
DOI 10.1140/epjp/i2011-11116-7

Regular Article

Eur. Phys. J. Plus (2011) 126: 116 THE EUROPEAN
PHYSICAL JOURNAL PLUS

Decay of magnetic fields in de Sitter and FRW universes

L.C. Garcia de Andrade1,a and A. Ferrández2,b
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Abstract. Magnetic curvature effects, investigated by Barrow and Tsagas (Phys. Rev. D 77, 107302
(2008)), as a mechanism for magnetic field decay in open Friedmann universes (Λ < 0), are applied
to dynamo geometric Ricci flows in 3D curved substrate in laboratory. By simple derivation, a covariant
three-dimensional magnetic self-induction equation is obtained. The presence of these curvature effects
indicates that de Sitter cosmological constant (Λ ≥ 0) leads to enhancement in the fast kinematic dynamo
action which induces a stretching in plasma flows. From the magnetic growth rate, the strong shear case
implies an anti-de Sitter case (Λ < 0) where BT magnetic decaying fields are possible. For weak shear,
fast dynamos are possible. The self-induced equation in Ricci flows is similar to the equation derived by
BT in the (3 + 1)-spacetime continuum. Lyapunov-de Sitter metric is obtained from Ricci flow eigenvalue
problem. In the de Sitter analogue there is a decay rate of γ ≈ −Λ ≈ −10−35 s−2 from the corresponding
cosmological constant Λ. This shows that, even in the dynamo case, the magnetic field growth is slower
than de Sitter inflation, which renders strongly support to BT result.

1 Introduction

Recently Fields medalist Grisha Perelman [1] has used the concept of Ricci flows, proposed by Hamilton in 1982 [2], to
prove long-standing unproved, Poincaré conjecture on two- and three-dimensional settings. Actually Perelman, argued
that the Ricci flow could be immersed in a large spacetime structure, not necessarily relativistic. In these approaches
Einstein and Jordan Brans-Dicke equations have been solved in this so-called, Ricci flow gravity. More recently, several
attempts to generalize Ricci flows to gravity have been done mainly by Graf [3] and Letelier [4]. On the other hand,
cosmology in the Laboratory (COSLAB) program developed mainly by Unruh, Visser, and Volovik [5–7] has produced
several papers on the analog models in general relativity (GR) and cosmology, which mimic in superfluid and other
optical and hydrodynamics labs, the classical and quantum conditions in the universe. Yet in another front, the fast
dynamos operating in solar physics and other astrophysical and cosmic settings, have shown the importance of dynamo
theory in explaining, the magnetic field grow locally in the universe such as in the inner cores of planets and stars.
In this paper, the cosmological analog of laboratory dynamos has been proposed and derived from the Lyapunov
metric exponents and Ricci flows equation in 3D. Dynamo stretching by Riemannian plasma curved substrates [8,9]
have led us to this reasoning. The computation of the magnetic growth rate and covariant three-dimensional magnetic
self-induced equation, shows that the presence of these curvature effects, indicates that de Sitter cosmological constant
(Λ ≥ 0), leads to enhancement of the fast dynamo action which amounts in the stretching of plasma flows. This result
was proposed earlier by Barrow and Tsagas [10] in the form of a slow, decaying magnetic field. The magnetic field
growth rate is computed in terms of eigenvalues of the Ricci tensor in Einstein spaces [11]. Besides reproducing the
decaying magnetic result of BT in Ricci flows, fast dynamo action is also obtained when the real part of the magnetic
growth rate is positive. Note that stretching dynamic by plasma flows have also been obtained by M. Nuñez [8]. In this
paper techniques of Einstein gravity, called Ricci rotation coefficients, are used to obtain the a Ricci flows dynamos.
Note that a most important framework in this derivation is the proof that the Lyapunov metric exponents obtained
by the eigenvalue problem of the Ricci flows leads naturally to a 3D cross-section of the de Sitter spacetime, which
support our conclusions. A detailed account of GR cosmological dynamos is contained in Widrow [12]. The importance
of laboratory analogues stems from the fact that there is no apparently stringy dynamo [13], and since even if there
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were, high-energy physics at this level of energy is only in its infancy in CERN experiments. The resulting metric is
called de Sitter-Lyapunov metric. Also recently Fedichev and Fischer [14] investigated a quasi-particle cosmic analogue,
using also de Sitter equivalents to trapp particles. Actually BT attempt is not the first one to relate the magnetisation
coupling to curvature invariants. A similar attempt has been done by Bassett et al. [15], which has related preheating
phases of the universe to magnetic dynamo. In the de Sitter case a simple computation shows that, the growth rate
of the magnetic field is slower than the expansion of the model, and shear is exactly the agent that slows down the
dynamo growth. Thus one can say that cosmic fast dynamo is slower down by the shear of the cosmic Ricci flow. The
paper is organized as follows: sect. 2 presents the Ricci flow as a de Sitter-Lyapunov metric and sect. 3, derivation of
the self-induction equation in Ricci flows is given and the cosmic dynamo analogue is presented. Section 4 presents
future prospects and conclusions.

2 de Sitter-Lyapunov analogue metric in Ricci flows

In this section, though it is more mathematical than the rest of the paper, it is fundamental to understand why the
relation between the de Sitter space 3D sections appears so naturally in the context of the Lyapunov metric exponents
which leads to chaotic dynamos, which are so interesting from the cosmological point of view. The Riemann metric
given by the Ricci flow [1,2], is given in mathematical terms by

Definition 1.

∂g
∂t

= −2Ric, (2.1)

where here, g is the Riemann metric, over manifold M, and the parameter t in the Riemann metric g(t), is given in
the interval t ∈ [a, b] in the field of real numbers R. On a local chart U in M, the expression (2.1) can be expressed
as [16]

∂gij

∂t
= −2Rij (2.2)

where Ric, is the Ricci tensor, whose components are Rij . From this expression, one defines the eigenvalue problem
as

Rijχ
j = λχi, (2.3)

where (i, j = 1, 2, 3). Substitution of the Ricci flow equation (2.2) into this eigenvalue expression and cancelling the
eigendirection χi on both sides of the equation yields

∂gij

∂t
= −2λgij . (2.4)

Solution of this equation yields the Lyapunov expression for the metric

gij = exp[−2λt]δij , (2.5)

where δij is the Kroenecker delta. Note that in principle if λ ≤ 0 the metric grows without bounds, and in case it is
negative it is bounded as t → ∞. Recently Thiffeault has used a similar Lyapunov exponents expression in Riemannian
manifolds to investigate chaotic flows, without attention to dynamos or Ricci flow. Thus one has proven the following
lemma.

Lemma 1. If λi is an eigenvalue spectra of the Ric tensor, the finite-time Lyapunov exponents spectra is given by

λi = −γi ≤ 0. (2.6)

In the next section we shall use this argument to work with the de Sitter metric

ds2 = −dt2 + eΛt(dx2 + dy2 + dz2) (2.7)

in the de Sitter-Lyapunov analogue 3D spacetime

ds2 = eΛt(dx2 + dy2 + dz2), (2.8)

which shows that the de Sitter-Lyapunov metric can be obtained from de Sitter metric by simply considering a constant
slice t = const of de Sitter spacetime. Nevertheless, it is important to recall that for practical uses small variations of
the parameter t would be allowed, otherwise the metric should be Ricci flat since de Sitter-Lyapunov metric should
be flat, if t = const.
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3 Ricci dynamo flows as a 3D cosmic analogue

Now let us consider Lyapunov eigenvalues, which shall play an important role in the determination of the bounds
of magnetic energy as a global dynamo action bound. Let us now consider the magnetic kinematic dynamo, most
commonly known as an equation, with non-zero plasma resistivity η

dB
dt

= B · ∇v + ηΔB, (3.9)

where B is the magnetic field vector, and v is the flow velocity, where Δ := ∇2 is the Laplacian operator. Here we
also assume that the covariant flow derivative is given by

d
dt

= v · ∇ +
∂

∂t
. (3.10)

Here we assume that the magnetic self-induction equation (3.9) is non-relativistic since we are not in the true GR
but in laboratory analogue cosmology. A long but straightforward computation, yields the diffusion term as

ΔB =
1
√

g
∂i[

√
ggij∂jB], (3.11)

which expanded using the frame ei where (i, j = 1, 2, 3) yields

B = Biei, (3.12)

which in turn yields
ΔB = [gij∂i∂jB

p + Bk[∂iγ
p
jkgij + γl

jkγp
ilg

ij ] + [γp
jkgij∂iB

k]]ep. (3.13)

Here γl
jk is the Ricci rotation coefficients (RRCs) analogous to the Riemann-Christoffel symbols. The RRCs is defined

by
∂kei = γki

jej . (3.14)

The Christoffel symbols
Γ i

jk = gil[∂jgkl + ∂kgjl − ∂lgjk] (3.15)

do not appear in the computations, since we have assumed, that the trace of the Christoffel symbols vanish. To
complete the derivation of the self-induction equation one needs to obtain the diffusion free part of the self-induced
equation above, which in general curvilinear coordinates xi ∈ Ui, of the sub-chart Ui of the manifold, and in the
rotating frame reference of the flow ei reads

dB
dt

= (B · ∇)v. (3.16)

Before this derivation, let us now introduce the Ricci tensor into play, by considering the following trick:

d
dt

[gilglk] =
d
dt

[δi
k] = 0, (3.17)

which can be applied to the expression
dB
dt

=
d
dt

(gikBkei) (3.18)

to obtain
d
dt

(gikBk) =
d
dt

(gik)Bk + gik d
dt

Bk. (3.19)

Now by making use of the Ricci flow equation above into this last expression, yields

d
dt

gikBi = −2RikBk + gik d
dt

Bk. (3.20)

Note that for de Sitter spacetime the solenoidal magnetic field is also satisfied and no magnetic monopole is assumed
in this phase. Thus

∇ · B = 0. (3.21)

From the evolution of the reference frame
dei

dt
= ωi

jej (3.22)



Page 4 of 6 Eur. Phys. J. Plus (2011) 126: 116

and the Ricci rotation coefficient, one obtains the magnetic curvature effect in dynamo theory, through the self-
induction equation in Ricci flow as

[γ + 2Λ + ω]Bi = Bp

[
vlγi

pl + vj∂pg
ij + gij

[
σpj + Ωpj −

1
3
θgpj

]]
, (3.23)

where we have used the following expressions:
∂kei = Γki

jej , (3.24)

where ωij and Γki
j are, respectively, the vorticity, and the gradient of the Ricci flow, vl is decomposed into its invariant

format of vorticity Ωlp, shear σkl tensors and expansion θ as

∂pvl = Ωpl + σpl −
1
3
θglk. (3.25)

These equations were also simplified by the assumption that the flow has a rigid rotation, or that the vorticity of the
flow coincides with the vorticity of the frame or

Ωpl = ωpl. (3.26)

This assumption is cosmologically reasonable, since the in inflationary cosmological models the vorticity and shear
are smaller than the expansion, which represents the stretching in the language of dynamo theory. The fact that the
expansion is the trace of the gradient strain θ = Tr[∇v], shows that the Ricci dynamo flows are compressible, which
are more pathological dynamo flows than the ones that are compressible, or solenoidal

∇ · v = 0. (3.27)

To deduce expression (3.23) we still have used the eigenvalue expressions

σkiB
i = σBk, (3.28)

ΩkiB
i = ΩBk, (3.29)

ΘkiB
i = −1

3
θBk, (3.30)

for the kinematical cosmological Ehlers-Sachs quantities. Besides one also uses the fact that the Ricci flows obey the
Einstein manifold 3D condition

Rlp = Λglp. (3.31)

With all those simplifications the dynamo equation (3.23) allows us to compute the dynamo growth rate as

γ =
[
2Λ − σ +

1
3
θ

]
+

BpBivl

B2
[γi

p
l
+ ∂pg

il]. (3.32)

From this expression, one immediately notices that the stretching term contributes to enhance the dynamo action,
while the positive γ de Sitter cosmological constant, also enhances the fast dynamo action. The anti-de Sitter or open
Friedmann universe induces the decay of the magnetic field or the BT result [10]. The last expression comes from an
expression with the Ricci tensor similar to the BT wave equation, which we repeat here for the readers convenience

d2Bi

dτ2
− D2Bi = −5Λ

d
dτ

Bi − 4Λ2Bi +
1
3
(ρ + 3p)Bi − RijB

j . (3.33)

In their notation Bi is the magnetic vector field in the comoving frame, and D2 = hij∇i∇j is the 3D Laplacian, where
hij = gij + vivj is the projection metric orthogonal to vl. Note that in de Sitter spacetime, the growth rate of the
dynamo action yields

γ =
[
2Λ − σ +

1
3
θ

]
(3.34)

since the terms γi
p
l and ∂pg

ij vanish for the de Sitter metric components gij = e−Λtδij . Let us now compute the
growth rate of the cosmic Ricci dynamo flow in the case of the 3D section of the Friedmann-Robertson-Walker (FRW)
universe

dl2 =
dr2

(1 − Λr2

2 )
+ r2dΩ2, (3.35)
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Fig. 1. Evolution of the graph of eat for different values of a.

where dΩ2 = (dθ2 + sin2 θdφ2) is the solid angle. Computation of the Ricci rotation coefficients in the limit of r → 0,
yields

γ =
[
2Λ − σ +

1
3
θ

]
− 2

(
1 +

Λr2

2

)
vr. (3.36)

Note that not only shear slows down the dynamo action, but in FRW universe, since the cosmological constant is very
small, the the last term does not enhance dynamo action and magnetic fields decay in this universe model. Taking
into account the magnetic energy ε as

ε =
∫

B2dV, (3.37)

which expressed in terms of the 3D Riemann metric components reads

ε =
∫

BigijB
jdV. (3.38)

Since, by definition the fast dynamo action corresponds to the growth of magnetic energy in time as ∂ε
∂t ≥ 0, this

amount has to be computed by performing the partial time derivative of the expression (3.25). Actually the equal
sign in the last condition represents the lower limit of marginal dynamos, where the magnetic energy integral remains
constant. This computation yields

∂ε

∂t
=

∂[
∫

BigijB
jdV ]

∂t
. (3.39)

Expansion of the RHS of this expression shows clearly where the Ricci flow eigenvalue effect is going to appear. A
simple computation, shows that the energy integral confirms the dynamo action. Throughout the paper the diffusion
term was not explicitly computed since because we use the limit of diffusion free to check for the presence of slow
dynamos, which seems not to exist globally in the universe. Note that the in the de Sitter case the magnetic field can
be written as

Bi = B0e[2Λ−σ+ 1
3 θ]t, (3.40)

which shows that the shear eigenvalue σ, slows down the dynamo action, while the cosmological constant in de Sitter
space enhances it. The anti-de Sitter effective [3] spacetime of course contributes to slow down the magnetic field as
the negative exponents contribute to the decay of the magnetic field in the effective universe (see fig. 1).

4 Conclusions

By making use of mathematical tools from Riemannian geometry, so popularised in Einstein general relativity, called
Ricci Rotation Coefficients, one obtains a fast dynamo action in stretching magnetic field lines endowed with shear in
de Sitter-Lyapunov analogue spacetime metric. Besides the fast dynamo action for de Sitter or closed (3+1)-spacetime
Ricci flows, where the cosmological constant Λ > 0, which is a new result, one is able to reproduce the BT magnetic
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field decay in the (3 + 1) real spacetime of GR cosmology. This seems to shed some light on the implications of
Ricci flow in more generalised settings and take it out from the pure mathematical applications. Note that several
applications of Ricci flows to physics have been considered so far, but this is the first time, to our knowledge, that it
is applied to cosmological analogues. An interesting panorama of the applications of Ricci flows manifolds in Physics
maybe found in the paper by Woolgar [18]. Ricci flows are mainly applied in solitons and since this is an important
subject to cosmology [18] we may address the relation between our cosmic analogues Ricci flows to solitons. This may
appear elsewhere.

After we finished this paper, it came to our knowledge that Marklund and Clarkson [16] have presented a general
GR covariant formalism for the dynamo magnetohydrodynamics equation, where however, no Ricci flows are present
and only gravitational waves applications in diffusive plasma are given. Vortex dynamos in analogue models can be
also treated elsewhere, based on a non-Riemannian vortex acoustics model presented earlier by the author [19]. Recent
magnetic flux tubes in Riemannian manifolds [20] may also be addressed in the Ricci flow dynamo context.
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