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RIEMANNIAN VERSUS LORENTZIAN SUBMANIFOLDS.
SOME OPEN PROBLEMS
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All results contained in this paper have been made in collaboration with my
colleagues Manuel Barros, Pascual Lucas and Miguel A. Meroiio.
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This is a survey of the following three subjects: B-scrolls, r-elastic curves and
Willmore-Chen submanifolds. B-scrolls arose as the first important example of
indefinite submanifolds having no Riemannian counterpart. They have played an
essential role in a series of classification results of indefinite submanifolds which
point out substantial differences between indefinite and Riemannian submani-
folds (see [1], [2], [3], [4], [5], [15] and [16]). Then, following Pinkall, [24], we
define indefinite Hopf cylinders and find a nice characterization of B-scrolls with
constant mean curvature in HE(—1) in terms of them (see [12] and [9]). Now
two remarkable facts should be noticed. On one hand, looking at parametriza-
tions of indefinite Hopf cylinders, we bring to mind the Betchov-Da Rios soliton
equation (see [18], [25], [26], [27], [28] and [29]). Then we find solutions of this
equation lying on B-scrolls: they are helices. Furthermore, we give a rational
one-parameter family of closed solutions and show that the only soliton solutions
are the null geodesics of the corresponding B-scroll (see [9]). On the other hand,
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we see that Hopf surfaces in HE (—1) shaped on closed curves in the hyperbolic
plane H?(—1/4) are Lorentzian Hopf tori. Then we first determine the isometry
group of Lorentzian Hopf tori and, secondly, we try to get solutions of the Will-
more problem in H?(—1). The latter will be solved, following again Pinkall, by
means of the Langer and Singer viewpoint on elastic curves ([19], [20] and [21])
and the symmetric criticality principle of Palais [23].

As far as helices is concerned, we start by recalling that a general helix in
a Euclidean 3-space is defined by the property that its tangent indicatrix is a
planar curve. The straight line perpendicular to this plane is called the axis
of the general helix. First of all we need a good definition appropriate for the
new ambient spaces. Moreover, we have to consider both degenerate and non-
degenerate general helices in L3, according to the causal character of its axis.
Therefore, to define general helices in 3-dimensional De Sitter S3 and anti De
Sitter H spaces we follow the idea of Langer and Singer, [21}, and use Killing
vector fields along curves. Namely, let M be a non flat 3-dimensional Lorentzian
space form. A curve v in M is said to be a general helix if there exists a Killing
vector field V' along v with constant lergth and orthogonal to the acceleration
vector field of v. V will be the axis of v. The helix is said to be degenerate
or non-degenerate according to V is, respectively. In [6] Barros has shown that
general helices are geodesics either of right general cylinders or of Hopf cylinders,
according to the curve lies in R® or S3 respectively. Now, general helices in
I} are geodesics in right general cylinders or in flat B-scrolls, according to the
helix is non-degenerate or degenerate, respectively. In mon flat 3-dimensional
Lorentzian space forms the Lancret thorem underlines deep differences between
pseudo-spherical and pseudo-hyperbolic spaces. The former has no non trivial
general helices, the latter being nicely similar to L®. Whence roles played by HS
and S? correspond with those played by S* and H?, respectively (see [10]).

The Willmore-Chen variational problem is the natural extension of the Will-
more one. The first non trivial examples of Willmore-Chen submanifolds were
given by Barros and Garay in {13]. We aim to find Willmore-Chen submanifolds
in a pseudo-hyperbolic space HI'. That will be done in several steps. After writ-
ing H* as a warped product, we characterize SO(r + 1)-invariant submanifolds of
H*. Then we extend the concept of elastic curves to r-elastic curves and apply
the symmetric criticality principle. As a consequence Willmore-Chen submani-
folds in H? are characterized in terms of r-generalized free elaticae in the once
punctured unit sphere " (see [11]). Furthermore, following the classification
of closed free elasticae in the standard 2-sphere obtained by Langer and Singer,
[21], we show that there exist infinitely many Lorentzian Willmore tori in the
3-dimensional anti De Sitter space. Examples of Willmore tori in non-standard
3-spheres have been recently given by Barros in [7]. The same author has also
found wide families of Willmore tori in warped product manifolds (see [8]).
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1 Indefinite Hopf cylinders ([9,12])
Following Pinkall [24], we look for pseudo-Riemannian submersions
Ty s B (~1) — HE(-1/4), s =0,1.

Idea:
identify H3(—1) with an appropriate subset of maps R} — Ri.
How to do that:
P be a 2-dimensional subspace in R} and {z,y} an orthonormal basm of P.
Define maps

fP_")P1 f(m):‘yr f('y):—
gP—-P glzt=y, gy =g,
h:P— P, h(z)=-y, h(y)=-
which will be called rotation, first reflection and second reflection on P,
respectively.
Let {e1, eg, €3, €4} be the usual basis of R} equipped with (g;;) = diag{-—1, —1,1,1].
Set P; = span{e;,e;}, i = 2,3,4 such that R} = P, @ P,
Consider the following maps

p=fxfP®P — PP,
c=gxhP®P— PoP,
t=gxg:P,@®P+— P,®P-

- Then F = span{l,p,0,¢} is a 4-dimensional vector space over R and the
following identities hold

p2 = —1, op=—ti, p=2a,
po =1, o’=1, 0=p,
pL=—a, orL=—p, &=1,

Let ¢ : F — R} be the isomorphism given by

(p(l) = €1, (P(P) = €y, (p((f) = €3, ‘p(l‘) =

Then ¢ becomes an isometry when F is endowed with the metric ¢*(go), 9o
being the standard scalar product on Rj.
Both metrics will be denoted by (, ).
Write w =a +bp + co +dv € F, a standing for ¢- 1, @, b, ¢ and d being real
numbers.
Define
W= —a+bp+co+dt
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Then
(W, w) = W = Ww.

In general
(w1, wa) = pr{wi@a),

p1 denoting the projection over the subspace spanned by the identity map.
Hence

Wiy = —Wwa Wy
and
{(wiws, witwe) = — (wy, wy) {wa, wa) .

Now set
H(-r?) = {we Fiww=-r},

B (—r?) =_span{l,o,1} C Hy(~r?),
Hi(~r?) = span{l,p,o} C H}(~—r?).
Define 7, : HE(—1) — H2(~1/4) by

where w — @ denote the antiautomorphism of F given by
@w=a—bp+co+d, or w=a+bp+co—ds, -

according to the base manifold is H?(—1/4) or H2(—1/4), respectively.
As usual, we define e%*, 8 € F, by

cos(z) +sin(x)f,  if 62 = 1,
cosh(z) + sinh(z)d, if 6% =1.

That means that the fibers are topologically S! and H!, respectively.
Remark Writing ¢ = f X f and ¢ = f X f, then we obtain in the Euclidean space
R? the standard quaternionic structure, which was already used by U. Pinkall to
describe the usual Hopf fibration S3(1) — S%(1).

Let V and V be the semi-Riemannian connections of HE (—1) and H2(~1/4),
respectively, and denote by overbars the lifts of corresponding objects on the base
H (~1/4).

Then

<
x|
~
fi
<
>
!
+

(X, Y om)V,
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where J denotes the standard complex structure of H2(—1/4) and § = p when
s=0o0rf=.whens=1.

Let 8:1 — H2(—1/4) be a unit speed curve with Frenet frame {T,&,} and
curvature k.

Consider a horizontal lift #: I — HE(~1) of 3 with Frenet frame {T, &, 6’3*}
and curvatures £* and 7.

Now, from the Frenet equations, we can deduce that & = &, and & = k o 7.
In particular & lies in the horizontal distribution along 4 and it has the same
causal character as &;. Also it is not difficult to see that 7* = £1 and & = £V,
that is, the binormal & of # coincides with the unit tangent to the fibers through
each point of A.
Proposition

(1) The horizontal lifts of unit speed curves in H?(—1/4) are spacelike curves
in HE (—1) with torsion +1.

(2) The horizontal lifts of unit speed timelike curves in H3 (—1/4) are timelike
curves in HB (—1) with torsion +1. :

By pulling back via , a non-null curve 3 in H2(—1/4) we get the total hori-
zontal lift of 3, which is a flat immersed surface Mj in H3(—1), that will be called
the indefinite Hopf cylinder associated to 8

Notice that if s = 0, Mp is a Lorentzian surface, whereas if s = 1, Mp is
Riemannian or Lorentzian, according to § be spacelike or timelike, respectively.
Theorem ,

 Let M be a Lorenizian surface immersed into H(—1). Then M is the semi-
Riemannian Hopf cylinder in HE (—1) associated to a unit speed curve § in HZ2 (—1/4)
if and only if M is the B-scroll over any horizontal lift B of B.

Let 8: I — H2(—1/4) be a unit speed curve with Frenet frame {7, £;} and
curvature function x.

_ Let 3 be a horizontal lift of 8 to H3(—1) with Frenet frame {T,&,, &5} and
curvature € = ko my and 7 = 1. Recall that £ is nothing but the unit tangent
vector field to the fibers along 3.

Then the Hopf cylinder M3 can be orthogonally parametrized as

cos(2)B(t) +sin(2)&3(t), ifs=0

X(t,2) = { cosh(2)B(t) +sinh(2)&3(2), ifs=1

Setting, as usual,. X = %’f» and X, = %%f— , then {X, X.} is an orthonormal frame
of T'x(s,-)Mp along X and a direct computation shows that the shape operator S
of Mp in this frame can be written as

S(Xy) = FEXi+eX,,
S(Xz) = Xt,
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where € = +1 if Mg is Riemannian and ¢ = —1 if My is Lorentzian.

Notice that a unit normal vector field to M} into H(—1) is obtained from the
complete horizontal lift of & and it is, of course, &, along each horizontal lift of
B.

As a consequence we have that Mj is a flat surface, as we said before, and its
mean curvature function « is given by a = %/2.

According to the description of curves with constant curvature in H2 (—1/4) we
can give the following description of Hopf cylinders of constant mean curvature.

Proposition

Let B8 be a unit speed curve in H2(—1/4) with constant curvature k. Then one
of the following statements holds:

(1) Mg is a minimal complex circle (k=0).

(2) M3 is a non-minimal complez circle (0 < k? < 4).

(3) Mg is the Hopf cylinder over the horocycle (s = 0, k? = 4) or over the
pseudo-horocycle (s =1, K = 4).

(4) Mg is one of the following semi- Riemannian products

(4.1) H(-r?)xS8Y(r?—1) ifs=0 and &* > 4,
(4.2) H(—r?) xSi(r* - 1) ifs=land k? > 4.

(5) Mg is the Riemannian product H' (—r?) x H!(—1 4 72) with 1 satisfying

1—2r2

Y =i

K.

It should be noticed that the above cases (1) through (4) correspond to the
Lorentzian character of My and so, according to the above theorem, it can be con-
sidered as the classification of B-scrolls with constant mean curvature in HS(—1).
The remainder case corresponds with the Riemannian character of Mp.

2 Lorentzian Hopf tori ([9])

Hopf surfaces in Hf (—1) shaped on closed curves in H?(—1/4) are Lorentzian flat
tori. Now we want to determine the isometry group of these surfaces.

We use standard computations involving the structure equations of the in-
duced connection and [17] to get a similar result to that of Pinkall:

Theorem

Let 8 be a closed embedded curve in H2(—1/4) of length L enclosing an area
A. Then Mpg is isometric to L2 /A, A being the lattice in the Lorentzian plane 12
generated by the vectors (2m,0) and (24, L).
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Remark It is worth noting that (2A, L) is only constrained by the isoperimetric
inequality in HZ(—1/4)

L > 4 A+ 4A%
Hence the vector (24, L) must be spacelike. Therefore (24, L) lies in the shaded
region R

L

3 Willmore tori in H}(-1) ([9])

Inspired again by Pinkall’s paper, we look for Willmore tori in I (—1) associated
to elastic curves in H2(—1/4).
A unit-speed curve v in M} is said to be an elastica (or elastic curve) if it

is an extremal point of the functional

L 1
6x(1) = [ ((VaT,VaT) + Nds = [ (V2T,VrT) + Nudt,

for some A, where ds and L stand for the arclength on v and the length of 7,
respectively. It is called a free elastica if A = 0 (see {21]).
The Euler-Lagrange equation associated to this variational problem is

QV%T “+ 51\71«((352&2 - )\)T) - 2R(VTT, T)T =0,
Frenet equations for +:
Vrl' = ek,

Vréy = —e1kT — e37&s,

Vls = ey + 6,

where § € span{T, &, &}, (6,&) = & and 7 is the torsion function (the second
curvature if n > 3). Assume now that M7 is of constant curvature c. Then the
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Euler-Lagrange equation can be rewritten as follows

2e96" + €16 — 26357 + €162(2¢ — Nk = 0,
26'T 4+ k7' = 0,
kTd = 0.

Taking u = x? these equations can be solved by standard techniques in terms
of elliptic functions. Q.

For instance, a qualitative description of elasticae in the Lorentz-Minkowski
plane 1.2 is given as follows. In general, the elasticae in IL? are curves which
oscillates around a geodesic, so that the parameter A, in some sense, could be
viewed as the wavelength. That length increases or decreases according to £\
does. In the following we skecht some of these curves.

AT W

6'1/\)0 e1A <0

As for the pseudo-hyperbolic plane HZ(—1) the behaviour of the elastic curves
is essentially the same as in IL2, they also oscillate around geodesics. In particular,
we can draw a free elastica oscillating around the central circle in HZ(—1).

Free elastica Projection on zy-plane

Let M? be a surface in an indefinite 3-space M 3 of constant curvature c.

We define the operator W over sections of the normal bundle of M2 into M A
as follows

WM - NM, W) =(AP+2(H H)I - A),
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A standing for Simons operator.
A cross section £ will be called a Willmore section if W(£) = 0. Suppose that
M is compact and consider the Willmore functional

W(M) = /M((H, H) + c)dv.

Then the operator W naturally appears provided that one computes the first
variation formula for W.

Now Willmore surfaces are nothing but the extremal points of the Willmore
functional and they are characterized from the fact that their mean curvature
vector fields are Willmore fields. '

Proposition

Let my : H3(~1) — H2(—1/4) and B : I — HZ(—1/4) be as before. Then the
Hopf cylinder My satisfies WH = pH, p € R, if and only if § is an elastica in

H; (—1/4). -

We know that the fibers of mp : H3(—1) — HZ?(—1/4) are circles, and so com-
pact, whereas the fibers of m : H (—1) — HZ(—1/4) are not compact. Therefore
to find compact Hopf surfaces we have to consider Hopf torus shaped on closed
curves in H2(—1/4)

In the anti-De Sitter world we have known that a Hopf torus Mp is a Willmore
surface in H3(~1) if and only if 8 is an elastica in H*(—1/4) with A = —4.
However we have recently known from D. Singer (private communication) that
cannot be hold. Thus we have to say that there is no (Lorentzian) Willmore Hopf
torus in H3 (—1).

4 The Betchov-Da Rios equation ([9])

The Betchov-Da Rios (BDR) equation v’ Au” = u, also called localized induction
equation in 3-dimensional hydrodynamics, is a soliton equatlon for space curves
u(t, s}, where v/ = 8u /8t and 4 = Ju/0s.

It is a straigthforward computation that, in general, the standard parametriza-
tion X (t,z) of Mg is not a solution of BDR.

We ask for the classification of h € Diff(R?) in order to Y = X o h be a
solution of BDR. equation in H3(—1).

We completely solve this problem.

Let 77 be a unit normal vector field to Mz in H3(—1). Then 7 can be written
as follows:

_ { —sin(z)T(t) + &1 cos(2)é5 (), s =0,
—sinh(2)T(t) + €, cosh(z)&5(¢), s=1.
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A straightforward computation yields Y (u,v) is a solution of BDR equation
if and only if the following PDE system holds:

t, = (=1 ’ertuzy(tu® +22,),
2t R+ 22,),
0 == tuztlu - Zutuu-

2y

Solving we get
Theorem

Let B be an arc length parametrized curve in H2(—~1/4) and Mjy its Hopf
cylinder in HE (—1). For any h € Diff(R?), take Y = X oh : R2 — Mg, X
being the standard covering of R? over Mg. Then'Y is a solution of BDR soliton
equation in HE (—1) if and only if the following statements hold:

(i) B has constant curvature, say k, in H2(—1/4);

(1) h(u,v) = (t(u, v), z(u,v)) is given by

t(u,v) = au+(-1)agpv+ ¢,

z(u,v) = agu+eapv -+ cyy

where (g1 — (—1)°9%)a? = €, &1 being the causal character of 3, ¢ the causal
character of the u-curves, g € R — {—k/2}, p = e1(k + 29)a? is the curvature of
the u-curves in Ha (—1) and a,¢1, ¢y are arbitrary constants.

Corollary 1

Let Mg be a Lorentzian Hopf cylinder in H3 (—1) of constant mean curvature.
Then the only soliton solutions of BDR equation in 1 (—1) lying in My are the
null geodesics of Mag.
Corollary 2

Let B be a closed curve of constant curvature in H?(—1/4) with length L
enclosing an oriented area A. Then for any rational number ¢, the slope

27 ( v A)
g= 7 q -
defines a unique closed heliz in HS (—1) and therefore a closed solution of BDR
equation in TG (—1) living in the Hopf torus Mg. Furthermore, the closed solution
is either spacelike, or timelike or null according to ¢ € (q1,¢2), ¢ € R — (q1, ¢2),
L

q € {q1, @2}, respectively, where gy = —2 — L and gy = -2 + £

5 General helices in 3-dimensional Lorentzian space forms ([10])

Helices got as solutions of BDR brought us to mind a Barros’ idea: look out
general helices.
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A curve of constant slope or general helix in Euclidean space R3 is defined
by the property that its tangent indicatrix is a planar curve. The straight line
perpendicular to this plane is called the axis of the general helix.

A classical result stated by M.A. Lancret in 1802 and first proved by B. de
Saint Venant in 1845 is: “A necessary and sufficient condition in order to a curve
be a general helix is that the ratio of curvature to torsion be constant”.

For a given couple of one variable functions (eventually curvature and torsion
parametrized by arclength) one might like to get an arclength parametrized curve
for which the couple works as the curvature and torsion functions. This problem
is usually referred as “the solving natural equations problem”

The natural equations for general helices can be integrated, not only in R?,
but also in the 3-sphere S* (the hyperbolic space is poor in this kind of curves and
only helices are general helices). Indeed Barros, [6], has shown that general helices
are geodesics either of right general cylinders or of Hopf cylinders, according to
the curve lies in R3 or S3.

What about general helices in the 3-dimensional Lorentzian space forms?

A non-null curve 7 immersed in I? is called a general helix if its tangent indi-
catrix is contained in some plane, say 7, of 3. Since 7 can be either degenerate
or non-degenerate, then both cases are distinguished by calling degenerate and
non-degenerate general helices, respectively.

We will point out a remarquable and deep difference between the behaviour
of general helices in Buclidean and Lorentzian geometries:

" While in R® general helices are geodesics in right general cylinders, as classi-
cally is shown, we will prove that general helices in L3 are geodesics in either right
general cylinders or flat B-scrolls, according to the general helix is non-degenerate
or degenerate.

This nice difference between Euclidean and Lorentzian geometries (from the
point of view of the behaviour of general helices) confirms once more the impor-
tant role of the notion of B-scroll in Lorentzian geometries.

General helices in 3-dimensional De Sitter S2 and anti De Sitter H? spaces are
considered with the help of the idea of Langer and Singer (see [21]): use Killing
vector field along a curve in a 3-dimensional real space form.

The Lancret theorem in S and H2 underlines deep differences between the
pseudospherical and pseudohyperbolic spaces. The psendohyperbolic case is nicely
analogous to the Lorentz-Minkowskian case, whereas in the pseudospherical case
there are no nontrivial general helices. From this point of view, the roles played
by the non flat Lorentzian space forms HE and S3 correspond with those played
by the non flat Riemannian space forms S3 and H2, respectively.

Let () be a non-null immersed curve in a 3-dimensional Lorentzian space
form M with sectional curvature ¢ and let v(¢) = |7/(¢)] be the speed of 7.
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Let us consider a variation of v, I' = I'(t,2): I X (—¢,¢) — M with I'(¢,0) =
v(t). In particular one can choose € > 0 in such a way that all t-curves of the
variation have the same causal character as that of y. Associated with I there are
two vector fields along T, V(t,z) = Z-(t, 2) and W(2, 2) = 2L(¢, 2). In particular
V(t) = V(t,0) is the variational vector field along v and W (¢, z) is the tangent
vector fields of the t-curves. We will use the notation V = V'(¢,2), v = v(¢, 2),
k = k(t,z), etc. with the obvious meanings. Also, if s denotes the arclength
parameter of the i-curves, we will write v(s, z), V(s,2), (s, 2), etc. for the
corresponding reparametrizations.

A straightforward but long computation allows us to obtain formulas for
2(t,0) 5 (£,0) and 6" 97 (¢,0) which we collect, along with another standard

¢ ' Bz
identity, in the followmg lemma.

Lemma

(1) [V, W]=0;
@) 24,0 = ~ergu, with g = (V.7

3) a; (t,0) = 265(V3V, Vi T) + de1gr? + 265(R(V, T)T, V1 T);

or? Ts K —2 C\—= cK'
(4) "5;(75, 0)= ‘QEz(EVTV - ‘,;erTV +e1{ean + E)VTV - EIEE'V*TB)’

Ok
B —(t,0).

Without loss of generality we can assume -y to be arclength parametrized.

A vector field V(s) along v, which infinitesimally preserves unit speed para-
metrization (that means £2(¢,0) = 0 for a V-variation of 7) is said to be a Killing
vector field along -y if thls evolves in the direction of V whithout changing shape,
only position. In other words, the curvature and torsion functions of vy remain
unchanged as the curve evolves.

Hence Killing vector fields along v are characterized by the equations

v Ok? or?
g(t,o) = —é‘g(t,O) =35

Then V is a Killing vector field along « if and only if it satisfies the following
conditions:

a) (VTV, T) = 0,
b) (V;V N)+ slc(V N) =0,

where {,) denotes the Lorentzian metric of M and k' =

(£,0) = 0.

c) ( VTV - —-VTV +e1(gak + )VTV - slc V TB) =0.
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Now when M is simply connected, since the restriction to v of any Killing
field V of M is a Killing vector field along 7, one concludes from a well known
dimension argument, the following lemma.

Lemma

Let M be a complete, simply connected, Lorentzian space form and v a non-
null immersed curve in M. A vector field V on vy is a Killing vector field along
~ if and only if it extends to o Killing field V on M.

The Lancret theorem in L?

Let vy be a non-null immersed curve in 1? with curvature and torsion functions
Kk and T, respectively. Then the following statements are equivalent:

(a) 7 is a general heliz in L3;

(b) There exists a constant length Killing vector field V' along v which is
orthogonal to the acceleration vector field of «;

(¢) There exists a constant 7 such that T = k.

Moreover a general helix v is degenerate if and only if r = £1 and its normal
vector field is spacelike. The Killing vector field V' in (b) is not uniquely deter-
mined if v is a heliz (k and T both are constant); however, in this case, V' can
be uniquely determined, up to constants, once it is chosen parallel along v (say
otherwise, its extended Killing vector field in L} is a translation vector field).

Solving natural equation for non-degenerate general helices

Let B be a non-null immersed curve in L3. Then B is a non-degenerate general
heliz if and only if it is a geodesic in some right cylinder whose directriz and
generatriz are both non-null.

Solving natural equation for degenerate general helices
Let 8 be a non-null immersed curve in 12. Then f is a degenerate general
heliz if and only if it is a geodesic in some flat B-scroll in 1.3,

How to define general helices in non-flat 3-dimensional Lorentzian spaces forms?-

Definition _

A curve v in M is said to be a general helix if there exists a Killing vector
field V' along < with constant length and orthogonal to the acceleration vector
field of +.

We will say that V is an axis of the general helix 7.

Obvious examples of general helices in M are the following. Curves with
torsion vanishing anywhere, where the unit binormal works as an axis. Helices
are also general helices, where any vector field chosen in the rectifying plane
having constant coordinates relative to T and B runs as an axis.

We can follow notation and terminology used in L3 to say that zero torsion
curves are non-degenerate general helices, because the axis B is obviously non-
null. As for curves with both constant curvature and torsion we know that for
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any pair of constants a¢ and b the vector field along v given by V(s) = aT +bB is
always a Killing vector field. Of course, when €3 = —1, i.e., the rectifying plane
is positive definite at any point, all Killing vector fields V(s) are non-null and
we will say that the general helix is non-degenerate. However, if €5 = 1, i.e,, the
rectifying plane is Lorentzian, we have Killing vector fields along v being either
spacelike, or timelike, or null. It does not allow us to decide if such a general
helix is degenerate or not. However, we can determine a unique Killing vector
field along the helix by forcing it to be parallel along . The helix is said to be
degenerate or non-degenerate according to V' is null or non-null, respectively.

The Lancret theorem in the De Sitter space
A non-null immersed curve v in S2 is a general heliz if and only if either
(1) 7 =0 and v is a curve in some totally geodesic surface of S3; or
(2) v is a heliz in S3 (i.e. curvature k and torsion 7 constanis).

The Lancret theorem in the anti De Sitter space

A non-null immersed curve v in B is a general heliz if and only if either

(1) 7 =0 and v is a curve in some totally geodesic surface of H3. The curve
admits only one azis which agrees with its binormal, being parallel along the curve
and non-null. The general helix is non-degenerate; or

(2) v is a heliz in H3. It admits a plane (the rectifying plane) of ares but only
one is parallel along vv. This parallel axis is null, and so v is degenerate, if and
only if 9 = +1 and 7 = k. Otherwise v is non-degenerate; or

(3) there exists a certain constant b such that the curvature x and the torsion
T functions of v are related by 7 = bk £ 1. The curve admits a unique azis which
can not be parallel along . It is null, and so vy is degenerate, if and only if b = +1
and v has spaceltke normal vector (g2 = +1).

Solving natural equation for non-degenerate general helices in H3(—1)
Let 8 a non-null immersed curve in . Then § is a non-degenerate general
heliz if and only if it is a geodesic in some Hopf cylinder M.,,.

Solving natural equation for degenerate general helices in H}(—1)
Let B a non-null immersed curve in H. Then 3 is a degenerate general heliz
if and only if it is a geodesic in some flat B-scroll over a null curve.

6 Willmore tori and Willmore-Chen submanifolds into pseudo-Rie-
mannian spaces ([11])

Two problems

(1) Find examples of Willmore surfaces in the anti De Sitter space.

(ii) Find examples of Willmore-Chen submanifolds in pseudo-Riemannian
spaces (with non zero index).
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6.1 Willmore tori in non standard anti de Sitter 3-space

Let 7: (M, g} — (B, h) be a pseudo-Riemannian submersion.

A very interesting deformation of the metric g by changing the relative scales
of B and the fibres (see [14]).

The canonical variation g;, ¢ > 0, of ¢ by setting

aly = gly,
gy = 9gly,
gg(V,%) = 0,

where V and ‘H stand for vertical and horizontal distributions, respectively, asso-
ciated with the submersion. Thus we obtain a one-parameter family of pseudo-
Riemannian submersions m;: (M, g,) — (B, k) with the same horizontal distribu-
tion H, for all £ > 0.

Let us consider the canonical variation of the indefinite Hopf fibration

T =Tl — H*(—-1/2)
to get a one-parameter family of pseudo-Riemannian submersions
et (HY, ge) — (B (=1/2), 90).

Let v be a unit speed curve immersed in H?(~1/2). Set 7., = 77 (7).
Then 7,; is a Lorentzian flat surface immersed in 2, that will be called the
Lorentzian Hopf cylinder over 7.

As the fibres of m; are H}, which topologically are circles, then 7., is a Hopf
torus in (HE, g;), provided that v is a closed curve.

Proposition

Let S be an immersed surface into (BB, g;). Then S is G-invariant if and only
if S is a Lorentzian Hopf cylinder 1., = m,(y) over a certain curve vy immersed
in the hyperbolic 2-plane (H2(—1/2), go).

Theorem

Letmy: (HB, g} — (H2(—1/2), g0), t > 0, be the canonical variation of the pseu-
do-Riemannian Hopf fibration. Let «y be a closed immersed curve in (H?(—~1/2), go)
and T,; = Y(v) its Lorentzian Hopf torus. Then T, ¢ is a Willmore surface in
(B8, g:) if and only if v is an elastica in (H2(—1/2), go) with Lagrange multiplier
A= —4¢2,

Proof
The Willmore functional on M = {¢: T — (HB, ¢;) : ¢ is an immersion} is

) = [ ((H, H)+ R)av,
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H and R! standing for the mean curvature vector field of T' and the sectional
curvature of (HE, g;), measured with respect to the tangent plane to (T, ¢), re-
spectively, It is clear that, for any € € S', we have that Q(¢) = Q(e” - ¢). Now
let us denote by C the set of critical points of Q in M, i.e., C is the set of genus one
Willmore surfaces. Let Mg be the submanifold of M made up by those immer-
sions of T which are (G = S!)-invariant and let Ce be the set of critical points of
€ restricted to Mg. The principle of symmetric criticality of Palais, [23], can be
used here to find that C N Mg = C¢. Now from the above Proposition we obtain
that Cg = {7,; = 77 () : v is an immersed closed curve in (H?(—1/2), go)}. To
compute Q(7,;), i.e., the Willmore functional on Cg, we first notice that a = %—fi‘.,
% being the curvature function of v in (H2(—1/2), go)-
On the other hand
Rt = —g,(tiX, tiX) = —t2.

Let L be the length of «y. As the fibres of g; are circles of radii ¢, we have

L 2wt £ L .
AT = [, (@+Ryw=["[ (Zﬁ?—t?) dsdr:ijf- 6 - ayds

L CY
and the proof finishes.

Then we give, for t € (0,1), infinitely many Willmore tori in (H2, g;).

6.2 Willmore-Chen submanifolds in the hyperbolic space

We give a new method to construct critical points of the Willmore-Chen func-
tional in the pseudo-hyperbolic space H = H"(—1).

First step: write H' as a warped product with base space the standard hy-
perbolic space H* 7.

Second step: use the conformal invariance of the Willmore-Chen variational
problem to make a conformal change of the canonical metric of H?.

Third step: use the principle of symmetric criticality of R. Palais to reduce
the problem to a variational one for closed curves in the once punctured standard
(n — r)-sphere.

Given 0 < r < m, let

H' " = {(z¢,2) E R x R*" : ~af + {x,z) = ~1 and = > 0}
the hyperbolic (n — r)-space and
H: = {(¢n) ER™ xR ~(£,£) + (n,n) = ~1}

the pseudo-hyperbolic n-space. They are hypersurfaces in R2~"+! and R*}}, re-
spectively. The induced metrics on these spaces, from those in the corresponding
pseudo-Euclidean spaces, define standard metrics hp on H® and go on H*™", both
with constant curvature —1.
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Let S™ be the standard unit r-sphere endowed with its canonical metric do?.
Consider the mapping
O:H' " xS"T - H
defined by
q)((ﬂfg, IE), ’U,) = (37(]’11,, 33)

. It is not difficult to see that ® defines a diﬁeomorphism'whose inverse is
71(&,m) = (1€}, m), €/1€]). For any curve f(t) = ((zo(?), z(t)), u(?)) in H*™" x §7

we have
|42 (8| = ~(®)? + =/ — zo(0)* ' ()2

Let f : H*"™ — R be the positive function given by f(zg,z) = zo and
consider the metric ¢ = gp — f2do? on H*™ x S". The pseudo-Riemannian
manifold (H*" x S7,¢) is called the warped product of base (H*™", go) and
fibre (S7, —do?) with warping function f.

1t is usually denoted by (H"™", go) X5 (S7, —do?) or H* ™" x; (—S") when the
metrics on the base and fibre are understood (see [14] and [22]).

® is an isometry between H*™ x; (—=S") and (H}', ko).

A new metric h on H is defined by

1 1
h= ?z'ho = Fgo ~ do?,

with the obvious meaning by removing the pulling back via &.

Thus (H?, k) is the pseudo-Riemannian product of (H*~", 3}2- go) and (S7, —do?).

Finally it is not difficult to see that (H*™", }% go) has constant sectional cur-
vature 1, so that it can be identified, up to isometries, with the once punctured
standard (n — 7)-sphere (X", do?).

Consequently, (H", k) is nothing but (X", do?) x (S7, —do?), up to isometries.

SO(r + 1)-invariant submanifolds in H*

For any immersed curve v : [0,L] — H'™", we define the semi-Riemannian
(r + 1)-submanifold T, = ®(y x §"). It is clear that T, has index r and we will
refer to Y, as the cylinder over +.

Now let G = SO(r + 1) be the group of isometries of (S”, —do?).

Then G acts transitively on (S", —do?).

So we define an action of G on H* as follows

a-(€,1) =8 27, ) = (alé),n),

foranya e G. -

This action is realized through isometries of (H, hg). The following statement
characterizes the cylinders over curves in H*™" as symmetric points of the above
mentioned G-action.
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Proposition
Let M be an (r + 1)-dimensional submanifold in H'. Then M is G-invariant
if and only if M is a cylinder L., over a certain curve y in H' ™.

Critical points of F77(vy) = fy(nz)ﬂzids
Now we deal with the functional

Fr(y) = [r (k2)F ds,

defined on the manifold of regular closed curves (or curves satisfying given first
order boundary data) in a given pseudo-Riemannian manifold, where 7 stands
for any natural number (even though all computations also hold if 7 is a real
number). Notice that we write the integrand in that form to point out that it is
an even function of the curvature x. Also F! agrees with G, which is the elastic
energy functional for free elasticae.

Let v:1 C R — S™ be a unit speed curve in the unit m-sphere with cur-
vatures {«,7,...} and Frenet frame {T = ,&,...,&.}. Given a variation
D :=TI(s,t): I x (—g,€) — 8™ of vy, with I'(s,0) = y(s), we have the associated
variation vector field W(s) = Z(s,0) along 7. We will use the notation and
terminology of Langer-Singer. Set V(s,t) = &L, W(s,t) = &, (s, t) = |V (s, t)],
T(s,t) = 1V {(s,1), 6(s,t) = |V¢T|?, V being the Levi-Civita connection of ™
The following lemma collects some basic facts which we will use to find the Euler-
Lagrange equations relative to F7.

Langer and Singer Lemma ([21])
With the above notation, the following assertions hold:

[V:W] = 0
ov
) ot = (VTW,T)U;_
W, Tl = —(VeW,T)T;
(W, T),T] = T(V+W,TYHT;
Ok?

= = VAW, ViT) — VoW, T)* + 2RW, T)T, V1 T),

R being the Riemann curvature tensor of S™.

Now 2 e (I'(s, t)) = 0 allows us to get the following Euler equation, which
characterizes the critical points of 7" on the quoted manifolds of curves:

'(K:2)(r—l)/2vg‘T
+2%((n2)<'""1>/2)v§1’
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2r+1
+

_}_{(HZ)(r—l)/z ((52)(1*—-1)/2)

- — T T =0.
r+1 d.s((}c ) )

( 2)(r+1)/2}v T

From here and the Frenet equations for -y, we find the following characterization
of the critical points of F~.
Proposition

Let «y be a regular curve in S™ with curvatures {x,7,6,...}. Then 7y is a
critical point of

Fr) = [ () 0ds

if and only if the following equations hold:

. -1 '

K — kT 4 K+ rr=1) )(n’)2 = 0,
r4+1 K

(YT = 0,

5 = 0.

In particular, v lies in some S* or S totally geodesic in S™.

From now on we will call r-generalized elasticae to the critical points of
F7. In particular, free elasticae are nothing but 1-generalized elasticae.

A key result
Characterize the cylinders in (H?, hg) which are Willmore-Chen submanifolds.

Theorem

Let v be a fully immersed closed curve in the hyperbolic space H* ™. The
cylinder T, = ®(y x 87) in (H*, hy) is @ Willmore-Chen submanifold if and only
if v is a generalz’zed free elastica in the once punctured unit sphere (X", do?).
dn particular, n —r < 3.

The proof is mainly based on the symmetric criticality principle of Palais.

Some examples
To find examples of non trivial Wﬂlmore—Chen submanifolds in the pseudo-
hyperbolic space (HF, hy) we apply the latter Theorem.

Example 1.1 :

Let «y be an immersed closed curve in the hyperbolic 2-plane. The Lorentzian
cylinder Y., = ®(y x SY) is a Willmore torus in the 3-dimensional anti De Sitter
space (KB, ho) if and only if v is a free elastica in the once punctured unit 2-sphere
(332, do?).

The complete classification of closed free elasticae in the standard 2-sphere was
achieved by J.L. Langer and D.A. Singer, which can be briefly and geometrically
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described as follows ([21]): Up to rigid motions in the unit 2-sphere, the family
of closed free elasticae consists of a geodesic 7y, say the equator, and an integer
two parameter family {ym.: 0 < m <n, m,n € Z}, where ~,, , means that it
closes up after n periods and m trips around the equator .

As a consequence we have

Example 1.2

There exist infinitely many Lorentzian Willmore tori in the 3-dimensional anti
De Sitter space. This family includes {Y,,.:0<m < n, m,n € Z} and T,,.

A second case we will consider is n — r = 3. Then we look for critical points
of F7(y) inside the family of helices in the standard once punctured 3-sphere
(23, do?).

Let v be a helix in (Z3, do?) with curvature « and torsion 7. Assume that -y
is a not a geodesic; otherwise, it is a trivial solution. Then - is an r-generalized
free elastica if and only if

Ym,n

K —7*4+1=0.

r+1

A long and messy computation leads to

Theorem

For any natural number v, there exists a one parameter family {¥;}seq\(0} of
closed helices in (33, do?) which are T-generalized free elastica.

As a consequence we obtain
Example 2

Let r be any natural number. For any non zero rational number q, there exists
an (r+1)-dimensional Willmore-Chen submanifold T, = ®(yxS") in the pseudo-
hyperbolic space (L3, he), 7 being an r-generalized free elastic closed heliz in the
once punctured unit 3-sphere (52, do?) whose slope £ is computed as above.
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