an energy action which is a linear function in both 9 curvature and torsion allowing to describe nonclosed structures including elliptical, spherical, and conical helices. These appear as rhumb lines in right cylinders constructed over plane curves. The model is completed with a conformal alternative which, in particular, gives a description of closed structures. The energy action is linear in the curvatures when computed in a conformal spherical metric. Now, helices appear as making a constant angle with a Villarceau flow and so they are loxodromes in surfaces which are stereographic projections of Hopf tubes, in particular, anchor rings, revolution tori, and Dupin cyclides. The model satisfies the requirements of simplicity and beauty as reflected in the three main principles that head its construction: least action, topological, and quantization. According to the latter, the main entities and quantities associated with the model should not be multiplied unnecessarily but they are quantized. In this sense, a quantization principle, a la Dirac, is obtained for closed structures and also for the critical levels of energy. © 2009 American Institute of Physics. [doi:10.1063/1.3236683]

25 I. INTRODUCTION: HELICAL CONFIGURATIONS IN NATURE

26 Helical configurations are structures commonly found in nature. They appear in microscopic 26 27 systems (biomolecules, bacterial fibers, nanosprings, protein chains in particular DNA, etc.) as 27 28 well as in macroscopic phenomena (strings, ropes, climbing plants, coiled springs, horns of moun- 28 29 tain goats, vortices, etc.) (see, for example, Refs. 2, 5, 10-12, 21, and 25 and references therein). 29 30 In particular, they are very important and ubiquitous in biology as a consequence of the following 30 31 known, in the biological community since the work of Pauling, theorem: Identical objects, regu- 31 32 larly assembled, form a helix (see Ref. 6 and references therein). These structures are so basic 32 33 ingredients of the spectacle of the universe, which becomes so much grander and so much beau- 33 34 tiful when one gets a small number of laws, most wisely established, which will suffice to obtain 34 35 mathematical models to describe the experimental phenomena. Several mathematical models have 35 36 been proposed to describe helices and protein fold, including lattice models, statistical mechanical 36 37 models, random energy models, and molecular dynamics simulations (see references in Refs. 1937 38 and 20). In general, perhaps for simplicity, helical structures are usually identified, in the literature, 38 39 with the simplest idea of circular helix (see, for example, Ref. 8). However, that does not fit the 39 40 real world. Nobody can believe that squirrels chasing one another up and around tree trunks follow 40 41 a path of circular helix. First because the cross section of a tree trunk is not circular, but also 41 42 because the axis of a three trunk is not exactly a straight line. As another example we find many 42 43 types of bacteria, such as certain strains of Escherichia coli or Salmonella typhimorium, swim by 43 44 rotating flagellar filaments. These are polymers which are flexible enough to switch between 44

[^0]

FIG. 1. Closed extremals for a given slope. The y-intersect points are rational multiples of π.
45 different helical forms, which are really far from circular helices. Therefore the question is: What 45 46 kind of helices are there in nature? In this paper we try to answer this question by proposing a two 46 47 steps variational model to describe helices in nature.

48 (1) The first step describes a wide class of helices. That made up of Lancret helices or curves 48 making a constant angle with a flow of Euclidean parallel straight lines. They can be geo- 49 metrically seen as geodesics of right cylinders whose cross section lies in a plane orthogonal 50 to the flow. Furthermore, they appear, variationally, as extremals of an energy action whose 51 density is a linear function in both curvature and torsion. A quantization principle works for 52 critical values of that functional: "the energy of a helix is not arbitrary, but it comes as a 53 natural multiple of some basic quantity of energy." In particular, the energy is constant if the 54 homotopy class of the cross section is preserved.

55
(2) The submodel we have just described is very rich in solutions. However, it does not allow to 56 get closed helical structures due, in part, to noncompactness of their flow lines. Then, we 57 have to consider a second step which, in particular, should allow us to describe closed 58 structures. Let us draw up the main ingredients to create it.
(1) Note first that the helical concept is related to a vector field or flow lines. Therefore, under 60 obvious considerations, it is preserved under conformal mappings.
(2) Then change the topology of the space in order to close Euclidean parallel straight lines. The 62 simplest way to do that is reached by adding a point at infinity to get a round three-sphere. 63
(3) The new space is endowed with a kind of parallelism of great circles, which is known as 64 Clifford parallelism. Then we use the flow of Clifford parallel great circles to solve the 65 problems associated with helices and, in particular, the so-called closed curve problem. We 66 will see, for instance, that helices will appear as geodesics of certain flat surfaces known as 67 Hopf tubes and they can be closed provided Hopf tubes are compact genus one surfaces, i.e., 68 Hopf tori. Furthermore, helices will also be extremals of an energy action whose density is 69 a linear function in both curvature and torsion.
(4) Now, use the stereographic projection, which is known to be conformal, to view the Clifford 71 parallelism as a flow of Villarceau circles. Then, Villarceau helices will be curves making a 72 constant angle with a Villarceau flow and they will appear as loxodromes in surfaces which 73 are stereographic projection images of Hopf tubes.
(5) We will finally exhibit a new quantization principle working out for closed Villarceau heli- 75 ces. The corresponding moduli space can be identified with a certain domain in the plane 76 (see Fig. 1).
${ }^{82}$ Böschungslinien (see, for instance, Ref. 3 and references therein). They are analytically charac- 82 83 terized by the constancy of the ratio between torsion and curvature. Geometrically, they are 83 84 characterized as geodesics of right cylinders over plane curves. As those surfaces are flat, a 84 85 Lancret helix is completely determined from the following data: first the curvature function of a 85 86 plane curve which makes the role of cross section in the cylinder and then the ratio between 86 87 torsion and curvature which works as the slope of the helix regarded as a geodesic in this cylinder. 87 88 Next, we give a simple variational characterization of Lancret helices.
89 Least action. Lorsqu'il arrive quelque changement dans la Nature la quantité d'action, néces- 89 90 saire pour ce changement, est la plus petite possible (Pierre Louis Moreau de Maupertuis, Lyon 90 91 1756, Vol IV, p. 36). Admissible helical structures in Nature should be, as possible, extremals of a 91 92 reasonable elastic energy action. Obviously the choice of such an energy action involves some 92 93 requirements. Therefore, it must be invariant not only by reparametrizations but also by motions of 93 94 the Euclidean space. ${ }^{22}$ Consequently, it yields to choose a Lagrangian density that is a function of 94 95 the geometrical invariants: arc length s, curvature κ, and torsion τ,

$$
\mathcal{E}(\gamma)=\int_{\gamma} \mathbf{F}(\kappa, \tau) d s
$$

97 The Euler-Lagrange equations, also called field equations, for these kind of functionals, acting on 97 98 suitable spaces of curves, can be obtained using standard arguments that involve several integra- 98 99 tions by parts. Actually, they were obtained in Ref. 19 for more general actions where density also 99 100 involves the first derivatives with respect to s, i.e., $\mathbf{F}\left(\kappa, \tau, \kappa^{\prime}, \tau^{\prime}\right)$. These equations have been 100 101 manipulated in Refs. 19 and 20, having no outstanding progress, even in special cases. For 101 102 example, the case where the energy is a linear combination of both length, total bending, and total 102 103 twisting,

$$
\mathbf{F}(\kappa, \tau)=m+n \kappa+p \tau \quad m, n, p \in \mathbb{R}
$$

105 is not sufficiently exploited there. The authors affirm that the only solutions, of the Euler-105 106 Lagrange equations in this model, are circular helices. However, this is quite false. Precisely the 106 107 case where $m=0$ provides a simple model, with a wide space of field configurations, which is able 107 108 to describe a lot of helices in nature.
109 Let Λ be the space of curves connecting two points $x, y \in \mathbb{R}^{3}$ in the Euclidean space and 109 110 having the same Frenet frame at those points (clamped curves). For any three real numbers, 110 $111 m, n, p \in \mathbb{R}$, we consider the action

$$
\mathcal{F}_{m n p}: \Lambda \rightarrow \mathbb{R}, \quad \mathcal{F}_{m n p}(\gamma)=\int_{\gamma}(m+n \kappa+p \tau) d s
$$

113 The field equations for these functionals have been computed in several places, including Ref. 19, 113 114 getting

$$
m \kappa+(n \tau-p \kappa) \tau=0, \quad n \tau^{\prime}-p \kappa^{\prime}=0 .
$$

116 These equations can be easily solved. If $m \neq 0$, the solutions are circular helices (both curvature 116 117 and torsion are constant) as asserted in Ref. 19. However, when $m=0$, the space of field configu- 117 118 rations consists, up to motions in R^{3}, of those curves such that the ratio between torsion and 118 119 curvature is a constant, namely,

$$
\frac{\tau}{\kappa}=\frac{p}{n} .
$$

121 Hence, given a pair of real numbers, $n, p \in \mathbb{R}$, the space of field configurations of the energy 121 122 action,

$$
\begin{equation*}
\mathcal{F}_{n p}: \Lambda \rightarrow \mathbb{R}, \quad \mathcal{F}_{n p}(\gamma)=\int_{\gamma}(n \kappa+p \tau) d s \tag{123}
\end{equation*}
$$

124 is, up to congruences in the Euclidean space, that of Lancret helices with slope p / n. Consequently, 124
125 it can be identified with the space of plane curves. In other words, the corresponding moduli space 125 126 is just the space of real valued functions of one variable, each function working as the curvature 126 127 function of a cross section. The following algorithm allows one to construct all helical configu- 127 128 rations of the model $\mathcal{F}_{n p}$. 128

129 (1) Choose any plane curve, say $\alpha(s), s$ being the arc length parameter, and let $\vec{\xi}$ be a unitary 129 130 vector normal to the plane that contains the curve. 130
131 (2) The right cylinder \mathbf{C}_{α}, with cross section $\alpha(s)$, is defined by the map 131
$132 \quad \phi(s, v)=\alpha(s)+v \vec{\xi}$.
133 (3) In \mathbf{C}_{α} we choose the geodesic with slope $h=p / n$, that is,

$$
\begin{equation*}
\gamma_{h}(t)=\phi(n t, p t)=\alpha(n t)+p t \vec{\xi} \tag{134}
\end{equation*}
$$

135 Then γ_{h} is a Lancret helix which is an extremal of $\mathcal{F}_{n p}$. Furthermore, each extremal of this 135 energy action is constructed in this way.

137 It should be noted that if the weight of the twisting effect, in the action, increases, then the 137 138 slope of helical configurations of the model also increases. However, if the weight of bending 138 139 effect increases then, the slope of helical configurations decreases. As it was pointed out in Ref. 19139 140 (see also Ref. 28) besides circular helices there are many different shapes of helical configurations 140 141 that might also be of considerable interest for protein folding, including elliptical, spherical, and 141 142 conical. Then, as an illustration, they exhibited conical helices and tried to get them as extremal of 142 143 energy actions, however, the result is confused and unnecessary complicated. In our model, not 143 144 only conical but also elliptical and spherical helices appear naturally as extremals. Next, we 144 145 exhibit these helical structures as an illustration. Namely, we get elliptical, spherical, and conical 145 146 helices in the space of field configurations associated with the energy action $\mathcal{F}_{n p}$ for any pair of 146 147 real numbers n, p.
148 Elliptical helices. Besides protein folding, they apply to different contexts, from construction 148 149 of antennas (see, for instance, Ref. 31) to nanotechnology (see, for instance, Ref. 18). These 149 150 helical structures appear as geodesics, with slope $h=p / n$, of right cylinders with elliptic cross 150 151 section. Therefore, we start with an ellipse, say in the plane $z=0$, 151

$$
\alpha(u)=\left(r_{1} \cos u, r_{2} \sin u, 0\right) .
$$

153 The arc length function is given by $s(u)=r_{2} \int_{0}^{u} \sqrt{1-\lambda \sin ^{2} \theta} d \theta$, which is the elliptic integral of 153 154 second kind, where $\lambda=1-r_{1}^{2} / r_{2}^{2}$ and $r_{2}>r_{1}$. This function, as well as its inverse, can be numeri- 154 155 cally handled because they are standard in mathematical software. For instance, one can use 155 156 MATHEMATICA as in Ref. 14 to get numerical solutions of elliptical helices. 156
157 Spherical helices. Energy functionals such as $\mathcal{F}_{n p}$ have extremals lying in spheres. They are 157 158 essentially geodesics of right cylinders with cross sections being epicycloids. An epicycloid is a 158 159 planar curve traced out by a point on a circle (of radius b) rolling outside another circle (of radius 159 160 a). ${ }^{9}$ In fact, pick out a Lancret helix γ_{h}, with slope $h=p / n$, which is an extremal of $\mathcal{F}_{n p}$. Then 160 $161 \tau=h \kappa$. Moreover, γ_{h} is contained in a sphere of radius, say r, if and only if $R^{2}+\left(T R^{\prime}\right)^{2}=r^{2}$, where 161 $162 R=1 / \kappa$ and $T=1 / \tau$. We can solve both equations to obtain

$$
\kappa=\frac{1}{\sqrt{r^{2}-h^{2} s^{2}}}, \quad \tau=\frac{h}{\sqrt{r^{2}-h^{2} s^{2}}}
$$

$$
\begin{equation*}
\alpha(u)=\left((a+b) \cos u-b \cos \frac{(a+b) u}{b} ;(a+b) \sin u-b \sin \frac{(a+b) u}{b}\right), \tag{165}
\end{equation*}
$$

166 where radii are $a=r h / \sqrt{1+h^{2}}$ and $b=(r / 2)\left(1-r h / \sqrt{1+h^{2}}\right)$. The arc length function is given by 166 $167 s(u)=-(4(a+b) / a b) \cos (a u / 2 b)$. Therefore,

$$
\gamma_{h}(t)=\left((a+b) \cos t(n s)-b \cos \frac{(a+b) t(n s)}{b} ;(a+b) \sin t(n s)-b \sin \frac{(a+b) t(n s)}{b} ; t(p s)\right)
$$

$169 t$ being the function defined by $t(r)=(2 b / a) \arccos (-(a b / 4(a+b)) r)$.
170 Conical helices. They appear as geodesics of right cylinders whose cross section is either a 170 171 logarithmic spiral (like that given in Ref. 19) or an Archimedean spiral. Therefore, consider the 171 172 former

$$
\alpha(u)=(a u \cos (b \ln u) ; a u \sin (b \ln u)), \quad u>0
$$

174 where u works, up to a scaling constant, as the arc length parameter. Now, given the energy action 174 $175 \mathcal{F}_{n p}$, we choose in the right cylinder $\phi(u, v)=\alpha(u)+v \vec{\partial}_{z}$, the geodesic with slope $h=p / n$ to get 175

$$
\gamma_{h}(t)=(a n t \cos (b \ln (n t)) ; a n t \sin (b \ln (n t)) ; p t)
$$

177 which is a conical helix, lying in the cone $x^{2}+y^{2}=\left(a^{2} n^{2} / p^{2}\right) z^{2}$, which is an extremal of $\mathcal{F}_{n p}$. Other 177 178 conical helices being extremals of this energy action can be obtained starting from an 178 179 Archimedean spiral. The simplest one is

$$
\alpha(u)=(a u \cos u ; a u \sin u)
$$

181 then choose in the right cylinder, with cross section α, the geodesic

$$
\gamma_{h}(t)=(a n t \cos (n t) ; a n t \sin (n t) ; p t)
$$

183 with slope $h=p / n$.
184 Remark: The set of solutions of the Euler-Lagrange equations associated with $\mathcal{F}_{m n p}$ is sum-184 185 marized in the following table. For simplicity of interpretation, we have represented different 185 186 cases according to the values of the three coupling parameters specifying the free energy proposed 186 187 model.

m	n	p	Moduli space of trajectories
$\neq 0$	$=0$	$=0$	Geodesics $\kappa=0$
$=0$	$=0$	$\neq 0$	Circles κ constant and $\tau=0$
$=0$	$\neq 0$	$=0$	Plane curves $\tau=0$
$\neq 0$	$\neq 0$	$=0$	Helices with $\kappa=\frac{-n \tau^{2}}{m}$
$\neq 0$	$=0$	$\neq 0$	Helices with arbitrary κ and $\tau=\frac{m}{p}$
$=0$	$\neq 0$	$\neq 0$	Lancret curves with $\tau={ }_{n}^{p} \kappa$
$\neq 0$	$\neq 0$	$\neq 0$	Helices with $\kappa=\frac{-n a^{2}}{m+a p}, \tau=\frac{m a}{m+a p}$ and $a \in \mathbb{R}-\left\{-\frac{m}{p}\right\}$

- -192
- 193

Helices with $\kappa=\frac{-n a^{2}}{m+a p}, \tau=\frac{m a}{m+a p}$ and $a \in \mathbb{R}-\left\{-\frac{m}{p}\right\}$
194
195

196 A quantization principle for energy critical values. Pluralitas non est ponenda sine neccesitate 196 197 (William of Ockham logician and franciscan friar of the 14th cetury). Let $\gamma_{h}(t)=\phi(n t, p t) 197$ $198=\alpha(n t)+p t \vec{\xi}$, with $h=p / n$, be a critical point of the action $\mathcal{F}_{n p}$. Denote by $\left\{T=\alpha^{\prime}, N\right\}$ and $\kappa_{\alpha}(s)$ a 198 199 Frenet frame and the curvature function of the cross section α, which we have assumed to be arc 199 200 length parametrized, respectively. As for the Frenet apparatus of γ_{h} in \mathbb{R}^{3} we have

$$
T_{h}=\frac{n}{\sqrt{n^{2}+p^{2}}} T+\frac{p}{\sqrt{n^{2}+p^{2}}} \vec{\xi} .
$$

202 To compute the unit normal and the curvature, one proceeds as usual,

$$
\nabla_{T_{h}} T_{h}=\kappa N_{h}=\frac{n^{2}}{n^{2}+p^{2}} \nabla_{T} T=\frac{n^{2}}{n^{2}+p^{2}} \kappa_{\alpha} N
$$

204 so that

$$
N_{h}= \pm N, \quad \kappa=\frac{n^{2}}{n^{2}+p^{2}}\left|\kappa_{\alpha}\right|
$$

206 Finally, the unit binormal and the torsion are given by

$$
B_{h}=T_{h} \wedge N_{h}=\frac{n}{\sqrt{n^{2}+p^{2}}} \vec{\xi}-\frac{p}{\sqrt{n^{2}+p^{2}}} T
$$

$$
\nabla_{T_{h}} B_{h}=-\tau N_{h}=-\frac{n p}{n^{2}+p^{2}} \nabla_{T} T=-\frac{n p}{n^{2}+p^{2}} \kappa_{\alpha} N
$$

209 and

$$
\tau=\frac{n p}{n^{2}+p^{2}}\left|\kappa_{\alpha}\right|
$$

211 Assume now that $\alpha:[0, L] \rightarrow \mathrm{R}^{2}$ is parametrized by the arc length, then the Lancret curve $\gamma_{h}(t) 211$ $212=\alpha(n t)+p t \vec{\xi}$, with $h=(p / n)$, is parametrized by $\gamma_{h}:[0, L / n] \rightarrow \mathbb{R}^{3}$ with arc length function \bar{s} satis- 212 213 fying $d \bar{s}=\sqrt{n^{2}+p^{2}} / n d s=\sqrt{n^{2}+p^{2}} d t$. Then

214

$$
\mathcal{F}_{n p}\left(\gamma_{h}\right)=\int_{\gamma_{h}}(n \kappa+p \tau) d \bar{s}=\int_{0}^{L / n}\left(n+\frac{p^{2}}{n}\right) \kappa(t)\left\|\gamma_{h}^{\prime}(t)\right\| d t
$$

215 Now $\left\|\gamma_{h}^{\prime}(t)\right\|=\sqrt{n^{2}+p^{2}}$ and $\kappa=\left[n^{2} /\left(n^{2}+p^{2}\right)\right]\left|\kappa_{\alpha}\right|$, so that

$$
\mathcal{F}_{n p}\left(\gamma_{h}\right)=n \sqrt{1+h^{2}} \int_{\alpha}\left|\kappa_{\alpha}\right| d s
$$

219 To describe an explicit situation, let P and Q be any two points in \mathbb{R}^{3} and $\vec{\xi}=(Q-P) / \mid Q 219$ $220-P \mid$. Choose a coordinate system in \mathbb{R}^{3} with P in the plane $z=0$ and $\vec{\xi}$ parallel to the z-axis. Now, 220 221 pick up a unit vector, say \vec{v}, and define a space Λ of clamped curves $\beta:[a, b] \rightarrow \mathbb{R}^{3}$ satisfying 221

$$
\beta(a)=P, \quad \beta(b)=Q, \quad T(a)=T(b)=\vec{v} \quad \text { and } \quad\langle N(a), \vec{\xi}\rangle=\langle N(b), \vec{\xi}\rangle=0
$$

223 Let h be the slope of \vec{v} measured with respect to the plane $z=0$ and consider the energy action 223 $224 \mathcal{F}_{n p}: \Lambda \rightarrow \mathrm{R}$ with $h=p / n$. The critical points of $\left(\Lambda, \mathcal{F}_{n p}\right)$ are Lancret helices with slope h and cross 224 225 section being a closed curve in the plane $z=0$. Therefore, start with a closed curve $\alpha:[0, L] 225$ $226 \rightarrow \mathbb{R}^{2}$, in the plane $z=0$, with length $L>0$, such that the corresponding Lancret helix $\gamma_{h}(t) 226$ $227=\alpha(n t)+p t \vec{\xi}$, starting at $P\left(\gamma_{h}(0)=P\right)$ with slope h, reaches the point Q after d consecutive liftings, 227 228 i.e., $\gamma_{h}(L d / n)=Q$. Now, to compute the critical value $\mathcal{F}_{n p}\left(\gamma_{h}\right)$ we must evaluate the total absolute 228 229 curvature of the d-fold of α. To do it, we consider a convex curve $\tilde{\alpha}$ in the plane $z=0$. Geometri- 229 230 cally this curve is obtained from α by a process of symmetrization, namely, reflecting concave 230 231 parts by using straight lines at the inflection points of α. In other words, $\widetilde{\alpha}$ is the arc length 231 232 parametrized curve with curvature function $\kappa_{\tilde{\alpha}}=\left|\kappa_{\alpha}\right|$. After these remarks we obtain

$$
\mathcal{F}_{n p}\left(\gamma_{h}\right)=2 \pi n d \sqrt{1+h^{2}} i(\widetilde{\alpha})
$$

234 where $i(\tilde{\alpha})$ is the rotation number of $\tilde{\alpha}$.

235 Thus, we get the following Dirac quantization principle for extremals: The energy of a helical ${ }^{235}$ 236 configuration is not arbitrary but it comes only in natural multiples of some basic quantity of 236 237 energy, $2 \pi n \sqrt{1+h^{2}}$. In particular, it only depends on the homotopy class of the corresponding 237 238 cross section.
239 An open problem and a conjecture. In Ref. 8 the authors proposed a model to study protein 239 240 chains which is governed by a Lagrangian whose density is a linear function in κ, the curvature of 240 241 the centerline of the protein molecule, namely, $\mathbf{F}(\kappa, \tau)=m+n \kappa$. This is supported in the spiral 241 242 stationary form of the protein chains. The helical structure of proteins implies the choice of a 242 243 Lagrangian whose extremals would be only helices. However, the extremals of the corresponding 243 244 energy are circular helices (see the table above).
245 On the other hand, several arguments could be given in order to include the torsion in the 245 246 Lagrangian governing the protein model, even in a linear way as a variable of the energy density. 246 247 Perhaps, it is enough to mention that, in this way, it is an essential ingredient in the equations of 247 248 Calugareanu ${ }^{7}$ and White, ${ }^{30}$ which have became very important in connection with the theory of 248 249 DNA supercoiling.
250 Consequently, an interesting, and still open, problem is to determine those energy densities 250 $251 \mathbf{F}(\kappa, \tau)$, such that the extremals of \mathcal{E} are Lancret curves. We already know that $\mathbf{F}(\kappa, \tau)=m+n \kappa 251$ $252+p \tau$, with $m, n, p \in \mathbb{R}$, provide nice solutions to the above stated problem. Although it is open, we 252 253 have a conjecture in the sense that linear densities are the only solutions. We know partial answers 253 254 to this conjecture. In fact, it is true when energy density is linear in either the curvature $\mathbf{F}(\kappa, \tau) 254$ $255=m \kappa+\mathbf{G}(\tau)$ or the torsion $\mathbf{F}(\kappa, \tau)=\mathbf{H}(\kappa)+p \tau$. We will give the details in a forthcoming paper. 255

257 The above model certainly covers a wide variety of helical structures. However, there exist 257 258 helical configurations which are not yet modeled. To clarify that we start making the following 258 259 considerations.

260 (1) The first new ingredient to be considered is that related with the axis. To be precise, the 260 notion of Lancret helix can be nicely expressed in mathematical form as follows. First, 261 observe that the axis \vec{x}, via parallel transport, defines in the space a Killing vector field of 262 constant length, i.e., an infinitesimal translation, say X, which generates a flow of curves, 263 namely, straight lines parallel to \vec{x}. Now, X-helices are those curves crossing this flow at the 264 same angle. Certainly, this idea may be extended to a more complicated axis. Any vector 265 field X in the Euclidean space \mathbb{R}^{3} generates, at least locally and via integration, a flow of 266 integral curves. Then we call X-helices those curves crossing this flow under a constant 267 angle. In this case, X works as an axis. Therefore, it seems natural to look at the helices in 268 nature as curves making a constant angle with some geometrical flow. It should be noted that 269 when the helix lies in a certain surface \mathbf{S} of \mathbb{R}^{3} and the axis is tangent to \mathbf{S}, then we get the 270 notion of loxodrome (also called rhumb line) relative to $X \in \mathfrak{X}(\mathbf{S})$. In this way, circular 271 helices (Lancret helices with both curvature and torsion constant) admit a second axis, a 272 rotational Killing vector field Y, perpendicular to \vec{x}, which is tangent to the cross sections of 273 the right cylinders containing circular helices. However, the role played by both axes is quite 274 different. In fact, it is clear that Lancret helices are loxodromes in cylinders over plane 275 curves. Now, this property is obtained from the existence of the first axis. The existence of an 276 axis being a rotational Killing vector field does not imply that the helix was contained in a 277 cylinder over a plane curve. 278
(2) Moreover, it is clear that Lancret helices can never be closed. This happens because the 279 tangent vector field of a Lancret helix always has a positive component, just that in the 280 direction of the axis. On the other hand, cyclic peptides, such as the antibiotic gramicidin S 281 and the immunodepressive agent cyclosporin, have been known for some time in contrast 282 with circular proteins that were little known a decade ago. In recent years, a great number of 283 circular proteins have been discovered in bacteria, plants, and animals. This class includes 284 the so-called rounded proteins or cyclotides (see, for example, Ref. 5). A priori, it could 285
seem natural to admit that circular protein chains are modeled by some kind of helices with 286

288 For a better understanding of these difficulties, consider the following test due to Weiner. ${ }^{29} 288$ 289 For any $n \in \mathbb{N}$, the curve $\alpha_{n}: \mathbb{R} \rightarrow \mathbb{R}^{3}$ defined by

$$
\alpha_{n}(t)=\left(\left(\frac{n-\cos t}{n}\right) \cos \left(\frac{t}{n}\right) ;\left(\frac{n-\cos t}{n}\right) \sin \left(\frac{t}{n}\right) ; \frac{\sin t}{n}\right),
$$

291 which is closed with period $2 \pi n$, winds n times around the anchor ring obtained when revolving 291 292 the circle with center $(1,0,0)$ and radius $1 / n$ about the z-axis. Thus, it admits an axis being a 292 293 rotational Killing vector field which is orthogonal to the revolution axis. In addition, these curves 293 294 have the following curious property (see Ref. 29). For a curve $\alpha:[0, L] \rightarrow \mathbb{R}^{3}$ define the function 294 $295 \mu:[0, L] \rightarrow \mathbb{R}$ by $\mu(t)=\tau(t) / \kappa(t)$ and then the breadth of the graph of μ,

$$
B[\mu]=\max _{[0, L]} \mu-\min _{[0, L]} \mu
$$

297 If μ_{n} denotes the breadth of α_{n} in a period, say $[0,2 \pi n]$, then

$$
\lim _{n \rightarrow \infty}\left\{B\left[\mu_{n}\right]\right\}=0
$$

299 so that, in this sense, these curves can be regarded as a sort of Lancret at the infinity.
300 In this section, we propose a conformal variational model to solve those difficulties. It will 300 301 allow us to describe circular proteins as well as other more complicated helical configurations of 301 302 protein chains. To this end, we draw up the main ideas and ingredients to create it. part, to the noncloseness of the straight lines that constitute its axis flow lines. To close 304 parallel straight lines, we need to change the topology of \mathbb{R}^{3}. In this sense, it seems natural 305 to choose its once-point compactification, that is, the three-sphere $S^{3}=\mathbb{R}^{3} \cup\left\{\zeta_{o}\right\}$. Roughly 306 speaking, we add the infinity point.
(2) Then, we equip S^{3} with a metric as similar as possible to that Euclidean in R^{3}. Certainly, the 308 answer is obvious. Choose one in the same conformal class in order to preserve the angles. 309 In addition, we dispose of metrics with constant curvature which allow to see S^{3} as a round 310 sphere.311
(3) In this background, the straight lines are geodesics, i.e., great circles. Furthermore, we have 312 a classical structure which allows one to talk about parallel straight lines, the so-called 313 Clifford parallelism. Now, flows of Clifford parallel great circles are well described through 314 Hopf vector fields, i.e., infinitesimal translations which can be regarded as the vertical flows 315 of Hopf maps. In this way, we have a kind of cylinders or tubes in the round three-sphere, 316 playing the role of right cylinders, that are obtained by lifting, via a Hopf map, curves in the 317 two-sphere which work as cross sections for tubes. Then we can characterize Lancret helices 318 in the three-sphere, i.e., curves which admit an axis being an infinitesimal translation, or a 319 Hopf vector field, as those curves that are geodesics in a Hopf tube.
(4) However, the surprise continues. We can exhibit Lancret helices in \mathbf{S}^{3} as extremals of an 321 energy action involving the corresponding geometrical invariants. Moreover, we obtain the 322 whole space of closed Lancret configurations. Said otherwise, solve the so-called closed 323 curve problem for Lancret helices in S^{3}.
(5) Once the problem is solved in the three-sphere, project conformally over the Euclidean 325 space. To do it, we use a stereographic projection, for example, from the added point ζ_{o}. The 326 Hopf flow goes to a Villarceau flow, so conformal helices make a constant angle with this 327 flow, the axis being a conformal Killing vector field. They can be viewed as loxodromes in 328 conformal Hopf tubes including anchor rings. However, we can stereographically project 329 from an arbitrary point to nicely deform surfaces and helices which can appear as rhumb 330 lines in Dupin cyclides.

332 (6) Roughly speaking, the underlying idea in the new geometrical picture we are proposing is to ${ }^{332}$ see Villarceau flow of circles, which is the conformal image of the Clifford parallelism in the 333 three-sphere, replacing Euclidean flow of parallel straight lines. In this sense, the whole 334 model provides solutions which are helical structures with axis being either a flow of Eu- 335 clidean parallel straight lines or a flow of Clifford parallel Villarceau circles.

337 Therefore, once we have chosen the three-sphere with a metric of constant curvature, i.e., a 337 338 round sphere, without loss of generality we may assume that it has radius one and all this 338 339 framework will be denoted simply by S^{3}. From now on, we give some details on the above stated 339 340 program.

341 IV. THE CLIFFORD PARALLELISM IN THE THREE-SPHERE

342 The Hopf map $S^{3} \rightarrow S^{2}$ is a very important object not only in mathematics but also in physics 342 343 (see Ref. 27, for a nice survey). In this section, we use this map to describe a classical structure in 343 344 the three-sphere, the Clifford parallelism, which is reminiscent of the classical parallelism of lines 344 345 in the Euclidean space.
346 In the three-sphere, $S^{3}=\left\{\zeta=\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}:|\zeta|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}=1\right\}$, we consider the usual action $S^{1} 346$ $347 \times S^{3} \rightarrow S^{3}$ defined by

$$
\left(e^{i t}, \zeta\right) \mapsto e^{i t} \zeta=\left(e^{i t} z_{1}, e^{i t} z_{2}\right)
$$

349 The orbits under this action are great circles (geodesics) of S^{3}. If \mathbf{C} and \mathbf{C}^{\prime} denote any two orbits 349 350 and d stands for the distance in S^{3}, then we have

$$
d\left(\zeta, \mathbf{C}^{\prime}\right)=d\left(\eta, \mathbf{C}^{\prime}\right) \quad \text { for any } \zeta, \eta \in \mathbf{C} .
$$351

352 Moreover, if $\zeta \in \mathbf{C}$ and $\zeta^{\prime} \in \mathbf{C}^{\prime}$ satisfy $d\left(\zeta, \zeta^{\prime}\right)=d\left(\mathbf{C}, \mathbf{C}^{\prime}\right)$, then any great circle containing ζ and $\zeta^{\prime} 352$ 353 intersects orthogonally both \mathbf{C} and \mathbf{C}^{\prime}. This leads to the following definition. Two great circles, $\mathbf{C} 353$ 354 and \mathbf{C}^{\prime}, in S^{3} are Clifford parallel if $d\left(\zeta, \mathbf{C}^{\prime}\right)$ does not depend on $\zeta \in \mathbf{C}$. If this is the case, then we 354 355 write $\mathbf{C} \| \mathbf{C}^{\prime}$. Given a great circle \mathbf{C} and $\theta \in[0, \pi]$, define

$$
\mathbf{C}_{\theta}=\left\{\zeta \in \mathbb{S}^{3}: d(\zeta, \mathbf{C})=\theta\right\} .
$$

357 If \mathbf{C}^{\perp} denotes the great circle associated with the plane, through the origin, that is, orthogonal to 357 358 that corresponding to \mathbf{C}, then $\mathbf{C}_{0}=\mathbf{C}, \mathbf{C}_{\pi / 2}=\mathbf{C}^{\perp}, \mathbf{C}_{\pi-\theta}=-\mathbf{C}_{\theta}$, and $\mathbf{C}_{\pi / 2-\theta}=\mathbf{C}_{\theta}^{\perp}$. Therefore, it is 358 359 enough to consider $\theta \in(0, \pi / 2)$ to describe the geometry of these subsets as follows.

360 (1) For any $\theta \in(0, \pi / 2)$, the set \mathbf{C}_{θ} is the intersection of S^{3} with a cone in $\mathbb{R}^{4}=C^{2}$. More 360 precisely, in a suitable coordinate system $\left(z_{1}, z_{2}\right)$ in \mathbb{C}^{2}, we can check that $\mathbf{C}_{\theta}=S^{3} \cap \Omega_{\theta}$, where 361

$$
\Omega_{\theta}=\left\{\zeta=\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}:\left|z_{1}\right|^{2} \sin ^{2} \theta-\left|z_{2}\right|^{2} \cos ^{2} \theta=0\right\} .
$$

363 (2) Even more, \mathbf{C}_{θ} can be identified with the following torus:

$$
\mathbf{C}_{\theta}=\left\{\zeta=\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}:\left|z_{1}\right|=\cos \theta,\left|z_{2}\right|=\sin \theta\right\}
$$

365 (3) For any $\theta \in(0, \pi / 2)$, any great circle \mathbf{C} and $\zeta \in \mathbf{C}_{\theta}$, there exist exactly two great circles 365 through $\zeta, \mathbf{C}^{\prime}$, and $\mathbf{C}^{\prime \prime}$, that are Clifford parallel to \mathbf{C}. This shows that the Clifford parallelism 366 is not an equivalence relation.

368 Despite that, the Clifford parallelism can be decomposed in two equivalence relations. Let us 368 369 sketch how to do it. Given a great circle \mathbf{C}, we have \mathbf{C}^{\perp}, so that the planes through the origin $\mathbf{P} 369$ 370 and \mathbf{P}^{\perp}, containing these two great circles, satisfy $\mathbf{P} \oplus \mathbf{P}^{\perp}=\mathbb{R}^{4}$. We also fix an orientation on \mathbf{P} and 370 $371 \mathbf{P}^{\perp}$ to get the canonical orientation in R^{4} according to the above decomposition. Next, define 371 372 subgroups of $\mathbf{O}^{+}(\mathbf{P}) \times \mathbf{O}^{+}\left(\mathbf{P}^{\perp}\right) \subset \mathbf{O}^{+}\left(\mathbb{R}^{4}\right)$ by

$$
\mathbf{G}_{\mathbf{C}}^{+}=\left\{\left(\omega ; f_{+} \circ \omega \circ f_{+}^{-1}\right): \omega \in \mathbf{O}^{+}(\mathbf{P})\right\},
$$

$$
\mathbf{G}_{\mathbf{C}}^{-}=\left\{\left(\omega ; f_{-} \circ \omega \circ f_{-}^{-1}\right): \omega \in \mathbf{O}^{+}(\mathbf{P})\right\}
$$

375 where $f_{+} \in \mathbf{I} \mathbf{S o}^{+}\left(\mathbf{P}, \mathbf{P}^{\perp}\right)\left(f_{-} \in \mathbf{I s} \mathbf{o}^{-}\left(\mathbf{P}, \mathbf{P}^{\perp}\right)\right)$ is an orientation preserving (nonpreserving) isometry. It 375 376 should be noticed that this construction does not depend on f_{+}(or f_{-}). Now, an orbit under the 376 $377 \mathbf{G}_{C}^{+}$-action is a great circle, say \mathbf{C}^{\prime}, that is called a Clifford parallel to \mathbf{C} of the first kind, while 377 378 second kind of Clifford parallels, $\mathbf{C}^{\prime \prime}$, is obtained via the second subgroup. These are two equiva- 378 379 lence relations which are denoted by $\mathbf{C} \|^{+} \mathbf{C}^{\prime}$ and $\mathbf{C} \|^{-} \mathbf{C}^{\prime \prime}$. Furthermore, we have the following facts. 379

380 (1) The condition $\mathbf{C} \| \widetilde{\mathbf{C}}$ is equivalent to either $\mathbf{C} \|^{+} \widetilde{\mathbf{C}}$ or $\mathbf{C} \|^{-} \widetilde{\mathbf{C}}$.
381 (2) For each $\zeta \in S^{3}$, there exist two great circles through ζ that are Clifford parallel to \mathbf{C}, one of 381 the first kind, \mathbf{C}^{\prime}, and one of the second, $\mathbf{C}^{\prime \prime}$. Furthermore, $\mathbf{C}^{\prime} \neq \mathbf{C}^{\prime \prime}$ if $\zeta \in S^{3} \backslash\left(\mathbf{C} \cup \mathbf{C}^{\perp}\right)$. 382

383 The great circle Clifford parallel to \mathbf{C} of first kind (second kind) can be viewed as orbits of a 383 384 standard action of the group $\mathbf{G}_{\mathbf{C}}^{+}\left(\mathbf{G}_{\mathbf{C}}^{-}\right)$. In fact, in the appropriate coordinate system, the action of 384 $385 \mathbf{G}_{\mathbf{C}}^{+}$on S^{3} is the usual one described by the action

$$
\mathbf{G}_{\mathbf{C}}^{+} \times \mathrm{S}^{3} \rightarrow \mathrm{~S}^{3}, \quad\left(\varphi_{t}, \zeta\right) \mapsto \varphi_{t}(\zeta)=e^{i t} \cdot \zeta
$$

387 Hence, the orbits under this action, i.e., the first kind great circles Clifford parallel to \mathbf{C}, are 387 388 nothing but the fibers of the usual Hopf map $\Pi: S^{3} \rightarrow S^{2}(1 / 2), \Pi\left(z_{1}, z_{2}\right)=\left(z_{1} \bar{z}_{2}, \frac{1}{2}\left(\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}\right)\right)$, 388 389 where \bar{z}_{2} is the complex conjugate of z_{2}. To simplify, we write $\mathbf{G}_{\mathbf{C}}^{+}=\left\{\varphi_{t}: t \in \mathbb{R}\right\}$.

$$
\mathbf{G}_{\mathbf{C}}^{-} \times \mathrm{S}^{3} \rightarrow \mathrm{~S}^{3}, \quad\left(\chi_{t},\left(z_{1}, z_{2}\right)\right) \mapsto \chi_{t}\left(z_{1}, z_{2}\right)=\left(e^{i t} z_{1}, e^{-i t} z_{2}\right)
$$

393 Similarly to the usual Hopf map, the projection map to the quotient space is

$$
\Pi_{-}: S^{3} \rightarrow S^{2}(1 / 2), \quad \Pi_{-}\left(z_{1}, z_{2}\right)=\left(z_{1} z_{2}, \frac{1}{2}\left(\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}\right)\right)
$$394

395 As before, the fibers of Π_{-}are nothing but the second kind circles Clifford parallel to C. 395
396 Now, we just need to see that the isometry $J: S^{3} \rightarrow S^{3}, J\left(z_{1}, z_{2}\right)=\left(z_{1}, \bar{z}_{2}\right)$ yields to the following 396 397 commutative diagram:

S^{3}	\xrightarrow{J}	S^{3}
$\Pi \downarrow$		$\downarrow \Pi_{-}$
$S^{2}(1 / 2)$	$\xrightarrow{I d}$	$S^{2}(1 / 2)$.

399 Then, up to small changes, we can reduce ourselves to the case of first kind Clifford parallel great 399 400 circles.

402 Once we have established the general ideas governing the second part of this model and the 402 403 main technical ingredient provided by the Clifford parallelism, it should be considered the follow- 403 404 ing program.

- Find the meaning of a helical structure or a Lancret helix in S^{3}.
- Obtain Lancret helices in S^{3} geometrically, i.e., use geometry to solve the natural equations 406 for Lancret helices in S^{3}.
- Characterize Lancret helices in S^{3} as solutions of a variational principle associated with an 408 action that involves only geometrical invariants of trajectories.
- Find an explicit algorithm to characterize the closed Lancret curves in S^{3}, i.e., solve the 410 so-called closed curve problem for Lancret helices in S^{3}.

412 To answer this program, we first observe that the natural way to define the notion of Lancret 412 413 helix, not only in S^{3} but also in any Riemannian manifold, say M, was given in Ref. 3. A curve $\gamma 413$ 414 in a Riemannian manifold M is a Lancret one if it makes constant slope with respect to a Killing 414 415 vector field in M which has constant length along γ. In other words, there exists a Killing vector 415 416 field V in M satisfying

$$
\|V(\gamma(s))\|=\text { constant } \quad \text { and } \quad \frac{\left\langle V(s), \gamma^{\prime}(s)\right\rangle}{\left\|\gamma^{\prime}(s)\right\|}=\text { constant } .
$$

418 It should be noted that this is the natural extension of the classical Lancret curve notion in 418 419 Euclidean three-space. In this sense we will say that V is an axis of the Lancret helix γ anywhere. 419 420 Analytical approach. Lancret helices in S^{3}, like those in Euclidan three-space, can be nicely 420 421 characterized in terms of the geometrical invariants, curvature, and torsion (see Ref. 3). Therefore, 421 422 a curve, γ in S^{3} is a Lancret one if and only if either (1) $\tau=0$ and so γ lies in a totally geodesic 422 423 round two-sphere S^{2} or (2) the curvature and the torsion of γ are constrained as follows: 423

$$
\tau=h \kappa \pm 1 \quad \text { for some constant } h .
$$

425 In general, when one works in a round three-sphere with radius $R>0$, then the above equation 425 426 should be changed by $\tau=h \kappa \pm 1 / R$.
427 Geometrical approach. Lancret helices in S^{3} can be also nicely characterized as geodesics in 427 428 some flat tubes. To better understand this geometrical meaning, note first that the Hopf map 428 429 becomes a Riemannian submersion by choosing in the two-sphere the metric with constant cur- 429 430 vature 4 (see Refs. 4 and 23, for details on Riemannian submersions). Now, the one-parameter 430 431 group $\mathbf{G}_{\mathbf{C}}^{+}=\left\{\varphi_{t}: t \in \mathbb{R}\right\}$ generates the following vector field on S^{3},

$$
V(\zeta)=\left\{\frac{d}{d t}\left(\varphi_{t}(\zeta)\right)\right\}_{t=0}=i \zeta, \quad \forall \zeta \in \mathbb{S}^{3},
$$

433 which is a Killing vector field with constant length that defines the vertical flow of that Riemann- 433 434 ian submersion. This kind of fields in S^{3} is usually called Hopf fields.
435 Now, for a curve $\delta: I \subset \mathbb{R} \rightarrow \mathrm{~S}^{2}(1 / 2)$ in the round two-sphere with radius of $1 / 2$, its complete 435 436 lifting $\mathbf{T}_{\delta}=\Pi^{-1}(\delta)$ is a flat surface in S^{3}, the Hopf tube over δ or the Hopf tube with cross section 436 437δ. This surface can be nicely parametrized by

$$
X: I \times \mathbb{R} \rightarrow \mathbf{T}_{\delta} \subset S^{3}, \quad X(s, t)=e^{i t} \bar{\delta}(s),
$$

439 where $\bar{\delta}$ stands for a horizontal lifting of δ. Thus, the coordinate curves are, respectively, 439 440δ-horizontal liftings ($t=$ constant) and orbits or fibers ($s=$ constant). Now, the following result (see 440 441 Ref. 3) shows, in particular, that the natural equations for Lancret helices in S^{3} can be integrated 441 442 by quadratures.
443 Theorem 1: A curve γ in S^{3} is a Lancret helix if and only if, up to motions in S^{3}, it is a 443 444 geodesic of a Hopf tube. 444
$445 \quad$ Proof: Note first that a geodesic γ in a Hopf tube \mathbf{T}_{δ} has curvature and torsion given by 445

$$
\kappa=\frac{\kappa_{\delta}+2 h}{1+h^{2}}, \quad \tau=\frac{-1+h \kappa_{\delta}+h^{2}}{1+h^{2}},
$$

447 where κ_{δ} is the curvature function of δ in $S^{2}(1 / 2)$ and h denotes the slope, measured with respect 447 448 to fibers, of γ as a geodesic in the flat surface \mathbf{T}_{δ}. This automatically implies that γ is a Lancret 448 449 helix in S^{3}.
450 Conversely, if γ is a Lancret helix in S^{3}, we have $\tau=h \kappa \pm 1$ for some constant h. Now, 450 451 consider in $S^{2}(1 / 2)$ a curve δ, with curvature function $\kappa_{\delta}=\left(1+h^{2}\right) \kappa \pm 2 h$ (this curve is unique up 451 452 to motions in the two-sphere). Now, in the Hopf tube \mathbf{T}_{δ}, choose the geodesic γ_{h}, making an angle 452
453φ with fibers, where $\cot \varphi=\mp h$ (the geodesic with slope h). It is not difficult to see that γ and $\gamma_{h}{ }^{453}$ 454 have the same curvature and the same torsion and so, up to parametrization, they are congruent in 454 $455 \mathrm{~S}^{3}$.

455
456 Corollary 2: Up to motions in S^{3}, Lancret helices can be described by one of the following 456 457 equivalent two moduli.

458 (1) $(\kappa, \tau):$ The curvature and torsion functions which must satisfy a well known constraint. 458
459 (2) ($\left.\kappa_{\delta}, h\right)$: The curvature function in $\mathrm{S}^{2}(1 / 2)$ of the cross section δ and the slope as a geodesic 459 460 in \mathbf{T}_{δ}. 460

461 In any case, the moduli space of complete Lancret helices can be identified with the space 461 $462 C^{\infty}(\mathbb{R}) \times \mathbb{R}$. 462
463 Variational approach. To complete a round, Lancret helices in S^{3} can be also characterized as 463 464 solutions of a variational principle. In fact, like in Sec. III for Euclidean space, let $q_{1}, q_{2} 464$ $465 \in S^{3}(R)$ (the three-sphere with radius R) and $\left\{\vec{x}_{1}, \vec{y}_{1}\right\},\left\{\vec{x}_{2}, \vec{y}_{2}\right\}$ orthonormal vectors in $T_{q_{1}} \mathrm{~S}^{3}(R)$ and 465 $466 T_{q_{2}} \mathrm{~S}^{3}(R)$, respectively. We consider the space of clamped curves,

$$
\Lambda=\left\{\gamma:\left[t_{1}, t_{2}\right] \rightarrow S^{3}(R): \gamma\left(t_{i}\right)=q_{i}, T\left(t_{i}\right)=\vec{x}_{i}, N\left(t_{i}\right)=\vec{y}_{i}, 1 \leq i \leq 2\right\} .
$$

468 In this space of curves, one has the following three-parameter family of functionals, $\left\{\mathcal{F}_{\text {mnp }}: \Lambda 468\right.$ $469 \rightarrow \mathbb{R}: m, n, p \in \mathbb{R}\}$, defined by

$$
\begin{equation*}
\mathcal{F}_{\text {mnp }}(\alpha)=\int_{\alpha}(m+n \kappa+p \tau) d s \tag{1}
\end{equation*}
$$

471 The field equations associated with these Lagrangians, for curves in the three-sphere using a 471 472 standard method (see Ref. 1), are given by

$$
-m \kappa+p \kappa \tau+n\left(\frac{1-R^{2} \tau^{2}}{R^{2}}\right)=0
$$

$$
(p \kappa-n \tau)^{\prime}=0
$$

475 which can be nicely integrated. Moduli spaces of solutions are represented in the following table 475 476 where, for simplicity, we have distinguished different cases according to the values of parameters. 476

492 Theorem 3: A curve in the round three-sphere is a Lancret helix if and only if it is an extremal 492 493 for some action $\mathcal{F}_{\text {mnp }}$ when acting on a suitable space of curves. 493 494 Quantization principle for closing Lancret helices. To finish the Lancret program in S^{3}, we 494 495 need to describe closed Lancret helices. This is done through the following argument which 495 496 culminates in a quantization principle.

- Since Lancret helices are geodesic of Hopf tubes which are flat surfaces, one needs to start 497 from a closed curve δ in $\mathrm{S}^{2}(1 / 2)$. Now, if the cross section closes then it is not difficult to see 498 that \mathbf{T}_{δ} is a torus. To determine the isometry type of this flat torus, we consider the covering 499 map,

$$
\begin{equation*}
X: \mathrm{R}^{2} \rightarrow \mathbf{T}_{\delta}, \quad X(s, t)=e^{i t} \bar{\delta}(s), \tag{501}
\end{equation*}
$$

and use a well known machinery (see Refs. 15 and 24) to obtain that \mathbf{T}_{δ} is isometric to $\mathbb{R}^{2} / \Gamma, 502$ where Γ is the lattice in the Euclidean plane spanned by $(L, 2 A)$ and $(0,2 \pi)$. Here $L>0503$ denotes the length of δ and $A \in(-\pi, \pi)$ is the oriented area enclosed by δ in the two-sphere. 504

- Consequently, a Lancret helix in S^{3} closes if and only if its slope h satisfies the following 505 quantization constraint:

$$
h=\frac{1}{L}(2 A+q \pi), \quad q \in \mathrm{Q} \text { rational. }
$$

- The existence of closed Lancret helices in any Hopf torus is guaranteed by the isoperimetric 508 inequality in $S^{2}(1 / 2)$. In fact, the length and the enclosed area for an embedded closed curve 509 are related by

$$
L^{2}+4 A^{2}-4 \pi A \geq 0
$$

which can be written as

$$
L^{2}+(2 A-\pi)^{2} \geq \pi^{2}
$$

Therefore, in the plane $(L, 2 A)$, define the region

$$
\begin{equation*}
\Delta=\left\{(L, 2 A): L^{2}+(2 A-\pi)^{2} \geq \pi^{2} \text { and } 0 \leq A \leq \pi\right\} . \tag{515}
\end{equation*}
$$

Then for any point $a=(L, 2 A) \in \Delta$ there exists an embedded closed curve δ^{a} in $S^{2}(1 / 2)$ with 516 length L and enclosed area A. We compare with the above slope quantization principle to see 517 that the geodesic with slope h in the Hopf torus $\mathbf{T}_{\delta^{a}}$ closes if and only if the straight line in 518 the $(L, 2 A)$-plane with slope h cuts the $2 A$-axis at a height which is a rational multiple of $\pi .519$ Therefore, the moduli space of closed Lancret helices in S^{3} is identified with the following 520 region of the plane:

$$
\Delta \cap\left(\cup_{q \in Q}\left(\frac{p}{n} L-2 A=q \pi\right)\right)
$$

523 VI. SOME EXAMPLES

524 In this section, we give a general method to construct Hopf tubes in $S^{3} \subset C^{2}$. First of all, we 524 525 note that the Hopf mapping can be written as

$$
\Pi: S^{3} \subset \mathrm{C}^{2} \rightarrow \mathrm{~S}^{2}(1 / 2) \subset \mathrm{C} \times \mathbb{R}, \quad \Pi\left(z_{1}, z_{2}\right)=\left(z_{1} \bar{z}_{2}, \frac{1}{2}\left(\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}\right)\right) .
$$

$$
\Pi^{-1}(p)=\left\{\left(\frac{\sqrt{1+2 c}}{\sqrt{2}} e^{i t}, \frac{\sqrt{2}}{\sqrt{1+2 c}}\left(a e^{i t}+b e^{i(t-\pi / 2)}\right)\right): t \in \mathbb{R}\right\} .
$$

529 Let $\delta: I \subset \mathbb{R} \rightarrow \mathrm{~S}^{2}(1 / 2)$ be a curve $\delta(s)=(a(s), b(s), c(s))$. Then its Hopf tube is the following set: 529

$$
\mathbf{T}_{\delta}=\Pi^{-1}(\delta)=\left\{\left(\frac{\sqrt{1+2 c(s)}}{\sqrt{2}} e^{i t}, \frac{\sqrt{2}}{\sqrt{1+2 c(s)}}\left(a(s) e^{i t}+b(s) e^{i(t-\pi / 2)}\right)\right): s \in I, t \in \mathbb{R}\right\} .
$$

531 To parametrize $\mathbf{T}_{\delta}=\Pi^{-1}(\delta)$ as above, i.e., by means of fibers and horizontal lifts of the cross 531 532 section δ, we need to determine a horizontal lift $\bar{\delta}$ of δ. To do that, we put $t=\alpha(s)$ in the above 532 533 formula and then determine $\alpha(s)$ from the horizontality condition $\left\langle i \bar{\delta}(s), \bar{\delta}^{\prime}(s)\right\rangle=0$. We proceed in 533 534 this way to obtain

$$
\alpha^{\prime}(s)=B^{\prime}(s) A(s)-A^{\prime}(s) B(s), \quad \text { where } A(s)=\frac{\sqrt{2} a(s)}{\sqrt{1+2 c(s)}}, \quad B(s)=\frac{\sqrt{2} b(s)}{\sqrt{1+2 c(s)}} .
$$

536 Then

$$
\bar{\delta}(s)=\left(\frac{\sqrt{1+2 c(s)}}{\sqrt{2}} e^{i \alpha(s)}, A(s) e^{i \alpha(s)}+B(s) e^{i(\alpha(s)-\pi / 2)}\right)
$$

$$
\alpha(s)=\int_{s_{o}}^{s}\left(A(s) B^{\prime}(s)-A^{\prime}(s) B(s)\right) d s,
$$

$$
\mathbf{T}_{\delta}=\Pi^{-1}(\delta) \equiv X(s, t)=e^{i t}\left(\frac{\sqrt{1+2 c(s)}}{\sqrt{2}} e^{i \alpha(s)}, A(s) e^{i \alpha(s)}+B(s) e^{i(\alpha(s)-\pi / 2)}\right)
$$

542 Let us exhibit some explicit examples of Hopf tubes.
543 The Clifford torus as a Hopf tube. Perhaps, the more popular compact surface, at least of 543 544 genus one, in the three-sphere is the so-called Clifford torus. It appears in a lot of problems and 544 545 there are some interesting and old conjectures in relation with that torus. The simplest way to 545 546 define a Clifford torus is given by the map

$$
\begin{equation*}
Y: \mathrm{R}^{2} \rightarrow \mathrm{C}^{2}, \quad Y(u, v)=\frac{\sqrt{2}}{2}\left(e^{i \sqrt{2} u}, e^{i \sqrt{2} v}\right) \tag{2}
\end{equation*}
$$

548 It is clear that $Y\left(\mathbb{R}^{2}\right) \subset S^{3}$. Moreover, the map is biperiodic with period $\sqrt{2} \pi$, and consequently, it 548 549 defines an embedding, which is also denoted by Y, of the squared torus or the Riemannian product 549 550 of two circles with radii $\sqrt{2} / 2$ into the unit three-sphere, that is,

$$
Y: \mathrm{S}^{1}(\sqrt{2} / 2) \times \mathrm{S}^{1}(\sqrt{2} / 2) \rightarrow \mathrm{S}^{3}, \quad Y(u, v)=\frac{\sqrt{2}}{2}\left(e^{i \sqrt{2} u}, e^{i \sqrt{2} v}\right),
$$

552 this is the well known Clifford torus.

$$
\delta: \mathbb{R} \rightarrow S^{2}(1 / 2), \quad \delta(s)=\left(\frac{1}{2} \cos 2 s, \frac{1}{2} \sin 2 s, 0\right)
$$

$$
\bar{\delta}: \mathbb{R} \rightarrow \mathrm{S}^{3}, \quad \bar{\delta}(s)=\frac{\sqrt{2}}{2}\left(e^{i s}, e^{-i s}\right),
$$

558 is a horizontal lift. Now, the Clifford torus can be parametrized by horizontal lifts ($t=$ constant) and 558 559 fibers ($s=$ constant) as follows:

$$
X: \mathrm{R}^{2} / \Gamma \rightarrow \mathrm{S}^{3} \subset \mathrm{C}^{2}, \quad X(s, t)=\frac{\sqrt{2}}{2}\left(e^{i(s+t)}, e^{i(-s+t)}\right),
$$

561 where Γ is the lattice, in \mathbb{R}^{2}, spanned by (π, π) and $(0,2 \pi)$.
562 It is obvious that $X(s, t)=Y((1 / \sqrt{2})(s+t),(1 / \sqrt{2})(-s+t))$, and so we have

563

$$
X_{s}=\frac{1}{\sqrt{2}} Y_{u}-\frac{1}{\sqrt{2}} Y_{v}, \quad X_{t}=\frac{1}{\sqrt{2}} Y_{u}+\frac{1}{\sqrt{2}} Y_{v} .
$$

564 Since the curves $u=$ constant and $v=$ constant are geodesic in the Clifford torus, they are Lancret 564 565 helices in S^{3} with slope $h=1$ and $h=-1$, respectively (in this case they are circular helices because 565 566δ has constant curvature).
567 Rectangular tori as Hopf tubes with cross sections geodesic circles. The above example can 567 568 be extended to Rectangular tori in the three-sphere which can be regarded as Hopf tubes over 568 569 geodesic circles in $S^{2}(1 / 2)$. Those tori can be defined by

$$
Y: \mathrm{S}^{1}\left(r_{1}\right) \times \mathrm{S}^{1}\left(r_{2}\right) \rightarrow \mathrm{S}^{3}, \quad Y(u, v)=\left(r_{1} e^{i u / r_{1}}, r_{2} e^{i v / r_{2}}\right)
$$

571 with $r_{1}^{2}+r_{2}^{2}=1$. As above, the coordinate curves $u=$ constant and $v=$ constant are geodesics in these 571 572 tori $Y\left(\mathrm{~S}^{1}\left(r_{1}\right) \times \mathrm{S}^{1}\left(r_{2}\right)\right) \subset \mathrm{S}^{3}$.
573 On the other hand, consider a geodesic circle in $S^{2}(1 / 2)$, i.e., a small circle, say

$$
\delta: \mathbb{R} \rightarrow \mathrm{S}^{2}(1 / 2), \quad \delta(s)=\left(r \cos \frac{s}{r}, r \sin \frac{s}{r}, m\right), \quad r^{2}+m^{2}=\frac{1}{4}
$$

575 In this case, we see that $\alpha(s)=\lambda s$ with $\lambda=\sqrt{(1-2 m) /(1+2 m)}$, and so the curve,

576

$$
\bar{\delta}(s)=\left(\sqrt{\frac{1+2 m}{2}} e^{i \lambda s}, \sqrt{\frac{1-2 m}{2}} e^{i(\lambda-1 / r) s}\right)
$$

577 constitutes a horizontal lift of δ.
578 Therefore, the rectangular torus parametrized as a Hopf tube is given by

$$
X: \mathrm{R}^{2} / \Gamma \rightarrow \mathrm{S}^{3} \subset \mathrm{C}^{2}, \quad X(s, t)=\left(\sqrt{\frac{1+2 m}{2}} e^{i(\lambda s+t)}, \sqrt{\frac{1-2 m}{2}} e^{i((\lambda-1 / r) s+t)}\right)
$$

580 where Γ is either (i) the lattice in R^{2} spanned by $\left(\pi \sqrt{1-4 m^{2}}, \pi(1-2 m)\right)$ and $(0,2 \pi)$ if $m>0$ or (ii) 580 581 the lattice in \mathbb{R}^{2} spanned by $\left(\pi \sqrt{1-4 m^{2}}, \pi(1+2 m)\right)$ and $(0,2 \pi)$ if $m<0$.

It is clear that

583

$$
r_{1}=\sqrt{\frac{1+2 m}{2}}, \quad r_{2}=\sqrt{\frac{1-2 m}{2}}, \quad \text { and } \quad X(s, t)=Y\left(r_{1}(\lambda s+t), r_{2}((\lambda-1 / r) s+t)\right)
$$

584 so that

$$
X_{s}=\lambda r_{1} Y_{u}+r_{2}(\lambda-1 / r) Y_{v}, \quad X_{t}=r_{1} Y_{u}+r_{2} Y_{v}
$$

586 As the curves $u=$ constant and $v=$ constant are geodesics in the rectangular torus, they are Lancret 586 587 helices in S^{3} (in this case they are circular helices because δ has constant curvature). 587 588 The Hopf tube with cross section the Viviani curve. In 1692, Vincenzo Viviani (1622-1703), a 588 589 student of Galileo, proposed the following problem: How is it possible that a hemisphere has four 589

590 windows of such a size that the remaining surface can be exactly squared?
591 The answer to this question involves the so-called Viviani curve. This curve, regarded in 591 $592 S^{2}(1 / 2)$, is obtained when intersecting this sphere with the right cylinder $(x-1 / 4)^{2}+y^{2}=1 / 16{ }^{26} 592$ 593 Therefore, we get the curve,

$$
\delta(s)=\left(\frac{1+\cos s}{4}, \frac{\sin s}{4}, \frac{\sin \frac{s}{2}}{2}\right),
$$

595 which closes with period 4π, for example, in $-2 \pi \leq s \leq 2 \pi$. It should be noted that this curve is 595 596 not parametrized by the arc length, however, in the above argument to obtain the Hopf tube with 596 597 a given cross section the parametrization does not matter. Consequently, we can follow step by 597 598 step the stated argument to obtain

$$
\alpha(s)=\frac{1}{4}\left(s+2 \cos \frac{s}{2}\right) .
$$

600 Now a horizontal lifting of the Viviani curve can be computed to be

$$
\bar{\delta}(s)=\left(\frac{\sqrt{1+\sin \frac{s}{2}}}{\sqrt{2}} e^{i \alpha(s)} ; \frac{\sqrt{2}}{4 \sqrt{1+\sin \frac{s}{2}}}\left(e^{i \alpha(s)}+e^{i(\alpha(s)-s)}\right)\right) .
$$

602 This allows one to compute a nice parametrization of the Hopf torus over the Viviani curve, 602

$$
X:[-2 \pi, 2 \pi] \times \mathbb{R} \rightarrow \mathbf{T}_{\delta} \subset \mathrm{S}^{3} \subset \mathrm{C}^{2},
$$

604 given by

$$
X(s, t)=\left(\frac{\sqrt{1+\sin \frac{s}{2}}}{\sqrt{2}} e^{i(\alpha(s)+t)} ; \frac{\sqrt{2}}{4 \sqrt{1+\sin \frac{s}{2}}}\left(e^{i(\alpha(s)+t)}+e^{i(\alpha(s)-s+t)}\right)\right) .
$$

606 VII. VILLARCEAU FLOWS: A CONFORMAL FIELD THEORY TO DESCRIBE PROTEIN

608 Let \mathbf{T} be a revolution torus (or anchor ring) in R^{3}. It is well known that \mathbf{T} contains two 608 609 families of circles, the parallels of latitude, and the meridians. However, it is less known that $\mathbf{T} 609$ 610 contains other kind of circles, called Villarceau circles, as they were first discovered by A. J. Yvon 610 611 Villarceau (1813-1883) in 1848. Villarceau circles in \mathbf{T} can be found by intersecting \mathbf{T} with a 611 612 bitangent plane. In this way, one can find two families, $\mathcal{F}_{1}=\{\Upsilon(t)\}$ and $\mathcal{F}_{2}=\{\Xi(t)\}$, of these exotic 612 613 circles. Two circles from different families intersect in exactly two points, while two circles in the 613 614 same family not only do not intersect but they are also always linked. ${ }^{13} 614$
615 Clifford parallel great circles are nicely related with Villarceau circles through a suitable 615 616 stereographic projection. We take $\zeta_{o} \in S^{3} \subset \mathbb{R}^{4}$ and consider the stereographic projection 616 $617 E_{o}: S^{3} \backslash\left\{\zeta_{o}\right\} \rightarrow \mathbb{R}^{3}$ which, as it is well known, is the restriction of an inversion in \mathbb{R}^{4} with pole $\zeta_{o} .617$ 618 Now, fix a great circle, say \mathbf{C}, going through ζ_{0}. We choose in \mathbb{R}^{3} a coordinate system $\{x, y, z\}, 618$ 619 such that the z-axis will be $E_{o}\left(\mathbf{C} \backslash\left\{\zeta_{o}\right\}\right)$ and then $E_{o}\left(\mathbf{C}^{\perp}\right)$ will be the unit circle in the $\{x, y\}$-plane. 619 620 In this setting, it is not difficult to see that $\mathbf{T}_{\theta}=E_{o}\left(\mathbf{C}_{\theta}\right), \theta \in(0, \pi / 2)$, is a revolution torus 620 621 around $E_{o}\left(\mathbf{C} \backslash\left\{\zeta_{o}\right\}\right)$ in \mathbb{R}^{3}. Furthermore, up to similarities, every revolution torus in \mathbb{R}^{3} is of the 621 622 form $E_{o}\left(\mathbf{C}_{\theta}\right)$ for a suitable value $\theta \in(0, \pi / 2)$. Now, both families of Villarceau circles in $\mathbf{T}_{\theta} 622$
${ }^{623}=E_{o}\left(\mathbf{C}_{\theta}\right)$ are obtained as images under the stereographic projection E_{o} of the two kinds of great ${ }^{623}$ 624 circles in \mathbf{C}_{θ} that are Clifford parallel to \mathbf{C}. Then all Villarceau circles in $\mathbb{R}^{3} \backslash(z$-axis $)$ can be 624 625 described as follows:

$$
\mathcal{F}_{1}=\{\mathrm{Y}(t)\}=\left\{E_{o}\left(\mathbf{C}^{\prime}\right): \mathbf{C}^{\prime} \text { is first kind Clifford parallel to } \mathbf{C}\right\}
$$

$628 \mathcal{F}_{2}=\{\Xi(t)\}=\left\{E_{0}\left(\mathbf{C}^{\prime \prime}\right): \mathbf{C}^{\prime \prime}\right.$ is second kind Clifford parallel to $\left.\mathbf{C}\right\}$.
629 From now on, we will refer to these circles as first and second kind Villarceau circles according to 629 630 they lie in \mathcal{F}_{1} or \mathcal{F}_{2}, respectively. It should be observed that $\mathcal{F}_{1}\left(\mathcal{F}_{2}\right)$ defines a foliation on 630 $631 \mathrm{R}^{3} \backslash(z$-axis).
632 Note that in \mathcal{F}_{1} and in \mathcal{F}_{2} we have included a circle which is not of Villarceau type in a 632 633 revolution torus around the z-axis. That circle is $E_{o}\left(\mathbf{C}^{\perp}\right)$. However, we will treat it as a Villarceau 633 634 circle.
635 The Clifford parallelism is projected down to \mathbb{R}^{3}, and so it can be described in terms of 635 636 Villarceau circles. Indeed, as \mathbf{C} is the orbit through $\zeta_{o} \in \mathbf{C}$ and we have chosen $E_{o}(\mathbf{C})$ to be the 636 $637 z$-axis in \mathbb{R}^{3}, we have a group of orientation preserving conformal maps in $\mathbb{R}^{3} \backslash(z$-axis) associated 637 638 with \mathbf{C}, and defined by

$$
\mathbf{H}_{\mathbf{C}}^{+}=E_{o} \circ \mathbf{G}_{\mathbf{C}}^{+} \circ E_{o}^{-1}=\left\{\psi_{t}=E_{o} \circ \varphi_{t} \circ E_{o}^{-1}: t \in \mathbb{R}\right\} .
$$

640 In this setting, the orbits in $\mathbb{R}^{3} \backslash(z$-axis $)$ associated with $\mathbf{H}_{\mathbf{C}}^{+}$are just the first kind Villarceau 640 641 circles over a family of revolution tori around the z-axis.

641
642 Note that, given a pair of first kind Villarceau circles, say γ_{1} and γ_{2}, then $\gamma_{1}=E_{o}\left(\mathbf{C}_{1}\right)$ and 642 $643 \gamma_{2}=E_{o}\left(\mathbf{C}_{2}\right)$ for certain great circles which satisfy $\mathbf{C}\left\|^{+} \mathbf{C}_{1}, \mathbf{C}\right\|^{+} \mathbf{C}_{2}$, and so $\mathbf{C}_{1} \|^{+} \mathbf{C}_{2}$. In other words, 643 644 those Villarceau circles are images, via a stereographic projection, of two Hopf fibers. However, 644 645 they can lie on either the same revolution torus or two different revolution tori. The former occurs 645 646 when $d\left(\mathbf{C}, \mathbf{C}_{1}\right)=d\left(\mathbf{C}, \mathbf{C}_{2}\right)$, while the latter happens when $d\left(\mathbf{C}, \mathbf{C}_{1}\right) \neq d\left(\mathbf{C}, \mathbf{C}_{2}\right)$.
647 Similarly, let

$$
\mathbf{H}_{\mathbf{C}}^{-}=E_{o} \circ \mathbf{G}_{\mathbf{C}}^{-} \circ E_{o}^{-1}=\left\{E_{o} \circ \chi_{t} \circ E_{o}^{-1}: t \in \mathbb{R}\right\}
$$

649 be the group of conformal maps that leave invariant the second kind Villarceau circles over a 649 650 family of revolution tori around the z-axis.
651 From now on, we will restrict ourselves to first kind Villarceau flows even though a similar 651 652 theory works for second kind Villarceau flows. Therefore, once we have solved the variational 652 653 problem whose solutions are Lancret helices in S^{3}, we project down, via a stereographic map, to 653 654 obtain helices in Euclidean space whose axis is a conformal vector field (it generates a one- 654 655 parameter group of conformal transformations in Euclidean space). To be explicit, and without 655 656 loss of generality, consider $\zeta_{o}=(0, i) \in S^{3} \subset C^{2}$. Then, in the above setting, the stereographic pro- 656 657 jection with pole ζ_{o} is given by

658

$$
E_{o}: S^{3} \backslash\left\{\zeta_{o}\right\} \rightarrow \mathbb{R}^{3} \equiv \mathbb{C} \times \mathbb{R}, \quad E_{o}\left(z_{1}, z_{1}\right)=\left(\frac{z_{1}}{1-\operatorname{Im}\left(z_{2}\right)} ; \frac{\operatorname{Re}\left(z_{2}\right)}{1-\operatorname{Im}\left(z_{2}\right)}\right)
$$

659 Now, choose, for instance, a Clifford torus $\mathbf{T}_{\text {Clifford }} \equiv Y(u, v)$, parametrized as a Riemannian prod- 659 660 uct of circles (2). It is not difficult to see that its stereographic image, $E_{o}\left(\mathbf{T}_{\text {Clifford }}\right)$, is an anchor 660 661 ring in \mathbb{R}^{3} whose meridians are the curves $E_{o}(u=$ constant $)$ and latitude parallels are $E_{o}(v 661$ $662=$ constant).
663 On the other hand, that torus viewed as a Hopf tube $\mathbf{T}_{\text {Clifford }} \equiv X(s, t)$ is projected in the 663 664 conformally flat surface $E_{o}\left(\mathbf{T}_{\text {Clifford }}\right)$, proving that this is foliated by first kind Villarceau circles, 664 665 the images under E_{o} of fibers $s=$ constant. Now, the Lancret helices in $\mathbf{T}_{\text {Clifford }}$ make a constant 665 666 angle with fibers and so with the curves $v=$ constant. As E_{o} is a conformal map, the stereographic 666 667 projection of a Lancret helix makes a constant angle with the latitude parallels in the anchor ring 667
${ }^{668} E_{o}\left(\mathbf{T}_{\text {Clifford }}\right)$. Choosing, in particular, closed Lancret helices in the Clifford torus and projecting 668 669 them by E_{o}, we get nice closed configurations which are good candidates to model circular protein 669 670 chains.

670
671 The story, however, does not finish here. It continues, since what we made with the Clifford 671 672 torus also works for rectangular tori and more generally for any Hopf tube (in particular, any Hopf 672 673 tori). In fact, the chief point in this discussion is a conformal vector field in the Euclidean space. 673 674 It is the corresponding stereographic image of the Hopf vector field $V(\zeta)=i \zeta$ that governs the 674 675 theory of Lancret helices in S^{3}. Therefore, we define in $R^{3} \backslash(z$-axis $)$ the following vector field: 675

$$
W \in \chi\left(\mathbb{R}^{3} \backslash(z-\text { axis })\right), \quad W=d E_{o}(V)
$$

677 This is a vector field providing the Villarceau flow \mathcal{F}_{1}. Alternatively, it is a conformal one, 677 678 generating the one-parameter group of conformal transformations $\mathbf{H}_{\mathbf{C}}^{+}$. 678
679 First kind Villarceau flows, i.e., W-flows in $\mathbb{R}^{3} \backslash(z$-axis), can be explicitly obtained as follows. 679 680 Observe that any Villarceau circle intersects in exactly one point the half plane $P=\{(x, 0, z): x 680$ $681>0\}$ and recall that two Villarceau circles of the same kind do not intersect. Then, for any $p 681$ $682=(x, 0, z) \in P$, the first kind Villarceau circle, $\gamma_{p}:[-\pi, \pi] \rightarrow \mathbb{R}^{3}$, going through p, is given by 682

$$
\gamma_{p}(t)=E_{o}\left(e^{i t} x_{1}, e^{i t}\left(\left(x_{2}+i y_{2}\right)\right)\right.
$$

684 where $E_{o}^{-1}(x, 0, z)=\left(x_{1}, 0, x_{2}, y_{2}\right)$ and consequently

$$
\gamma_{p}(t)=\frac{1}{1-x_{2} \sin t-y_{2} \cos t}\left(x_{1} \cos t, x_{1} \sin t, x_{2} \cos t-y_{2} \sin t\right)
$$

686 The length and the radius of this circle are, respectively,

$$
L=\frac{1+\|p\|^{2}}{x} \pi, \quad r=\frac{1+\|p\|^{2}}{2 x} .
$$

688 Now, given any regular curve δ in $\mathrm{S}^{2}(1 / 2)$, consider its Hopf tube \mathbf{T}_{δ}, which is a flat surface in $\mathrm{S}^{3} .688$ 689 Then project it, via the stereographic map, to obtain a surface $\mathbf{M}_{\delta}=E_{o}\left(\mathbf{T}_{\delta}\right) \subset \mathbb{R}^{3}$ which we call the 689 690 conformal Hopf tube with conformal cross section δ. These surfaces are tangent to $W=d E_{o}(V)$ and 690 691 so they are foliated by Villarceau circles, that is,

$$
\mathbf{M}_{\delta}=E_{o}\left(\mathbf{T}_{\delta}\right)=\cup_{p \in \mathbf{M}_{\delta}} E_{o}\left(\mathbf{C}_{E_{o}^{-1}(p)}\right),
$$

710 (i) It should be noted that when the Hopf vector field is provided by the second Hopf map $\Pi_{-}, 710$ we obtain helices associated with the second kind Villarceau flow.
(ii) Also, we can project down from a different point in the three-sphere, say ζ. Now helical 712 structures appear as loxodromes, with respect to a conformal vector field, in deformed 713 conformal Hopf tubes such as Dupin cyclides.

716 In the variational model that we are proposing, helices in Nature appear as either (A) Lancret 716 717 helices, that is, critical points of an action which is linear in both curvature and torsion. In this case 717 718 helices are loxodromes, with respect to an infinitesimal translation, in right cylinders over plane 718 719 curves; or (B) conformal Lancret helices, that is, conformal images of critical points in the 719 720 three-sphere of an action which is linear in both curvature and torsion. However, it also has an important variational meaning. The slope of a helix measures the 730 ratio between twisting and bending weights in the energy actions admitting that helix as an 731 732 extremal.

733 In both submodels, helices appear as solutions of a simple variational problem. In the former, 733 734 helices appear directly in the Euclidean space, while in the later they appear in the three-sphere 734 735 and then we have to project down, conformally, in the Euclidean space. However, the main 735 736 difference between both submodels comes from the topology. The second submodel admits closed 736 737 structures while this cannot hold in the first one. Besides these two principles, least action and 737 738 topological, which are two requirements of our model, a third one must be remarked. A quanti- 738 739 zation principle works for the main entities of the model. Therefore, the energy of an extremal, 739 740 i.e., a helical configuration, is not arbitrary but it comes only in natural multiples of some basic 740 741 quantity of energy. So energy critical values only depend on the homotopy class of cross sections. 741 742 The moduli space of closed helical structures in this model is also obtained from a rational 742 743 constraint between both moduli, the cross section, and the slope. Assume, for instance, we wish to 743 744 determine the space of closed W-helices with slope h, where $W=d E_{o}(V)$ is a certain Villarceau 744 745 flow. These helices are images, under E_{o}, of closed Lancret helices with slope h in the three- 745 746 sphere. To construct the corresponding cross sections we need essentially two ingredients: (1) the 746 747 isoperimetric inequality in the two-sphere $S^{2}(1 / 2)$. This allows us to determine the region $\Delta 747$ $748=\left\{(x, y): x^{2}+(y-\pi)^{2} \geq \pi^{2}, x>0\right.$ and $\left.0 \leq y \leq 2 \pi\right\}$ in the $\{x, y\}$-plane with the following property: 748 749 the coordinates of any point $a=(x, y) \in \Delta$ provide the length and the enclosed oriented area of a 749 750 simple closed curve in the two-sphere according to $L=x$ and $2 A=y$. (2) The isometry type of the 750 751 associated Hopf tori. It allows one to obtain, in terms of the slope, the constraint to close a Lancret 751 752 helix. Therefore, for any rational number $q \in \mathrm{Q}$, consider the straight line $R_{h q}$ given by $y=h x 752$ $753+q \pi$. Now, for any point $a=(x, y) \in \Delta \cap R_{h q}$, there exists a closed curve $\delta_{h q}^{a} \subset S^{2}(1 / 2)$ with length 753 $754 L=x$ and enclosed area $A=y / 2$. The Lancret helix $\gamma_{h q}^{a}(t)=e^{i p t} \bar{\delta}^{a}(n t)$, with slope $h=p / n$, is closed. 754 755 Moreover, the moduli space of closed W-helices having W-slope h is obtained as $\left\{\gamma_{h q}^{a}: q 755\right.$ $756 \in \mathbb{Q}$ and $\left.a \in \Delta \cap R_{h q}\right\}$.

758 M.B. has been partially supported by Spanish MEC-FEDER Grant No. MTM2007-60731 and 758 759 J. Andalucía Regional Grant No. P06-FQM-01951. A.F. has been partially supported by MEC 759 760 Project No. MTM2007-64504, and Fundación Séneca, Spain Project No. 04540/GERM/06. This 760 761 research is a result of the activity developed within the framework of the Programme in Support 761 762 of Excellence Groups of the Región de Murcia, Spain, by Fundación Séneca, Regional Agency for 762 763 Science and Technology (Regional Plan for Science and Technology 2007-2010). We wish to 763 764 thank to the referee for her/his subtle suggestions which have contributed to improve the final 764 765 version of the paper. 765
$766{ }^{1}$ Arroyo, J., Barros, M., and Garay, O. J., "Models of relativistic particle with curvature and torsion revisited," Gen. 766 767 Relativ. Gravit. 36, 1441-1451 (2004). 767
$768{ }^{2}$ Balaeff, A., Mahadevan, L., and Schoulten, K., "Elastic rod model of a DNA loop in the Lac Operon," Phys. Rev. Lett. 768
769 83, 4900-4903 (1999). 769
$770{ }^{3}$ Barros, M., "General helices and a theorem of Lancret," Proc. Am. Math. Soc. 125, 1503-1509 (1997). 770
$771{ }^{4}$ Besse, A., Einstein Manifolds (Springer, New York, 1987). 771
$772{ }^{5}$ Borman, S. and Washington, C., "Tying up loose ends: New examples and applications of circular and knotted peptides 772
773 and proteins are turning up," Chem. Eng. News 82, 40-42 (2004). 773
$774{ }^{6}$ Cahill, K., e-print arXiv:q-bio.BM/0502043. 774
$775{ }^{7}$ Calugareanu, G., "Sur les classes d'isotopie des noeuds tridimensionnels et leurs invariants," Czech. Math. J. 11, 775 776 588-625 (1961).

776
$777{ }^{8}$ Feoli, A., Nesterenko, V. V., and Scarpetta, G., "Functionals linear in curvature and statistics of helical proteins," Nucl. 777
778 Phys. B 705, 577-592 (2005).
778
$779{ }^{9}$ da Fonseca, A. L. and Malta, C. P., e-print arXiv:physics/0507105. 779
$780{ }^{10}$ da Fonseca, A. L., Malta, C. P., and Aguiar, M. A. M., "Resonant helical deformations in nonhomogeneous filaments," 780
781 Physica A 352, 547-557 (2005).

781

$782{ }^{11}$ da Fonseca, A. L., Malta, C. P., and Galvão, D. S., e-print arXiv:cond-mat/0507400).
$783{ }^{12}$ da F
${ }^{13}$ aa Fonseca, A. L., Malta, C. P., and Galvão, D. S., Elastic properties of nanowires, J. Appl. Phys. 99, 094310 (2006). 783
$784{ }^{13}$ Goldstein, R. E., Goriely, A., Huber, G., and Wolgemuth, C. W., "Bistable helices," Phys. Rev. Lett. 84, 1631-1634 784
785 (2000). 785
$786{ }^{14}$ Gray, A., Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed. (CRC, Boca Raton, FL, 786 787 1998). 787
$788{ }^{15}$ Greub, W., Halperin, S., and Vanstone, R., Connections, Curvature and Cohomology (Academic, New York, 1972); 788
789 Connections, Curvature and Cohomology (Academic, New York, 1973); Connections, Curvature and Cohomology (Aca- 789
790 demic, New York, 1976). 790
$791{ }^{16}$ Ivey, T. A. and Singer, D. A., "Knot types, homotopies and stability of closed elastic rods," Proc. London Math. Soc. 79, 791
792 429-450 (1999). 792
$793{ }^{17}$ Langer, J. and Singer, D. A., "Lagrangian aspects of the Kirchhoff elastic rod," SIAM Rev. 38, 605-618 (1996). 793
$794{ }^{18}$ Liu, Z. and Qin, L., "Electron diffraction from elliptical nanotubes," Chem. Phys. Lett. 406, 106-110 (2005). 794
$795{ }^{19}$ Thamwattana, N., McCoy, J. A., and Hill, J. M., "Energy density functions for protein structures," Q. J. Mech. Appl. 795
796 Math. 61(3), 431-451 (2008). 796
$797{ }^{20}$ McCoy, J. A., "Helices for mathematical modelling of proteins, nucleid acids and polymers," J. Math. Anal. Appl. 347, 797
798 255-265 (2008). 798
$799{ }^{21}$ Mendelson, N. H., Sarlls, J. E., Wolgemuth, C. W., and Goldstein, R. E., "Chiral self-propulsion of growing bacterial 799
800 macrofibers on solid surfaces," Phys. Rev. Lett. 84, 1627-1630 (2000). 800
$801{ }^{22}$ Morozov, V. F., Mamasakhlisov, E. S., Grigoryan, A. V., Badasyan, A. V., Hayryan, S., and Hu, C.-K., "Helix-coil 801
802 transition in closed circular DNA," Physica A 348, 327-338 (2005). 802
$803{ }^{23}$ O'Neill, B., Semi-Riemannian Geometry (Academic, New York, 1983). 803
$804{ }^{24}$ Pinkall, U., "Hopf tori in S^{3}," Invent. Math. 81, 379-386 (1985). 804
$805{ }^{25}$ Reichert, J. and Sühnel, J., "The IMB Jena Image Library of Biological Molecules:2002 updates," Nucleic Acids Res. 30, 805
806 253-254 (2002). 806
$807{ }^{26}$ Reichert, M. and Stark, H., "Synchronization of rotating helices by hydrodynamic interactions," Eur. Phys. J. E 17, 807
808 493-500 (2005). 808
$809{ }^{27}$ Urbantke, H. K., "The Hopf fibration, seven times in physics," J. Geom. Phys. 46, 125-150 (2003). 809
810^{28} von Seggern, D. H., CRC Standard Curves and Surfaces (CRC, Boca Raton, FL, 1993). 810
$811{ }^{29}$ Weiner, J. L., "How helical can a closed, twisted space curve be?," Am. Math. Monthly 107, 327-333 (2000). 811
$812{ }^{30}$ White, J., "Self-linking and the Gauss integral in higher dimensions," Am. J. Math. 91, 693-728 (1969). 812
$813{ }^{31} \mathrm{Wu}, \mathrm{Z}$. and Yung, E. K. N., "Axial mode elliptical cross-section helical antenna," Microwave Opt. Technol. Lett. 48, 813
814 2080-2083 (2006). 814

[^0]: ${ }^{\text {a) }}$ Electronic mail: mbarros @ugr.es.
 ${ }^{\text {b) }}$ Electronic mail: aferr@um.es.

