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This is a survey of the following three subjects: B-scrolls, r-elastic curves and 
Willmore-Chen submanifolds. B-scrolls arose as the first important example of 
indefinite submanifolds having no Riemannian counterpart. They have played an 
e§sential role in a series of classification results of indefinite submanifolds which 
point out substantial differences between indefinite and Riemannian submani-
folds (see [1], [2], [3], [4], [5], [15] and [16]). Then, following Pinkall, [24], we 
define indefinite Hopf cylinders and find a nice characterization of B-scrolls with 
constant mean curvature in JHfi(-1) in terms of them (see [12] and [9]). Now 
two remarkable facts should be noticed. On one hand, looking at parametriza-
tions of indefinite Hopf cylinders, we bring to mind the Betchov-Da Rios soliton 
equation (see [18], [25], [26], [27], [28] and [29]). Then we find solutions of this 
equation lying on B-scrolls: they are helices. Furthermore, we give a rational 
one-parameter family of closed solutions and show that the only soliton solutions 
are the null geodesics of the corresponding B-scroll (see [9]). On the other hand, 
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we see that Hopf surfaces in ffl (-1) shaped on closed in the hyperbolic 
plane lHl2 ( -1/4) are Lorentzian Hopf tori. Then we first determine the isometry 
group of Lorentzian Hopf tori and, secondly, we try to get solutions of the Will-
more problem in JHii (-1). The latter will be sol ved, following again Pinkall, by 
means of the Langer and Singer viewpoint 011 elastic curves ([19], [20] and [21]) 
and the symmetric criticality principle of Palais [23]. 

As far as helices is concerned, we start by recalling that a general helix in 
a Euclidean 3-space is defined by the property that its tangent indicatrix is a 
planar curve. The straight line perpendicular to this plane is called the axis 
of the general helix. First of all we need a good definition appropriate for the 
new ambient spaces. Moreover, we have to consider both degenerate and non-
degenerate general helices in JI}, according to the causal character of its axis. 
Therefore, to define general helices in 3-dimensional De Sitter §i and anti De 
Sitter ffl spaces we follow the idea of Langer and Singer, [21], and use Killing 
vector fields along curves. Namely, !et M be a non flat 3-dimensional Lorentzian 
space form. A curve 'Y in M is said to be a general helix if there exists a Killing 
vector field V along 'Y with constant length and orthogonal to the acceleration 
vector field of ¡. V will be the axis of ¡. The helix is said to be degenerate 
or non-degenerate according to V is, respectively. In [6] Barros has shown that 
general helices are geodesics either of right general cylinders or of Hopf cylinders, 
according to the curve lies in ffi.3 or § 3, respectively. Now, general helices in 
JI} are geodesics in right general cylinders or in flat B-scrolls, according to the 
helix is non-degenerate or degenerate, respectively. In ·non flat 3-dimensional 
Lorentzian space forms the Lancret thorem underlines deep differences between 
pseudo-spherical and pseudo-hyperbolic spaces. The former has no non trivial 
general helices, the latter being nicely similar to lL3. Whence roles played by lHii 
and §i correspond with those played by § 3 and lHl3, respectively (see [10]). 

The Willmore-Chen variational problem is the natural extension of the Will-
more one. The first non trivial examples of Willmore-Chen submanifolds were 
givea by Barros and Garay in [13]. We aim to find Willrriore-Chen submanifolds 
in a pseudo-hyperbolic space JHI;.'. That will be done in severa! steps. After writ-
ing JHI;.' as a warped product, we characterize SO(r + 1 )-invariant submanifolds of 
JHI;.'. Then we extend the concept of elastic curves to r-elastic curves and apply 
the symmetric criticality principle. As a consequence Willmore-Chen submani-
folds in JHI;.' are characterized in terms of r-generalized free elaticae in the once 
punctured unit sphere ¿;n-r (see [11]). F\J.rthermore, following the classification 
of closed free elasticae in the standard 2-sphere obtained by Langer and Singer, 
[21], we show that there exist infinitely many Lorentzian Willmore tori in the 
3-dimensional anti De Sitter space. Examples of Willmore tori in non-standard 
3-spheres have been recently given by Barros in [7]. The same author has also 
found wide families of Willmore tori in warped product manifolds (see [8]). 
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1 Indefinite Hopf cylinders ([9,12]) 

Following Pinkall [24], we look for pseudo-Riemannian submersions 

1fs: JHii(-1)-+ JHI;(-1/4), S =O, l. 

Idea: 
identify ( -1) with an appropriate subset of maps -+ 

How to do that: 
P be a 2-dimensional subspace and {x,y} an orthonormal basis of P. 
Define maps 

f:P-+ P, f(x) =y, 
g: P-+ P, g(x) =y, 
h: P-+ P, h(x) =-y, 

f(y) = -x, 
g(y) = x, 
h(y) = -x, 

which will be called rotation, first reflection and second reflection on P, 
respectively. 

Let { ei, e2 , e3 , e4 } be the usual basis of equipped with (9;i) = diag[-1, -1, 1, 1]. 
Set P; = span{e1 , e;}, i = 2, 3, 4 such that = P; E9 P/-. 
Consider the following maps 

P = f x f: P2 E9 P.f -+ P2 E9 P.f, 
cr = g x h: P3 E9 Pi- -+ P3 EB Pl, 
i = g x g: P4 E9 Pl -+ P4 EB P{ 

Then :F = span{l, p, cr, i} is a 4-dimensional vector space over and the 
following identities hold 

p2 = -1, crp = -i, ip = cr, 
pcr = i, ()2 = 1, /,(} = p, 
pi= -cr, (}/, = -p, ¿2 =l. 

Let cp : :F -+ be the isomorphism given by 

Then cp becomes an isometry when :F is endowed with the ·metric cp*(g0 ), g0 
being the standard scalar product on 

Both metrics will be denoted by { , ) . 
Write w =a+ bp + ccr +di E :F, a standing for a· 1, a, b, e and d being real 

numbers. 
Define 

w = -a + bp + ccr + di. 
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Then 
(w,w) = ww= ww. 

In general 
(w1,w2) = P1(w1w2), 

p1 denoting the projection over the subspace spanned by the identity map. 
Hence 

and 

Now set 
IHit(-r2 ) = {wE:F:ww=-r2 }, 

JHI2(-r2 ) := Span{l,cr,L} C JHit(-r2), 
'· JHii(-r2 ) =. span{l,p,cr} e JHíf(-r2 ). 

Define 1f s : JHíf (-1) -+ JHI; (-1/ 4) by 

1ís(w) = 

where w -+ w denote the antiautomorphism of :F given by 

W = a - bp + CO" + dL, or W = a+ bp + CO" - dL, 

according to the base manifold is lHI2 ( -1/4) or llili ( -1/4), respectively. 
As usual, we define e0x, B E :F, by 

cos(x) + sin(x)B, if 82 = -1, 
cosh(x) + sinh(x)B, if 82 = 1. 

That means that the fibers are topologically § 1 and IHI1 , respectively. 
Rentark Writing cr = f x f and L = f x f, then we obtain in the Euclidean space 
IR4 the standard quaternionic structure, which was already used by U. Pinkall to 
describe the usual Hopf fibration § 3(1)-+ § 2(1). 

Let \1 and \1 be the semi-Riemannian connections of lHíf ( -1) and JHI; ( -1/4), 
respectively, and denote by overbars the lifts of corresponding objects on the base 
JHI;(-1/4). 

Then 

\lx-Y = \lxY+(-1) 8 ((JX,Y)o1fs)V, 

\lx-V = \lvX =ex, 
\lvV = O, 
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where J denotes the standard complex structure of IBt;(-1/4) and B = p when 
s = O or B = L when s = l. 

Let (J:J mt;(-1/4) be a unit speed curve with Frenet ftame and 
curvature K.. 

Consider a horizontal lift 7J : I lHli (-1) of f3 with Frenet frame fr, G} 
and curvatures K.* and r*. 

Now, from the Frenet equations, we can deduce that G = and R = K. o 1í8 • 

In particular líes in the horizontal distribution along 7J and it has the same 
causal character as €z. Also it is not diffi.cult to see that r* = ±1 and 
that is, the binormal of 7J coincides with the unit tangent to the fibers through 
each point of (J. 
Proposition 

(1) The horizontal lifts of unit speed curves in lHl2 (-1/4) are spacelike curves 
in JHli (-1) with torsion ±l. 

(2) The horizontal lifts of unit speed timelike curves in lffii(-1/4) are timelike 
curves in JHli ( -1) with torsion ±l. 

By pulling back vía 1ís a non-null curve f3 iD.-'mt; (-1/ 4) we get the total hori-
zontal lift of f3, which is a fiat immersed surface M f3 in JHli ( -1), that will be called 
the indefinite Hopf cylinder associated to f3 

Notice that if s = O, Mf3 is a Lorentzian surface, whereas if s = 1, Mf3 is 
Riemannian or Lorentzian, according to f3 be spacelike or timelike, respectively. 
Theorem 

Let M be a Lorentzian surface immersed in to IH!H -1). Theri M is the semi-
Riemannian Hopf cylinder in JHli (-1) associated to a unit speed curve f3 (-1/4) 
if and only if M is the B-scroll over any horizontal lift 7J of {3. 

Let fJ:J mt;(-1/4) be a unit speed curve with Frenet frame {T,6} and 
curvature function K.. 

_ Let 7J be a horizontal lift of f3 to JHli (-1) with Frenet frame {T, and 
curvature R = K. o 1ís and r = l. Recall that is nothing but the unit tangent 
vector field to the fibers along /]. 

Then the Hopf cylinder Mf3 can be orthogonally parametrized as 

( ) { 
cos(z)/J(t) + if s =O 

X t,z = -
cosh(z)fJ(t) + if s = 1 

Setting, as usual, Xt = 8{i and Xz = , then {Xt, Xz} is an orthonormal frame 
of Tx(t,z)Mf3 along X anda direct computation shows that the shape operator S 
of Mf3 in this frame can be written as 

S(Xt) = RXt + e:Xz, 
S(Xz) Xt, 
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where e = + 1 if M13 is Riemannian and e = -1 if M13 is Lorentzian. 
Notice that a unit normal vector field to M13 into lHq (-1) is obtained from the 

complete horizontal lift of 6 and it is, of course, along each horizontal lift of 
(J. 

As a consequence we have that M13 is a flat surface, as we said befare, and its 
mean curvature function a is given by a = R/2. 

According to the description of curves with constant cu.rvature (-1/4) we 
can give the following description of Hopf cylinders of constant mean curvature. 
Proposition 

Let (J be a unit speed curve in with constant curvature "'· Then one 
of the following statements holds: 

(1) M 13 is a minimal complex circle ("'=O}. 
(2) M13 is a non-minimal complex circle {O < "'2 < 4). 
(3) M 13 is the Hopf cylinder over the horocycle {s = O, "'2 = 4) or over the 

pseudo-horocycle (s = 1, "'2 = 4). 
( 4) M 13 is one of the following semi-Riemannian products 

(4.1) 1H!i(-r2) x § 1(r2 -1) if s =O and "'2 > 4, 
(4.2) 1HI1 (-r2 ) x §i(r2 -1) if s = land "'2 > 4. 

(5) M 13 is the Riemannian product 1Hl1 (-r2 ) x 1Hl1 (-1 + r2 ) with r satisfying 

1- 2r2 

r-/I=T2 = "'· 

It should be noticed that the above cases ( 1) through ( 4) correspond to the 
Lorentzian character of M13 and so, according to the above theorem, it can be con-
sidered as the classification of B-scrolls with constant mean curvature in lHq ( -1). 
The remainder case corresponds with the Riemannian character of M13. 

2 Lorentzian Hopf tori ([9]) 

Hopf surfaces in W¡(-1) shaped on closed curves in !Hl2(-1/4) are Lorentzian fl.at 
tori. Now we want to determine the isometry group of these surfaces. 

We use standard computations involving the structure equations of the in-
duced connection and [17] to get a similar result to that of Pinkall: 
Theorem 

Let (J be a closed embedded curve in !Hl2(-1/4) of length L enclosing an area 
A. Then M13 is isometric to 11} /A, A being the lattice in the Lorentzian plane lL2 
generated by the vectors (27r,O) and (2A,L). 
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Remark It is worth noting that (2A, L) is only constrained by the isoperimetric 
inequali ty in lHl2 ( -1/4) 

L2 2: 47rA + 4A2
• 

Hence the vector (2A, L) must be spacelike. Therefore (2A, L) lies in the shaded 
region n 

: ,,' 
-21í _;,_:/ o 

3 Willmore tori in JHli ( -1) ( [9]) 

Inspired again by Pinkall's paper, we look for Willmore tori in JH1i (-1) associated 
to elastic curves in lHl2 ( -1/4). 

A unit-speed curve 'Y in M-;) is said to be an elastica ( or elastic curve) if it 
is an extremal point of the functional 

for sorne >., wherc ds and L stand for the arclength on 'Y and the length of 7, 
respectively. It is called a free elastica if >.=O (see [21]). 

The Euler-Lagrange equation associated to this variational problem is 

Frenet equations for 7: 

'VrT = c2K6, 

'Vr6 = -é1KT -

'Vr6 = c2r6 + ó, 

where ó E span{T, 6, =e; and T is the torsion function (the second 
curvature if n > 3). Assume now that M-;) is of constant curvature c. Then the 



116 A. Ferrández 

Euler-Lagrange equation can be rewritten as follows 

2r::2K.
11 + r::1K.3 - 2r::3Kr2 + r::1r::2(2c - >.)K. = O, 

2K.
1 
T + K.T

1 = Ü, 

K.TO =O. 

Taking u = K.2 these equations can be solved by standard techniques in terms 
of elliptic functions. ' .. 

For instance, a qualitative description of elasticae in the Lorentz-Minkowski 
plane JI} is given as follows. In general, the elasticae in JI..2 are curves which 
oscillates around a so that the parameter >., in sorne sense, could be 
viewed as the wavelength. That length increases or decreases according to r::1>. 
does. In the following we skecht sorne of these curves. 

r::1>. >o >.=o r::1>. <o 
As for the pseudo-hyperbolic plane lHli (-1) the behaviour of the elastic curves 

is essentially the same as in lL2, they also oscillate around geodesics. In particular, 
we 'can draw a free elastica oscillating around the central circle in lffii (-1). 

Free elastica Projection on xy-plane 

Let M'1 be a surface in an indefinite 3-space M; of constant curvature c. 
We define the operator W over sections of the normal bundle of M'1 into M! 

as follows 

W : SJlM __, SJlM, W(ü = (LiD + 2 (H, H} I -
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A standing for Simons operator. 
A cross section will be called a Willmore section if =O. Suppose that 

M is compact and consider the Willmore functional 

W(M) = jM((H,H)+c)dv. 

Then the operator W naturally appears provided that one computes the first 
variation formula for W. 

Now Willmore surfaces are nothing but the extremal point¡:¡ of the Willmore 
functional and they are characterized from the fact that their mean curvature 
vector fields are Willmore fields. 
Proposition 

Let 1f s : JHI1 (-1) __, JHf. (-1/ 4) and /3 : I __, JHf. (-1/4) be as befare. Then the 
Hopf cylinder Mf3 satisfies W H = µ,H, µ E IR, if and only if f3 is an elastica in 
llif.(-1/4). . 

We know that the fibers of 7ro: JHií(-1) __, IH12(-1/4) are circles, and so com-
pact, whereas the fibers of 7r1 : JHI1 (-1) __, JHli (-1/4) are not compact. Therefore 
to find compact Hopf surfaces we have to consider Hopf torus shaped on closed 
curves in lH12 ( -1/4) 

In the anti-De Sitter world we have known that a Hopf torus Mf3 is a Willmore 
surface in JHI1 ( -1) if and only if (J is an elastica in lH12 ( -1/4) with >. = -4. 
However we have recently known from D. Singer (prívate communication) that 
cannot be hold. Thus we have to say that there is no {Lorentzian) Willmore Hopf 
torus in (-1). 

4 The Betchov-Da Rios equation ([9]) 

The Betchov-Da Rios (BDR) equation u'/\ u" = u, also called localized induction 
equation in 3-dimensional hydrodynamics, is a soliton equation for space curves 
u(t, s), where u'= 8u/8t and u= Bu/as. · 

. It is a straigthforward computation that, in general, the standard parametriza-
tion X(t, z) of Mf3 is nota solution of BDR. 

We ask for the classification of h E Diff(IR.2 ) in order to Y = X o h be a 
solution of BDR equation in JHli (-1 ). 

We completely solve this problem. 
Let r¡ be a unit normal vector field to Mf3 in JHI1 (-1 ). Then r¡ can be written 

as follows: 
s=O, r¡ -

- - sinh(z)T(t) + .::1 s =l. 
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A straightforward computation yields Y(u, v) is a solution of BDR equation 
if and only if the following PDE system holds: 

Solving we get 
Theorem 

tv = (-l) 8€1tuzu(tuK + 2zu), 
Zv = t;(tuK+2zu), 
Ü = tuZuu - Zutuu• 

Let f3 be an are length parametrized curve in Tin; (-1/ 4) and Mf3 its Hopf 
cylinder in lHf¡ (-1). Far any h E take Y = X o h : lR.2 __, Mf3, X 
being the standard cavering af aver Mf3. Then Y is a salution aj BDR saliton 
equatian in lHlf (-1) if and anly if the fallawing statements hald: 

(i) f3 has canstant curvature, say r;,, in Tin; ( -1/4); 
(ii) h(u,v) = (t(u,v),z(u,v)) is given by 

t(u,v) = au+(-l)'agpv+ci, 
z(u, v) = agu + i;1apv + c2 , 

where (i;1 - (-l)"g2)a2 = i;, i;1 being the causal character of /3, € the causal 
character af the u-curves, g - {-/'i,/2}, p = €1(K. + 2g)a2 is the curvature aj 
the u-curves in lHf¡ ( -1) and a, c1, c2 are arbitrary canstants. 
Corollary 1 

Let Mf3 be a Larentzian Hapf cylinder in lHlf (-1) af canstant mean curvature. 
Then the anly saliton salutians af BDR equatian in lHlf (-1) lying in Mf3 are the 
null geadesics af Mf3. 
Corollary 2 

Let f3 be a clased curve af canstant curvature in llf(-1/4) with length L 
encl_asing an ariented area A. Then far any ratianal number q, the slope 

21f ( A) g =y q+ 1f 

defines a unique clased helix in W¡(-1) and therefare a closed salutian af BDR 
equatian in lHf¡ (-1) living in the Hapf torus Mf3. Furthermare, the clased salution 
is either spacelike, ar timelike ar null accarding to q E ( q1, q2), q E - ( q1 , q2), 

{ } t . l Ji - A L d _ ·A L q E qi, q 2 , respec ive y, w ere q1 - --;r - 2" an q2 - --;r + 2". 

5 General helices in 3-dimensional Lorentzian space forms ([10]) 

Helices got as solutions of BDR brought us to mind a Barros' idea: look out 
general helices. 
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A curve of constant slope or general helix in Euclidean space R3 is defined 
by the property that its tangent indicatrix is a planar curve. The straight line 
perpendicular to this plane is called the axis of the general helix. 

A classical result stated by M.A. Lancret in 1802 and first proved by B. de 
Saint Venant in 1845 is: "A necessary and suffi.cient condition in order to a curve 
be a general helix is that the ratio of curvature to torsion be constant". 

For a given couple of one variable functions ( eventually curvature and torsion 
parametrized by arclength) one might like to get an arclength parametrized curve 
for which the couple works as the curvature and torsion functions. This problem 
is usually referred as "the solving natural equations problem" 

The natural equations for general helices can be integrated, not only in R3 , 

but also in the 3-sphere § 3 (the hyperbolic space is poor in this kind of curves and 
only helices are general helices). Indeed Barros, [6], has shown that general helices 
are geodesics either of right general cylinders or of Hopf cylinders, according to 
the curve lies in R3 or § 3• 

What about general helices in the 3-dimensional Lorentzian space forms? 

A non-null curve 'Y immersed in lL3 is called a general helix if its tangent indi-
catrix is contained in sorne plane, say 7r, of lL3. Since 7r can be either degenerate 
or non-degenerate, then both cases are distinguished by calling degenerate and 
non-degenerate general helices, respectively. 

We will point out a remarquable and deep difference between the behaviour 
of general helices in Euclidean and Lorentzian geometries: 

While in R3 general helices are geodesics in right general cylinders, as classi-
cally is shown, we will prove that general helices in ][} are geodesics in either right 
general cylinders or fl.at B-scrolls, according to the general helix is non-degenerate 
or degenerate. 

This nice difference between Euclidean and Lorentzian geometries (from the 
point of view of the behaviour of general helices) confirms once more the impor-
tant role of the notion of B-scroll in Lorentzian gemnetries. 

General helices in 3-dimensional De Sitter sr and anti De Sitter JBii spaces are 
considered with the help of the idea of Langer and Singer (see [21]): use Killing 
vector field along a curve in a 3-dimensional real space form. 

The Lancret theorem in sr and lffii underlines deep differences between the 
pseudospherical and pseudohyperbolic spaces. The pseudohyperbolic case is nicely 
analogous to the Lorentz-Minkowskian case, whereas in the pseudospherical case 
there are no nontrivial general helices. From this point of view, the roles played 
by the non fiat Lorentzian space forms JBii and sr correspond with those played 
by the non fiat Riemannian space forms § 3 and lHl3, respectively. 

Let 'Y( t) be a non-null immersed curve in a 3-dimensional Lorentzian space 
form M with sectional curvature e and let v(t) = l'Y'(t)I be the ·speed of 'Y· 
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Let us considera variation of "f, r = I'(t, z): I x (-e, e)__, M with I'(t, O) = 
'Y(t). In particular one can choose e > O in such a way that all t-curves of the 
variation have the same causal character as that of 'Y· Ass9ciated with r there are 
two vector fields along r, V(t,z) = and W(t,z) = In particular 
V(t) = V(t, O) is the variational vector field along 'Y and W(t, z) is the tangent 
vector fields of the t-curves. We will use the notation V = V(t, z), v = v(t, z), 
"' = "'(t, z), etc. with the obvious meanings. Also, if s denotes the arclength 
parameter of the t-curves, we will write v(s, z), V(s, z), K,(s, z), etc. for the 
corresponding reparametrizations. 

A straightforward but long computation aUows us to obtain formulas for 
ª;;(t,O) and ª;;(t,O) which we collect, along with another standard 

identity, in the following lemma. 
Lemma 

(1) [V, W] =O; 

8v -(2) Bz (t, O)= -e1gv, with g = (\lrV, T); 

where (,) denotes the Lorentzian metric of M and K,1 = (t, O). 
Without loss of generality we can assume 'Y to be arciength parametrized. 
A vector field V(s) along "(, which infinitesimally preserves unit speed para-

metrization ( that meáns ( t, O) = O for a V-variation of 'Y) is said to be a Killing 
vector field along 'Y if this evolves in the direction of V whithout changing shape, 
only position. In other words, the curvature and torsion functions of 'Y remain 
unchanged as the curve evolves. 

Hence Killing vector. fields along 'Y are characterized by the equations 

8v 8"'2 8r2 

Bz (t, O)= Bz (t, O)= oz (t, O)= O. 

Then V is a Killing vector field along 'Y if and only if it satisfies the following 
conditions: 

a) (V'rV, T) =O, 
-2 b) (V'rV,N) +e1c{V,N) =O, 

l-3 "'' -2 e - "'' c) (-Y'rV - 2Y'rV + e1(e2"' + -)\lrV - e1c2 V, rB) =O. K, K, K, K, 
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Now when M is simply connected, since the restriction to 'Y of any Killing 
field V of M is a Killing vector field along "/, one concludes from a well known 
dimension argument, the following lemma. 
Lemma 

Let M be a complete, simply connected, Lorentzian space f orm and 'Y a non-
null immersed curve in M. A vector field V on 'Y is a Killing vector field along 
'Y if and only if it extends to a Killing field V on M. 
The Lancret theorem in ][} 

Let 'Y be a non-null immersed curve in ][} with curvature and torsion functions 
"' and T, respectively. Then the following statements are equivalent: 

(a) 'Y is a general helix in][}; 
(b) There exists a constant length Killing vector field V along 'Y which is 

orthogonal to the acceleration vector field of 'Y; 
(c) There exists a constant r such that T = rK.. 
Moreover a general helix 'Y is degenerate if and only if r = ±1 and its normal 

vector field is spacelike. The Killing vector field V in {b) is not uniquely deter-
mined if 'Y is a helix ("' and T both are constant); however, in this case, V can 
be uniquely determined, up to constants, once it is chosen parallel along 'Y {say 
otherwise, its extended Killing vector field in]¡} is a translation vector field}. 

Solving natural equation for non-degenerate general helices 
Let f3 be a non-null immersed curve in][}. Then /3 is a non-degenerate general 

helix if and only if it is a geodesic in some right cylinder whose directrix and 
generatrix are both non-null. 

Solving natural equation for degenerate general helices 
Let f3 be a non-nuU immersed curve in ][}. Then /3 is a degenerate general 

helix if and only if it is a geodesic in some fiat B-scroll in ][}. 

How to define general helices in non-flat 3-dimensional Lorentzian spaces forms?-

Definition 
A curve 'Y in M is said to be a general helix if there exists a Killing vector 

field V along 'Y with constant length and orthogonal to the acceleration vector 
field of 'Y· 

We will say that V is an axis of the general helix 'Y· 
Obvious examples of general helices in M are the following. Curves with 

torsion vanishing anywhere, where the unit binormal works as an axis. Helices 
are also general helices, where any vector field chosen in the rectifying plane 
having constant coordinates relative to T and B runs as an axis. 

We can follow notation and terminology used in ][} to say that zero torsion 
curves are non-degenerate general helices, because the axis B is obviously non-
null. As for curves with both constant curvature and torsion we know that for 
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any pair of constants a and b the vector field along 'Y given by V ( s) = aT + bB is 
always a Killing vector field. Of course, when c2 = -1, i.e., the rectifying plane 
is positive definite at any point, all Killing vector fields V ( s) are non-null and 
we will say that the general helix is non-degenerate. However, if c2 = 1, i.e., the 
rectifying plane is Lorentzian, we have Killing vector fields along 'Y being either 
spacelike, or timelike, or null. It <loes not allow us to decide if such a general 
helix is degenerate or not. However, we can determine a unique Killing vector 
field along the helix by forcing it to be parallel along 'Y· The helix is said to be 
degenerate or non-degenerate according to V is null or non-null, respectively. 

The Lancret theorem in the De Sitter space 
A non-null immersed curve 'Y in St is a general helix if and only if either 
(1) T =O and 'Y is a curve in some totally geodesic surface of Si; or 
(2) 'Y is a helix in Si {i.e. curvature"' and torsion T constants). 

The Lancret theorem in the anti De Sitter space 
A non-null immersed curve 'Y in IHii is a general helix if and only if either 
(1) T = O and "( is a curve in some totally geodesic surface of IHii. The curve 

admits only one axis which agrees with its binormal, being parallel along the curve 
and non-null. The general helix is non-degenerate; or 

(2) 'Y is a helix in JHii. It admits aplane {the rectifying plane} of axes but only 
one is parallel along 'Y· This parallel axis is null, and so "( is degenerate, if and 
only if c2 = + 1 and T = ±"'. Otherwise 'Y is non-degenerate¡ or 

(3) there exists a certain constant b such that the curvature "' and the torsion 
T functions of 'Y are related by T = b"' ± l. The curve admits a unique axis which 
can not be parallel along 'Y· It is null, and so 'Y is degenerate, if and only if b = ±1 
and 'Y has spacelike normal vector {c2 = +l). 
Solving natural equation for non-degenerate general helices in JHii (-1) 

Let /3 a non-null immersed curve in Then /3 is a non-degenerate general 
helix-if and only if it is a geodesic in some Hopf cylinder M1 . 

Solving natural equation for degenerate general helices in (-1) 
Let /3 a non-null immersed curve in . Then /3 is a degenerate general helix 

if and only if it is a geodesic in sorne fiat B-scroll over a null curve. 

6 Willmore tori and Willmore-Chen submanifolds into pseudo-Rie-
mannian spaces ([11]) 

Two problems 
(i) Find examples of Willmore surfaces in the anti De Sitter space. 
(ii) Find examples of Willmore-Chen submanifolds in pseudo-Riemannian 

spaces (with non zero index). 
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6.1 Willmore tori in non standard anti de Sitter 3-space 

Let 1í: (M,9)-7 (B,h) be a pseudo-Riemannian submersion. 
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A very interesting deformation oí the metric 9 by changing the relative scales 
oí B and the fibres (see [14]). 

The canonical variation 9t, t > O, of9 by setting 

9tlv = t2 YIV, 

9tiH = 9IH, 

9t(V, 1-l) = o, 
yvhere V and 1-l stand for vertical and horizontal distributions, respectively, asso-

with the submersion. Thus we obtain a one-parameter family oí pseudo-
Riemannian submersions 1ít: (M, 9t) -7 (B, h) with the sarne horizontal distribu-
tion 1-l, for all t > O. 

Let us consider the canonical variation oí the indefinite Hopí fibration 

to get a one-parameter family oí pseudo-Riemannian subrnersions 

Let 'Y be a unit speed curve immersed in IHI.2(-1/2). Set T,,t = 1ít"1 ('Y). 
Then T,,t is a Lorentzian fl.at surface immersed in , that will be called the 
Lorentzian Hopf cylinder over 'Y· 

As the fibres oí 1ít are IHli, which topologically are circles, then T,,t is a Hopí 
torus in (IHq, 9t), provided that 'Y is a closed curve. 
Proposition 

Let S be an immersed surface into 9t). Then S is G-invariant if and only 
íf S is a Lorentzian Hopf cylinder T,,t = 1ít('Y) over a certain curve 'Y immersed 
in the hyperbolic 2-plane (IHI.2 (-1/2), Yo). 
Theorem 

Let 1ít: 9t) -7 (1Hl2 (-1/2), 90), t > O, be the canonical variation of the pseu-
do-Riemannian Hopf fibration. Let 'Y be a closed immersed curve in (1Hl2 (-1/2), Yo) 
and T,,t = 1ít"1 ('Y) its Lorentzian Hopf torus. Then T,,t is a Willmore surface in 
(IHq, 9t) if and only if 'Y is an elastica in (IHI.2 (-1/2), 9o) with Layran9e multiplier 
,\ = -4t2 • 

Proof 
The Willmore functional on M = { ef>: T -7 9t) : </> is an immersion} is 

D(</>) = .l((H, H) + Rt)dv, 
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H and Rt standing for the mean curvature vector field of T and the sectional 
curvature of (IHir, gt), measured with respect to the tangent plane to (T, </>), re-
spectively. It is clear that, for any e;o E §1, we have that D(</>) = D(e;o · </>). Now 
let us denote by C the set of critica! points of D in M, i.e., C is the set of genus one 
Willmore surfaces. Let Me be the submanifold of M made up by those immer-
sions of T which are (G = § 1)-invariant and let Ca be the set of critica! points of 
D, restricted to Me. The principle of symmetric criticality of Palais, [23], can be 
used here to find that C n Me = Ca. Now from the above Proposition we obtain 
that Ca= {T,,t = 7r¡1(1): ¡is an immersed closed curve in (IHI.2(-1/2),g0)}. To 
compute D(T,,t), i.e., the Willmore functional on Ca, we first notice that a= 
ll": being the curvature function of ¡ in (IHI2 (-1/2), go). 

On the other hand 
t .- .- 2 R = -gt(tiX, tiX) = -t . 

Let L be the length of ¡. As the fibres of gt are circles of radii t, we have 

D('Lt) = 1 (a2 + Rt)dv = ¡L ¡2trt (-41 ;;,2 - t2) dsdr = 7rt ¡L(r;,2 - 4t2)ds 
" tr;- 1(t) Jo Jo 4 Jo 

and the proof finishes. 
Then we give, for t E (O, 1), infinitely many Willmore tori in (IHií, gt)· 

6.2 Willmore-Chen submanifolds in the hyperbolic space 

We give a new method to construct critica! points of the Willmore-Chen func-
tional in the pseudo-hyperbolic space = (-1 ). 

First step: write as a warped product with base space the standard hy-
perbolic space lH!"-r. 

Second step: use the conforma! invariance of the Willmore-Chen variational 
problem to make a conforma! change of the canonical metric of 

Third step: use the principie of symmetric criticality of R. Palais to reduce 
the pfoblem to a variational one for closed curves in the once punctured standard 
(n - r )-sphere. 

Given O < r < n, let 

w-r = {(xo,x) E IR X IRn-r: + (x,x) = -1 and Xo >O} 

the hyperbolic (n - r )-space and 

IHI;.' = E JRr+l x IRn-r: (77,77) = -1} 

the pseudo-hyperbolic n-space. They are hypersurfaces in IR¡-r+i and re-
spectively. The induced metrics on these spaces, from those in the corresponding 
pseudo-Euclidean spaces, define standard metrics h0 on and g0 on lH!"-r, both 
with constant curvature - l. 
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Let W be the standard unit r-sphere endowed with its canonical metric da2 • 

Consider the mapping 

defined by 
<I>((xo,x),u) = (xou,x). 

It is not diffi.cult to see that <I> defines a diffeomorphism whose inverse is 
T/) = 17), u1rn. For any curve (J(t) = ((xo(t), x(t)), u(t)) in w-r X w 

we have 

Let f : w-r -t lR be the positive function given by f(xo, x) = Xo and 
consider the metric g = go - ¡2dCJ2 on w-r X The pseudo-Riemannian 
manifold (w-r x W, g) is called the warped product of base (w-r, g0) and 
fibre (W, -dCJ2) with warping function f. 

It is usually denoted by (w-r, g0) x 1 (§r, -da2) or w-r x ¡ (-W) when the 
metrics on the base and fibre are understood (see [14] and [22]). 

<I> is an isometry between w-r X f (-W) and ho). 
A new metric h on is defined by 

1 1 2 
h = J2 ho = J2 go - dCJ , 

with the obvious meaning by removing the pulling back vía <P. 
Thus h) is the pseudo-Riemannian product of (w-r, J2 g0 ) and (§r, -da2 ). 

Finally it is not diffi.cult to see that (w-r, ] 2 g0 ) has constant sectional cur-
vature 1, so that it can be identified, up to isometries, with the once punctured 
standard ( n - r )-sphere (En-r, dCJ2 ). 

Consequently, h) is nothing but (En-r, da2) x (W, up to isometries. 

SO(r + 1)-invariant submanifolds 
For any immersed curve 'Y : [O, L] -t w-r, we define the semi-Riemannian 

(r + 1)-submanifold Y 1 = <I>('Y x W). It is clear that Y 1 has index r and we will 
refer to Y 1 as the cylinder over 'Y. 

Now let G = SO(r + 1) be the group of isometries of (§r, -da2 ). 

Then G acts transitively on (§r, -da2 ). · 

So we define an action of G on as follows 

17) = <I>(a · 17)) = (a(O, T/), 

for any a E G. 
This action is realized through isometries of h0 ). The following statement 

characterizes the cylinders over curves in w-r as syrnrnetric points of the above 
mentioned G-action. 
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Proposition 
Let M be an (r + l)-dimensional submanifold in llif;.'. Then M is G-invariant 

if and only if M is a cylinder Y 1 over a certain curve 1 in w-r . 
Critica! points of ;::r('"Y) = 

Now we <leal with the functional 

1 2 .!:.±! F('"Y) = ,(K, ) 2 ds, 

defined on the manifold of regular closed curves ( or curves satisfying given first 
order boundary data) in a given pseudo-Riemannian manifold, where r stands 
for any natural number ( even though all computations also hold if r is a real 
number). Notice that we write the integrand in that form to point out that it is 
an even function of the curvature K,. Also F 1 agrees with 9, which is the elastic 
energy functional for free elasticae. 

Let 1: I e IR -4 §m be a unit speed curve in the unit m-sphere with cur-
vatures {K,, r, .. . } and Frenet frame {T = 1', 6, ... , Given a variation 
r := r(s, t) : I x (-i::, i::) -4 §m of -y, with r(s, O)= -y(s), we have the associated 
variation vector field W ( s) = 8¡; ( s, O) along 1. We will use the notation and 
terminology of Langer-Singer. Set V(s, t) = W(s, t) = v(s, t) = JV(s, t)I, 
T(s, t) = t), K,(s, t) = IY'rTl2, V' being the Levi-Civita connection of §m. 
The following lemma collects sorne basic facts which we will use to find the Euler-
Lagrange equations relative to P. 
Langer and Singer Lemma ([21]) 

With the above notation, the f ollowing assertions hold: 

[V, W] = O; 
8v 
8t 

[W,T] = 
[[W,T],T] = 

QK,2 
8t 

(Y'rW,T)v; 

-(Y'rW, T)T; 

T((V'rW,T))T; 

Y'rT) - 4(Y'rW, T)K,2 + 2(R(W, T)T, Y'rT), 

R being the Riemann curvature tensor of §m. 

Now ftlt=O ;::r(r(s, t)) =O allows us to get the following Euler equation, which 
characterizes the critical points of F on the quoted manifolds of curves: 

+2_i((K,2)(r-1)/2)\72 T 
ds T 
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+{(¡¡;2)(r-1)/2 + + 2r + 1(¡¡;2)(r+l)/2}\7TT 
, ds2 r + 1 

+ 2r + 1 _!((¡¡;2)(r+l)/2)T =O. 
r+ 1 ds 

From here and the Frenet equations for /, we find the following characterization 
of the critical points of :P. 
Proposition 

Let / be a regular curve in §m with curvatures {¡¡;, r, 8, ... } . Then / is a 
critica[ point of 

:P(!) = !, (¡¡;2)(r+l)/2ds 

if and only if the following equations hold: 

r r(r- 1) r¡¡;" + --¡¡;3 _ ¡¡;r2 + ¡¡; + (¡¡;')2 
r + 1 K; 

(¡¡;zyr 

8 

= 

= 
= 

In particular, / lies in sorne § 2 or § 3 totally geodesic in §m. 

o, 
o, 
o. 

From now on we will call r-generalized elasticae to the critical points of 
:P. In particular, free elasticae are nothing but 1-generalized elasticae. 
A key result 

Characterize the cylinders in h0) which are Willmore-Chen submanifolds. 

Theorem 
Let 1 be a fully immersed closed curve in the hyperbolic space w-r . The 

cylinder 1 1 = t;P(I x W) in h0) is a Willmore-Chen submanifold if and only 
if / is a generalized free elastica in the once punctured unit sphere ('En-r, da2). 

-In particular, n - r :::; 3. 
The proof is mainly based on the symmetric criticality principle of Palais. 

Sorne examples 
To find examples of non trivial Willmore-Chen submanifolds in the pseudo-

hyperbolic space h0 ) we apply the latter Theorem. 
Example 1.1 

Let / be an immersed closed curve in the hyperbolic 2-plane. The Lorentzian 
cylinder 1 1 = t;P( / x § 1) is a Willmore torus in the 3-dimensional anti De Sitter 
space (JH!i, ho) if and only if / is a free elastica in the once punctured unit 2-sphere 
('E2' da2). 

The complete classification of closed free elasticae in the standard 2-sphere was 
achieved by J.L. Langer and D.A. Singer, which can be briefiy and geornetrically 
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described as follows ([21]): Up to rigid motions in the unit 2-sphere, the family 
of closed free elasticae consists of a geodesic 'Yo, say the equator, and an integer 
two parameter family { 'Ym,n : O < m < n, m, n E Z}, where 'Ym,n means that it 
closes up after n periods and m trips around the equator 'Yo· 

As a consequence we have 
Example 1.2 

There exist infinitely many Lorentzian Willmore tori in the 3-dimensional anti 
De Sitter space. This family includes {Y l=,n : O < m < n, m, n E Z} and Y 10 • 

A second case we will consider is n - r = 3. Then we look for critica! points 
of :P ('Y) inside the family of helices in the standard once punctured 3-sphere 
(E3, dcr2 ). 

Let 'Y be a helix in (E3 , dcr2 ) with curvature "'and torsion r. Assume that 'Y 
is a not a geodesic; otherwise, it is a trivial solution. Then 'Y is an r-generalized 
free elastica if and only if 

T 
--K.2 - T 2 + 1 = 0. 
r+l 

A long and messy computation leads to 
Theorem 

Far any natural number r, there exists a one parameter family { '/'q}qEQ\{o} of 
closed helices in (E3 , dcr2 ) which are r-generalized free elastica. 

As a consequence we obtain 
Example 2 

Let r be any natural number. Far any non zero rational number q, there exists 
an (r+ 1)-dimensional Willmore-Chen submanifold Y 1 = <I>('Y xW) in the pseudo-
hyperbolic space h0), 'Y being an r-generalized free elastic closed helix in the 
once punctured unit 3-sphere (E3 , dcr2 ) whose slope f, is computed as above. 
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