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Abstract

The complete classification of homogeneous three spaces is well known for some
time. Of special interest are those with rigidity four which appear as Riemannian
submersions with geodesic fibers over surfaces with constant curvature. Conse-
quently their geometries are completely encoded in two values, the constant curva-
ture, c, of the base space and the so called bundle curvature, r. In this paper, we
obtain the complete classification of equivariant Willmore surfaces in homogeneous
three spaces with rigidity four. All these surfaces appear by lifting elastic curves of
the base space. Once more, the qualitative behavior of these surfaces is encoded in
the above mentioned parameters (c, r). The case where the fibres are compact is
obtained as a special case of a more general result that works, via the principle of
symmetric criticality, for bundle-like conformal structures in circle bundles. How-
ever, if the fibres are not compact, a different approach is necessary. We compute
the differential equation satisfied by the equivariant Willmore surfaces in conformal
homogeneous spaces with rigidity of order four and then we reduce directly the
symmetry to obtain the Euler Lagrange equation of 4r2-elasticae in surfaces with
constant curvature, c. We also work out the solving natural equations and the closed
curve problem for elasticae in surfaces with constant curvature. It allows us to give
explicit parametrizations of Willmore surfaces and Willmore tori in those conformal
homogeneous 3-spaces.

Keywords: Equivariant Willmore surface, homogeneous 3-space, Riemannian submer-

sion, bundle-like conformal metric, elastic curve, Berger sphere, Heisenberg manifold.

1 Introduction

Problems related with the Willmore energy are classical in the mathematical literature. In

dimension two, they are concerned with the analysis of surfaces whose behavior is governed
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by the Willmore energy, which in physical terms, measures the total tension that surfaces

receive from a conformal structure in the background where they lie. Critical points of this

action are known as Willmore surfaces and they are of special interest in three dimensional

ambient spaces not only in their own right, but also for their many interesting applications

(see [5] and references therein). Important families of Willmore surfaces are known when

the ambient space is conformal to a homogeneous structure with the maximum order of

rigidity, that is the case when the background space is a three dimensional real space form

(see, for example, [20, 24] for boundary free compact surfaces and [3, 4] for surfaces with

boundary).

On the other hand, the complete classification of homogeneous 3-structures is well

known for sometime. There are three possibilities for the degree of rigidity of these

spaces since they may have an isometry group of dimension 6, 4 or 3. The maximum

rigidity, 6, corresponds to the spaces with constant curvature. However, of special interest

are the homogeneous 3-dimensional spaces with isometry group of dimension four. This

family includes, besides the Berger spheres, important spaces of the canonical Thurston

geometries. During the last years surfaces in these backgrounds are being deeply studied,

specially those with constant mean curvature (see [1, 12, 13] as important references in

this sense).

In this paper, we study Willmore surfaces in homogeneous 3-spaces with isometry

group of dimension four, though our method can be also applied equally well to the case

of maximum degree of rigidity. Therefore, in our study the families of Willmore surfaces

obtained in [3, 4, 20, 24] will appear as very special cases.

The main point in our study of homogeneous 3-spaces with rigidity of order four is that

they appear as Riemannian submersions with geodesic fibers over surfaces with constant

curvature. In particular, they posses bundle-like metrics and their classes of congruence

are completely determined, up to topology, for a pair of constants: the curvature of the

base, c; and the bundle curvature (the mixed curvature of the bundle-like metric), r.

Using the notation of [12] a 3-dimensional homogeneous space with rigidity of order four

will be denoted by E(c, r) and, as we have said before, its metric provides a Riemannian

submersion, p : E(c, r) → B(c), with geodesic fibers and bundle curvature r over a surface

with constant curvature c.

In the general context provided by the Riemannian submersion, p : M → B, associated

to a three dimensional fibre bundle M on a surface B with structure group G, we consider

the following:

Problem. How should we choose a curve, γ, in the base space B so that its complete

lifting p−1(γ) be a Willmore surface in M?

In connection with this problem, we have the following:

Conjecture. The equivariant surface p−1(γ) is Willmore in M if and only if the

curve γ is an elastica in the base space B relative to a suitable metric which is conformal

to the original inner product it was carrying. Said otherwise, it is a critical point, in
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that conformal metric, of the total squared curvature energy constrained by a potential.

Furthermore, that potential measures the obstruction to the integrability of the horizontal

distribution.

We will give an affirmative answer to this conjecture when the fibres of the Riemannian

submersion are compact, that is, if the structure group G is compact (a circle). This fact

allows us to ensure the existence of Willmore surfaces in the conformal class of any three

dimensional bundle-like metric. Even more, we will show that there exist Willmore tori

in any three dimensional bundle-like conformal class. The main ingredient that we use to

obtain the answer is the Palais principle of symmetric criticality, [23], which enable us to

reduce symmetry under the compactness of G.

IfG is not compact, we cannot solve the problem in all its generality. However, we use a

direct variational approach involving the computation of the field equation for Willmore

surfaces in a general setting, which allows us to get a positive answer in some special

frameworks, including those associated with a homogeneous space with four dimensional

isometry group.

As a consequence, we give the complete classification of equivariant Willmore surfaces

in three dimensional conformal homogeneous spaces having 4-dimensional isometry group,

no matter if the fibres are compact or not. In both cases, the original problem becomes one

about elastic curves in B(c), for which we use the machinery developed in [19, 25]. The

field equation for these curves, and so their qualitative behavior, is completely encoded

in the parameters (c, r) that determine the homogeneous structure as we have described

in the section 6. Our main results can be summarized as follows:

(1) The family of equivariant Willmore surfaces in the conformal E(c, r) with c ≥ 2r2

is made up of the following surfaces:

(1.1) Minimal surfaces obtained by lifting geodesics.

(1.2) A one-parameter class of surfaces obtained by lifting wavelike elastic curves.

(2) The family of equivariant Willmore surfaces in the conformal E(c, r) with c < 2r2

is made up of the following surfaces:

(2.1) Minimal surfaces obtained by lifting geodesics.

(2.2) Surfaces with constant mean curvature
√

2(2r2 − c)/2 shaped on circles with

curvature
√

2(2r2 − c).

(2.3) A one-parameter class of surfaces built on orbitlike elastic curves.

(2.4) A one-parameter class of surfaces built on wavelike elastic curves.

(2.5) A surface shaped on a borderlike elastic curve.

In the first case, c ≥ 2r2, besides the Riemannian product R2 × S1, we find some

Berger spheres including the round one (c = 4r2). However, in the second case, c < 2r2, in
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addition to the remaining Berger spheres, we obtain the Heisenberg geometries associated

with the group Nil3 and the geometries associated with the group SL(2,R).

In the last section, we include a detailed study of elastic curves in a surface with

constant curvature. It is done from the point of view of two classical problems in the

theory of curves. On the one hand, we consider the solving natural equation problem. In

general, it can be theoretically solved using quadratures whenever one knows the curvature

function. These integrations can not be done explicitly for a general curvature function,

but may for elastic curves. It allows us to exhibit explicit parametrizations of elastic

curves and then use the previous results to obtain explicit parametrizations of Willmore

surfaces in homogeneous three spaces with order four rigidity. However, our study goes

further. Indeed, we also consider the so called closed curve problem. Therefore, for elastic

curves with periodic curvature function, we find necessary and sufficient conditions that

determine when elasticae are closed. It allows us to exhibit explicit examples of Willmore

tori in homogeneous three spaces, with rigidity of order four, where previously we make

a suitable quotient in order to ensure the compactness of the fibres.

2 The Willmore problem on bundle-like conformal

classes

Let M be a three dimensional principal fibre bundle on a surface B. We have then a

structural one dimensional group, G = {ϕt : t ∈ R}, and a natural projection p : M → B.

Let dt2 be an invariant metric on G and f a positive smooth function on the basis B.

For any Riemannian metric, g, on B and any principal connection, ω, we can define a

generalized Kaluza-Klein metric on M , say ḡ = p∗(g) + (f ◦ p)2 ω∗(dt2). In particular,

when f is chosen to be constant, then ḡ is called a Kaluza-Klein or bundle-like metric.

Let us recall a few important properties of this class of metrics:

(1) The action of G on M is carried out by isometries of (M, ḡ).

(2) The projection p is a Riemannian submersion whose fibres are geodesics in (M, ḡ)

if and only if ḡ is a Kaluza-Klein metric.

(3) Given a generalized Kaluza-Klein metric, we can find another Kaluza-Klein metric

which is conformal to the original one. In fact, one just needs to take g̃ = 1
(f◦p)2 ḡ =

p∗
(

1
f2 g
)

+ ω∗(dt2).

Let γ be an immersed curve in B, then Sγ = p−1(γ) is a surface immersed in M which

is invariant under the G-action. Certainly, Sγ is embedded if γ is simple and it is compact

when the curve is closed. Conversely, all of G-invariant surfaces in M are obtained in this

way: they are complete liftings of curves in B. Topologically the surface Sγ is γ × G.

From now on, we will use the following terminology: Sγ will be called the tube shaped
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on the curve γ if G is compact, while it will be referred to as the sheet on γ if G is

not compact. Moreover, we will use the terms torus (respectively, cylinder) for a tube

(respectively, sheet) shaped on a closed curve. If γ is parametrized by its arc length in

(B, g), then any horizontal lift, γ̄, is also a unit speed curve in (M, ḡ). Then, the surface

Sγ can be parametrized by taking as coordinate curves the horizontal lifs of γ and the

fibres of the submersion φ(s, t) = ϕt(γ̄(s)). As a consequence, these surfaces are flat when

f is constant, that is, when ḡ is a bundle-like metric. From now on, these surfaces will be

called equivariant surfaces.

Let Γ be a union of regular curves in (M, ḡ) and No a unit normal vector field along Γ

which is orthogonal to Γ. For a surface, S, with boundary ∂S, let IΓ(S,M) be the space

of immersions, φ : S →M , that satisfy the following first order boundary conditions

φ(∂S) = Γ, Nφ /Γ = No,

where Nφ denotes the Gauss map associated with the immersion φ. Roughly speaking, if

we identify each immersion φ ∈ IΓ(S,M) with its graph, φ(S), viewed as a surface with

boundary in M , then IΓ(S,M) can be regarded as the space of immersed surfaces in M

having the same boundary and being tangent along the common boundary.

The Willmore problem deals with the dynamics of the boundary value problem asso-

ciated to the above boundary conditions and governed by the following Willmore energy

W : IΓ(S,M) → R, W(φ) =

∫
S

(
H2
φ +Rφ

)
dAφ +

∫
∂S

κφ ds.

where Hφ stands for the mean curvature of the immersion φ(S), Rφ is the sectional

curvature of the target space restricted to the tangent bundle of φ(S) and κφ is the

geodesic curvature of φ(∂S) in φ(S). In some sense, we are measuring the total extrinsic

curvature of the pair (φ(S), φ(∂S)). Critical points of the above stated problem are called

Willmore surfaces for the prescribed boundary conditions, and from now on they will be

referred to as Willmore surfaces with boundary or, simply, as Willmore surfaces. Here by

a critical surface we mean, as usual, that any reasonable compact piece or polygon of the

surface is a critical point for the induced problem. More precisely, a connected, simply

connected, compact domain with non-empty interior, Ω ⊂ S, is said to be a polygon if

it has a piecewise smooth boundary, ∂Ω, which is made up of a finite number of regular

curves. Now, we say that φ ∈ IΓ(S,M) is a critical point of (IΓ(S,M),W), if for any

polygon Ω ⊆ S, the restriction φ|Ω is a critical point of the Willmore energy acting on

the space Iφ(∂Ω)(Ω,M)) of immersions ψ : Ω → M that satisfy the induced boundary

conditions ψ(∂Ω) = φ(∂Ω), Nψ|∂Ω = Nφ|∂Ω.

This problem is invariant under conformal changes in the background metric. Thus,

it is actually a variational problem which is defined on the conformal class, [ḡ]. However,

since we already know that there exists a bundle-like metric representative within any

generalized Kaluza-Klein conformal class, we can restrict ourselves to the case of bundle-

like metrics using suitable conformal changes (for more details on this variational problem

see [4, 5, 11] and references therein).
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In this paper, we deal with the Willmore problem for surfaces in (M, ḡ) that satisfy

G-invariant, first order boundary conditions. Therefore, we may assume that Γ is formed

by a pair of fibres of the submersion and that No is a G-invariant unit normal vector

field along Γ, which is orthogonal to Γ. In this setting, the fundamental problem we are

concerned with here can be stated as follows

How should we choose a curve γ in (B, g) so that Sγ be a Willmore surface in (M, [ḡ])?

In other words, we have to determine the Willmore surfaces which are invariant under

the G-action on M , that we call equivariant Willmore surfaces.

3 Symmetry reduction under compactness of the fi-

bres, Willmore tubes and early applications

In this section, we give an answer to the above problem when the structure group is

compact, that is, G = S1. The main tool that we use is the principle of symmetric

criticality (see [23]) which allows us to reduce the symmetry in the following sense: an

equivariant tube, Sγ, is Willmore if and only if it is a critical point of the Willmore energy

restricted to the space of equivariant tubes.

To compute the Willmore density on equivariant immersions, we will need some ma-

chinery from the theory of Riemannian submersions (see [10], [22] and references therein).

The geometry of Riemannian submersions is mainly governed by two invariants which are

known as the O’Neill invariants. The first, T , is defined in terms of the second fundamen-

tal form of the fibres and it vanishes when fibres are totally geodesic, what in our case

means that the metric is bundle-like or Kaluza-Klein. The second invariant, A, measures

the obstruction to integrability of the horizontal distribution and so it vanishes when the

principal connection, ω, is flat. Making the natural conformal change in the metric, ḡ, we

can assume that fibres are geodesic and so we have the following relationship between the

mean curvature, Hγ, of Sγ, in (M, g̃), and the curvature function, κγ, of γ in
(
B, 1

f2 g
)

(see [3])

H2
γ =

1

4
κ2
γ ◦ p. (1)

The second term appearing in the two-dimensional Willmore energy is a sectional

curvature of a mixed section, that is a plane spanned by a horizontal vector and a vertical

vector. In general, under the assumption of geodesic fibres (T = 0), if X̄ is the horizontal

lift of a vector field X, V is vertical and both are of unit length, then the sectional

curvature of the corresponding mixed section is given by

R(X̄, V ) = |AX̄V | 2 =
1

2

(
r(X,X) ◦ p− r̃(X̄, X̄)

)
, (2)
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where r and r̃ are the Ricci curvatures of the metrics 1
f2 g and g̃, respectively. Now, in

the unit tangent bundle, S1(B), of
(
B, 1

f2 g
)
, we define the potential Ψ : S1(B) → R by

Ψ(X) ◦ p = 2
(
r(X,X) ◦ p− r̃(X̄, X̄)

)
.

Consequently, the Willmore energy, computed with the metric g̃, on a symmetric immer-

sion is given by

W(Sα) =
1

4

∫
Sα

(
(κ2

α + Ψ(α′)) ◦ p
)
dAα =

π

2

∫
α

(κ2
α + Ψ(α′)) ds.

Hence, the searching for critical equivariant tubes is reduced to that of curves that are

critical points of the following elastic energy functional

E(β) =

∫
β

(κ2
β + Ψ(β′)) ds,

acting on the space of curves which are clamped with respect to the projected boundary

conditions, that is, curves connecting two fixed points and being tangent to two fixed unit

vectors at that points. These curves are known as elasticae with potential Ψ (see [25]

as a main reference for elastica with constant potential), so that we give a simple and

interesting answer to the stated problem as follows:

Theorem 3.1 Sα is a Willmore tube if and only if α is an elastic curve with potential in(
B, 1

f2 g
)
.

Now, the existence of elastic curves with arbitrary potential, in any Riemannian man-

ifold, is theoretically known. In particular, in compact spaces, the existence of closed

elastic curves is well known for arbitrary potentials Ψ (see for example [18]). Therefore,

as a consequence, we obtain the following

Corollary 3.2 There exist equivariant Willmore tori in any generalized Kaluza-Klein

conformal structure defined on any S1 principal fibre bundle with compact base.

We point out that the Euler-Lagrange equation associated to an elastic energy action

has been computed (see [19]) when the potential Ψ is a constant, say λ, which works as a

Lagrange multiplier. In particular, in a surface with Gaussian curvature function K, this

equation is given in terms of the curvature function of curves as follows

2κ′′ + κ3 + (2K − λ)κ = 0. (3)

Some applications. The previous theorem has early applications, some of them corre-

spond with well known results. Let us indicate the following.
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(1) The simplest circle bundle that one can construct over a surface B is the trivial

one, M = B × S1. In this case generalized Kaluza-Klein metrics correspond with

those known as warped product metrics and bundle-like metrics are nothing but

Riemannian products. In the latter case, it should be noted that both O’Neill’s

invariants vanish, in fact T = 0 because fibers are geodesics and A = 0 because the

horizontal distribution is integrable. Therefore, the previous theorem can be applied

in the following way. The equivariant surface Sγ = γ× S1 is a Willmore tube in the

conformal class associated with the metric ḡ = g+dt2 if and only if γ is free elastica

in (B, g), that is a critical point of the total squared curvature functional (Ψ = 0)

acting on a suitable space of curves with no penalty on the length. Now, we can

take advantage of the study of free elastica in surfaces with constant curvature say

c, [19], to obtain one-parameter families of Willmore tubes in B(c)×R and rational

one-parameter subfamilies of Willmore tori when c 6= 0. A more detailed description

of these familes of Willmore surfaces can be checked as a very special case of the

discussion that we will do later.

(2) On the other hand, by removing an axis in R3, say the z-axis, and using cylindrical

coordinates inM = R3−{z−axis}, we can regard (M, ḡ) endowed with the Euclidean

metric ḡ, as a warped product of the half Euclidean plane P = {(x, 0, z) : x > 0}
and the unit circle. This warped product being associated with the function on

P that measures the distance to the removed axis. Therefore, we have a trivial

circle bundle endowed with a generalized Kaluza-Klein metric. In other words, after

removing and axis, the Euclidean metric can be viewed as a generalized Kaluza-Klein

one. In addition, by making a suitable conformal change in the metric one can see

that the corresponding conformal bundle-like metric is precisely the Riemannian

product of a hyperbolic half plane and a circle. In this way, we can construct a

one-parameter family of Willmore tubes in the Euclidean space, which contains in

turn a rational one-parameter subfamily of Willmore tori (see [4, 20] for details).

(3) As it is known, the trivial circle bundle over S2 corresponds to a monopole with

charge zero. Apart from this circle bundle, probably the most popular circle bundle

over S2 is given by the Hopf map, p : S3 → S2 (see [27] for a survey on its applica-

tions). It corresponds with a charge one Dirac monopole. This fibration becomes

into a Riemannian submersion with geodesic fibres, if we assume that both spheres

are round with radii one and one half, respectively. Now the potential which pro-

vides the Willmore tubes works as a Lagrange multiplier that constraint the length

of elasticae in S2 and it can be easily computed to be four. Consequently, we obtain a

one-parameter class of Willmore tubes in the three sphere which contains a rational

one-parameter subclass of Willmore tori that were first obtained by U. Pinkall, [24].

If we use a global positive scaling factor (also called a constant squashing parame-

ter) on the fibres of the previous Hopf map, then we obtain a nice representation of

the Berger spheres endowed with bundle-like metrics associated with the round two

sphere. Consequently, the previous theorem applies to provide Willmore surfaces, in

particular Willmore tori, as equivariant ones built on elastic curves, with a suitable
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constant potential, in the round two sphere. This result was first obtained in [3]

(compare also with [6]) and it will appear later as a special case in our detailed

discussion.

(4) The class of principal fibre bundles, with structure group G, over a certain space,

B, which admit a flat connection can be briefly described as follows (see [17], vol. I,

for details). One starts from a regular covering space, B̃ of B, which can be viewed

as a principal fibre bundle with the group of deck transformations, D, as structure

group, admiting a natural flat connection. Then, one chooses a monomorphism

from D into G to extend the transition functions and so obtaining a principal fibre

bundle with structure group G. Furthermore, that monomorphism can be extended

to a monomorphism of principal fibre bundles which provides a flat connection in

the new bundle. In this construction, the original covering space appears as the

holonomy bundle, through any point, of the so obtained flat connection. Certainly,

to obtain a non trivial construction, the space B should be non simply connected.

In this context and according to the setting of this paper, we wish to describe

the class of three dimensional principal fibre bundles, M(B,G), over an embedded

surface of revolution in R3, which admit a flat connection. The fundamental group,

π1(B), is free abelian with one or two generators according to whether the profile

curve of B, δ, is not closed or it is closed, respectively. From now on, we will write

B = R(δ). In the last case, the deck transformation group, D, of any covering space

is, up to isomorphisms, either Zn ⊗ Zm, or Z ⊗ Zm or Z ⊗ Z. Since the structure

group has dimension one, one does not dispose of monomorphisms from D into G.

In other words, there exist no three dimensional principal fibre bundles, with flat

connection, over a compact embedded surface of revolution in R3. Consequently, we

can restrict ourselves to the case where δ is not closed. In this case π1(R(δ)) ∼= Z
and consequently, the deck transformation group, D, of any covering space is, up to

isomorphisms, either Zn for some n ∈ N, or Z (this case occurring when the covering

space is the universal one). On the other hand, the structure group, G, must be

either (R,+) or the multiplicative group S1. Then, the class of three dimensional

principal fibre bundles over R(δ), which admit a flat connection, can be describe as

follows

(i) For any r ∈ R, the monomorphism φr : Z → R, defined by φr(k) = rk, provides

a principal bundle Mr(R(δ),R) which admit a flat connection whose holonomy

subbundle is isomorphic to R2(R(δ),Z).

(ii) For any n ∈ N, the monomorphism, ψn : Zn → S1, that identifies Zn with the

group of primitive n-roots of unity, provides the principal bundle M̄n(R(δ),S1)

which admit a flat connection whose holonomy subbundle is isomorphic to a

suitable regular covering space of R(δ).

(iii) For any real number q which is not a rational multiple of π, the monomor-

phism, ϕq : Z → S1 defined by ϕq(k) = eikq, provides the principal fibre bundle
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M̆q(R(δ),S1) which admit a flat connection whose holonomy subbundle is iso-

morphic to R2(R(δ),Z).

The last two cases correspond with circle principal bundles so that the fibres are

compact and then Theorem 4.1 applies. On the other hand, the flatness of the prin-

cipal connection automatically implies that the potential, constraining the elastic

curves in R(δ), vanishes identically. Therefore, the equivariant Willmore tubes in

these two one-parameter classes of conformal bundle-like metrics correspond to the

class of free elasticae in R(δ) (this result was first shown in [7]).

4 A direct variational approach under non compact-

ness of the fibres and Willmore sheets

To study the case where the group G is not compact, we will use a direct approach to

avoid the use of the symmetric criticality principle which might be unclear in this case.

Therefore, we need to compute the first variation formula associated with the Willmore

functional acting on surfaces S in a Riemannian three space, (M, ḡ) (not necessarily

bundle-like), which have a fixed boundary and are tangent along the common boundary.

As usual, a variation of φ ∈ IΓ(S,M) is a map, Φ : S × (−δ, δ) → M , such that the

mappings φv(m) = Φ(m, v) belong to IΓ(S,M) and φ0 = φ. We define the vector field

Z(m, v) = Φ∗
(
∂
∂v

(m, v)
)

along Φ which vanishes identically along the boundary. In

particular, Z(m) = Z(m, 0), is a vector field along φ vanishing on ∂S which we call the

variational field associated with the above variation. This allows us to identify the tangent

space Tφ (IΓ(S,M)) with that of vector fields along φ vanishing on ∂S. To compute

the first variation of the Willmore enery ∂W(φ) : Tφ (IΓ(S,M)) → R, we pick Z ∈
Tφ (IΓ(S,M)) and choose a variation, Φ, of φ with variational field Z, then, with the

obvious meaning, we have

∂W(φ)[Z] =

{
∂

∂v

[∫
S

(
H2
v +Rv

)
dAv +

∫
∂S

κv ds

]}
v=0

.

However, under the boundary conditions that we are considering along this paper (sur-

faces with the same boundary and being tangent along the common boundary) the total

curvature of the boundary is a constant under variations and so we only need to pay atten-

tion to the two-dimensional integral term. Using standard variational arguments which

involve several integrations by parts (see [3, 28] for details), we obtain that Willmore

surfaces satisfy

∂W(φ)[Z] =

∫
S

[
ḡ([S(φ) +NΦ(RΦ)]NΦ, Z

⊥)
]
dAφ = 0, (4)

for all Z ∈ Tφ (IΓ(S,M)), where Z⊥ denotes the normal component of Z and S is a

Schrödingerlike operator defined on IΓ(S,M) by

S(φ) = ∆φHφ +Hφ

(
2H2

φ − 2Kφ + Ric(Nφ, Nφ)
)
.
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Certainly, the applications of the formula (4) take place in those contexts where it reduces

to a differential equation involving terms that depend only on the surfaces, but not on

the variational fields. For example, if (M, ḡ) has constant curvature, then NΦ(RΦ) = 0

and consequently the Willmore surfaces correspond with immersions in the kernel of S,

that is, they are solutions of the following, well known, field equation (compare with [28])

∆H + 2H(H2 −K) = 0, (5)

where, of course, K stands for the Gaussian curvature of the surface endowed with the

induced metric φ∗(ḡ).

As far as we know, apart from the constant curvature backgrounds, the only setting

where (4) turns out to be a treatable differential equation is that provided by the equivari-

ant surfaces in semi Riemannian products of surfaces and one dimensional Lie groups (see

[5] for details). Now, we want to use a similar idea in order to derive the Euler-Lagrange

equation in the context of a bundle-like metric associated to a flat normal connection. As

a consequence, we will obtain an extension of a result in [7] that was worked out by using

Palais’ symmetric criticality principle under the compactness of the structure group.

Proposition 4.1 Let p : M → B be a three dimensional principal fibre bundle over a

Riemannian surface, which is endowed with the bundle-like metric associated with a flat

connection. Then, p−1(γ) is Willmore in the corresponding bundle-like conformal class if

and only if γ is a free elastica in B.

Proof. First, note that the bundle-like nature of the metric implies that the fibres

are geodesics and so T = 0. On the other hand, the flatness of the connection provides

the integrability of the horizontal distribution and so A = 0. Using this information, we

can do a similar proof to that made in [5] for semi Riemannian products or, alternatively,

follow the proof of the theorem in the next section with A = 0, to conclude that the term

which corresponds to the transversal derivative appearing in (4) vanishes identically. More

precisely, for any variation of φ(S) = p−1(γ) in M , we get NΦ(RΦ) = 0. Consequently,

p−1(γ) is Willmore in the bundle-like conformal class if and only if it is immersed through

an immersion, φ, belonging to the kernel of the differential operator S. Equivalently, its

mean curvature function is a solution of the following field equation

∆φHφ +Hφ

(
2H2

φ − 2Kφ + Ric(Nφ, Nφ)
)

= 0.

However, the equivariant surfaces are flat so Kφ = 0. On the other hand, from (1) and

(2) we obtain that the curvature function of γ in B satisfies

2κ′′ + κ3 + 2Kκ = 0,

K standing for the Gaussian curvature of B. Now, the above equation is nothing but

the Euler Lagrange equation for free elastica in B ([19], see also (3) with λ = 0), what

concludes the proof.
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4.1 Some applications

In Section 3 we have described the class of three dimensional principal bundles over a

surface of revolution which admit a flat connection. The profile curve needs not be closed

and so the whole class is made up of three one-parameter subclasses of bundles. One

corresponds to principal bundles with non compact structure group and the other two

subclasses correspond with circle principal bundles. It should be noted that the same

conclusion is obtained for any surface whose fundamental group is free abelian with one

generator.

Now, each curve γ in the surface of revolution R(δ) provides a one-parameter family

of sheets and two one-parameter families of tubes. All these surfaces are Willmore in

the corresponding conformal bundle-like structures, provided that γ is a free elastica in

R(δ). For example, suppose that R(δ) is a circular right cylinder, then all of parallels are

geodesics, which are minima for the total squared curvature and so trivial free elasticae.

Consequently, every three dimensional conformal bundle-like metric associated with a flat

connection over a circular right cylinder admits a foliation by either tori (if the structure

group is compact) or cylinders (if the structure group is not compact) which are minimal

and so Willmore in the corresponding bundle-like metric. However, circular right cylinders

are not the only revolution surfaces providing this kind of Willmore foliations. Besides

circular cylinders, the only surface of revolution all of whose parallels are free elasticae is

described as follows (see [8] for details). In the open half-plane x > 0, y = 0, consider the

following curve which is parametrized by its arclength

δ(s) =

(
c

4
s2, 0,

s

2

√
1− c2

4
s2 − 1

c
arccos

c

2
s+ b

)
, s ∈ (−2/c, 0) ∪ (0, 2/c),

where b, c ∈ R with c > 0. Then, all of parallels of the surface of revolution R(δ), obtained

when rotating δ around the z-axis, are free elasticae.

Consequently, with the notation of Section 3, we have

(1) Mr(R(δ),R), r ∈ R, admits a Willmore foliation whose fibres are Willmore cylinders

with constant mean curvature in the corresponding bundle-like metric.

(2) M̄n(R(δ),S1), n ∈ N, admits a Willmore foliation whose fibres are Willmore tori

with constant mean curvature in the corresponding bundle-like metric.

(3) M̆q(R(δ),S1), with q is a real number which is not a rational multiple of π, admits

a Willmore foliation whose fibres are Willmore tori with constant mean curvature

in the corresponding bundle-like metric.
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5 Equivariant Willmore surfaces in homogeneous three

spaces

A natural breeding ground to apply our main theorem is provided by the homogeneous

three spaces. It is well known that if (M, ḡ) denotes a homogeneous oriented three space,

then its isometry group, I(M), is a Lie group with dimension 6, 4 or 3. From now on, we

will say that it has rigidity of order 6, 4 or 3, respectively. In the first case, the space has

constant curvature and so it is covered by either S3 (positive curvature), R3 (curvature

zero) or H3 (negative curvature). In the last section, we have constructed wide families

of Willmore tubes and tori in the corresponding conformal class.

The second degree of rigidity correspond to those homogeneous three spaces with

dim(I(M)) = 4. This is certainly the widest and interesting family of homogeneous

three spaces. Among its simply connected members, one can find besides a couple of

Riemannian product, S2×R and H2×R, the Berger spheres, the Heisenberg group, Nil3,

and the universal covering of the special lineal group SL(2,R). Obviously, the family also

includes quotient of these spaces by suitable isometry subgroups, namely

- Lens spaces, Ln = S3/Zn, n ≥ 2, including the projective space, RP3 = L2, with the

corresponding induced Berger metrics;

- Heisenberg bundles, including those over flat tori; and

- The projective special linear group PSL(2,R) = P̃SL(2,R)/Z2 and other quotients

of P̃SL(2,R).

Any homogeneous three space with rigidity of order four, (M, ḡ), can be viewed as a

bundle over a surface with constant curvature. To exploit this point of view, we will follow

the notation of [12]. This fibration provides a Riemannian submersion, p : M → B(c),

with geodesic fibers (T = 0), so that the homogeneous metric is a bundle-like one over a

constant curvature (say c) metric, g. In addition, the vertical flow is generated by a unit

Killing vector field V and it allows one to compute the second O’Neill invariant as

AXV = r (X × V ), (6)

where X is a horizontal vector field and r is a constant, the bundle curvature ([12]),

though actually it is the mixed curvature of this bundle. Both constants, c (curvature of

the base) and r (bundle curvature), classify the homogeneous space up to isometries and

topology. In other words, each pair of real numbers, (c, r), determines, up to topology,

a congruence class E(c, r) of homogeneous three spaces whose isometry group has either

dimension 4, if c 6= 4r2, or dimension 6 (constant curvature), if c = 4r2. If the fibres are

circles, then an interesting and immediate consequence of our first theorem reduces the

searching for invariant Willmore tubes in the conformal class of E(c, r) to that of elastic

curves in B(c) associated with the constant potential 4r2. More precisely, we have the

following

13



Corollary 5.1 Sγ = p−1(γ) is a Willmore tube in E(c, r) if and only if γ is a critical

point, in B(c), of the elastic energy

E(β) =

∫
β

(κ2
β + 4r2) ds.

This result only holds when the fibres are compact, i. e., the structure group is a

circle. However, we can extend that statement to every homogeneous three space E(c, r),

no matter if the structure group is compact or not. To do that, the main machinery is

provided by the direct variational approach that we have developed in the last section.

More precisely, the formula (4) can be applied when M = E(c, r) to characterize those

equivariant surfaces that are Willmore. In this case, that formula becomes into a differ-

ential equation and so the family of equivariant Willmore surfaces appears as the kernel

of the differential operator S. More precisely, we have the following

Theorem 5.2 Let φ ∈ I(S,E(c, r)) be an equivariant immersion, that is, φ(S) = p−1(γ)

for a curve γ ⊂ B(c). Then, it is a Willmore surface if and only if S(φ) = 0.

Proof. We will take first a look to the Fermi coordinate systems on a three dimensional

Riemannian space, M . Given a point p ∈M , the notion of normal coordinate system, in

a neighborhood of p, associated with an orthonormal basis of TpM is well known. The

Fermi coordinates arose as the natural extension of normal coordinates when one replaces

the point p by a surface S of M (see [15] and references therein for details). Let ξ = T⊥M

be the normal bundle of S in M , which is a differentiable manifold of dimension three.

Now, we can define the exponential map associated with ξ as follows

expξ : ξ →M, expξ(q, x) = expq(x), ∀(q, x) ∈ ξ,

although strictly speaking it could be defined only in a neighborhood of the zero section

of ξ. It should be noted that we may identify S with the zero section of ξ, so that S is

regarded as a surface of ξ as well as a surface of M . Under this identification, it is clear

that T(q,0)ξ = TqS⊕T⊥q S. As a consequence of the inverse function theorem, the mapping

expξ : ξ → M maps a neighborhood of S ⊂ ξ onto a neighborhood of S ⊂ M . So

denote by PS the largest neighborhood of the zero section in ξ for which the exponential

mapping provides a diffeomorphism onto its image. This property is exploited to define

the Fermi coordinates. To do it, we need an arbitrary system of coordinates (s, t) defined

in a certain neighborhood, say U ⊂ S together with a unitary section, N , of the normal

bundle, ξ, restricted to U . In this setting, we can define the Fermi coordinate system as

follows

x1

(
expξ(q, vN(q)

)
= s(q), x2

(
expξ(q, vN(q)

)
= t(q), x3

(
expξ(q, vN(q)

)
= v.

In other words, if we parametrize U by φ(s, t) then the Fermi coordinates, defined

in expξ(PU), of expξ(φ(s, t), v N(s, t)) are just the cylindrical coordinates (s, t, v) of
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(φ(s, t), v N(s, t)) in the neighborhood PU of the zero section in the normal bundle, ξ,

restricted to U .

Coming back to the statement, certainly φ provides a Willmore surface if and only if

∂W(φ)[Z] = 0 for all Z ∈ Tφ(IΓ(S,E(c, r)). So, to prove this statement, we only need to

show that, in this case, the term NΦ(RΦ) appearing in the above first variation vanishes

identically. Choosing a horizontal lift, γ̄(s), of γ(s), which we assume to be parametrized

by its arclength, the equivariant immersion φ can be expressed by

φ(s, t) = ϕt(γ̄(s)).

Along this map, we have the following orthonormal frame φs = dϕt(γ̄
′(s)), φt = V and

N = V ∧ φs. Moreover, it is clear that we can restrict ourselves to variations which

are normal to the surfaces, that is, associated with variational vector field Z(s, t) =

f(s, t)N(s, t) and suitable functions f along the surface. Now, we have the variation

Φ(v, s, t) = expφ(s,t) (v Z(s, t)).

Then, we have

Φs = φs + vfsN + vf ∇sN,

Φt = φt + vftN + vf ∇tN,

where ∇ stands for the Levi Civita connection in E(c, r). Now, we have

NΦ(RΦ) = N

(
R(Φs,Φt,Φt,Φs)

〈Φs,Φs〉〈Φt,Φt〉 − 〈Φs,Φt〉2

)
v=0

.

We express both terms of the above quotient as polynomials in v as follows

R(Φs,Φt,Φt,Φs) = r2 + 2v[fsR(φs, φt, φt, N) + f R(φs, φt, φt,∇sN)

+ ftR(φs, φt, N, φs) + f R(φs, φt,∇tN, φs)] + v2...

∆(v, s, t) = 〈Φs,Φs〉〈Φt,Φt〉 − 〈Φs,Φt〉2

= 1 + 2vf (〈φs,∇sN〉+ 〈φt,∇tN〉) + v2...

Then the transversal derivative is given by

NΦ(RΦ) = 2 {fsR(φs, φt, φt, N) + ftR(φs, φt, N, φs)}
+ 2f {R(φs, φt, φt,∇sN)− 〈φs,∇sN〉R(φs, φt, φt, φs)}
+ 2f {R(φs, φt,∇tN, φs)− 〈φt,∇tN〉R(φs, φt, φt, φs)} .

However, ∇sN = 〈∇sN, φs〉φs + 〈∇sN, φt〉φt which automatically implies that

R(φs, φt, φt,∇sN)− 〈φs,∇sN〉R(φs, φt, φt, φs) = 0,
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and the same argument works to see that the third term of the right hand also vanishes.

Therefore,

NΦ(RΦ) = 2 {fsR(φs, φt, φt, N) + ftR(φs, φt, N, φs)} .

On the other hand, we use all the machinery associated with the Riemannian sub-

mersions (see [10]). Remember that, in our case, the fibres are geodesics so T = 0 and

so

R(φs, φt, φt, N) = −〈(∇φtA)φs
N, φt〉 − 〈Aφsφt, ANφt〉.

The first term of the right hand side vanishes due to the alternating properties of ∇A, so

R(φs, φt, φt, N) = −r2 〈φs × φt, N × φt〉 = 0.

The last term we wish to delete can be written as follows

R(φs, φt, N, φs) = 〈(∇φsA)φs
N, φt〉.

Now, observe that AφsN = −rφt and so

(∇sA)φs
N + A∇sφsN + Aφs∇sN = −r∇sφt.

However, ∇sφs has the direction of N and consequently A∇sφsN = 0. Finally, we have

〈Aφs∇sN, φt〉 = 〈∇sN, φs〉 〈Aφsφs, φt〉+ r〈∇sN, φt〉 〈φs × φt, φt〉 = 0,

which finishes the proof.

Corollary 5.3 The equivariant surface Sγ = p−1(γ) is a Willmore one in E(c, r) if and

only if γ it is a critical point, in B(c), of the elastic energy

E(β) =

∫
β

(κ2
β + 4r2) ds.

Proof. This result has been shown when the fibres are compact, a circle. Now, we can

give a simple proof which works anytime, no matter if the fibres are compact or not. In

fact, according to the last theorem, Sγ = p−1(γ) is Willmore in E(c, r) if and only if the

corresponding immersion belongs to the kernel of the operator S. However, the equation

S(φ) = 0 for equivariant surfaces can be projected down onto the base B(c), getting the

following differential equation for the curvature function of the curve γ in B(c)

2κ′′ + κ3 + 2(c− 2r2)κ = 0, (7)

which is nothing but the Euler Lagrange equation, in B(c), associated with the quoted

elastic energy.
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6 Qualitative study of elasticae to callibrate the size

of the equivariant Willmore surfaces families

Once we have reduced the study of equivariant Willmore surfaces in homogeneous three

spaces E(c, r) to that of elastic curves in B(c), we wish to give some details on the families

of Willmore surfaces that we obtain in each one of the homogeneous three geometries.

However, we have to do a couple of considerations. First, in our computations we can

include the case c = 4r2, though it corresponds with a real space form (rigidity of order six)

and so we will describe the class of Willmore tubes obtained by Pinkall ([24]). Secondly,

in the next discussion we can also consider the cases where r = 0, though these geometries

correspond to Riemannian products of surfaces with constant curvature and fibres.

The elastic curves in a surface B(c), with constant curvature c, have been intensively

studied (see for example [19, 21]). Let us briefly describe the qualitative behavior of these

curves. In our case, the curvature function, κ(s), of elastic curves, in N(c), satisfies the

Euler Lagrange equation (7). Multiplying it by κ′ and writing u = κ2, one sees that a

first integral of (7) is of the form (u′)2 = P (u), for a certain third degree polynomial

P (u). Now, the non constant solutions of this equation will appear whenever P (u) > 0

and consequently the polynomial has three real roots satisfying −a1 ≤ 0 ≤ a2 ≤ a3 and

a1 − a2 − a3 = 4(c− 2r2), a1 a2 a3 = 0. (8)

The general solution is given in terms of the elliptic functions as follows

κ2(s) = a3(1− q2 sn2(ms, p)),

where sn(x, p) is the elliptic sinus function and other parameters are given by

p2 =
a3 − a2

a3 + a1

, q2 =
a3 − a2

a3

, m2 =
a3 q

2

4p2
=
a3 + a1

4
.

It is clear that a3 > 0, otherwise the elastica is a geodesic. Furthermore, from (8),

we see that one of the other two roots should vanish. Therefore, for convenience, we will

split the discussion in two cases:

(1) If c − 2r2 ≥ 0, then a2 = 0. Certainly, the geodesics of B(c) are the only

elastic curves with constant curvature. To obtain non trivial solutions, we note that the

parameters defining their curvature functions satisfy

0 < p2 =
a3

a3 + a1

< 1, q2 = 1, m =

√
a3

4p2
=

1

2

√
a3 + a1.

Moreover, we can compute the maximum squared curvature, a3, in terms of p and the

homogeneous structure data (c, r) to obtain

(1− 2p2) a3 = 4p2(c− 2r2),
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which shows that 1 − 2p2 is positive when c − 2r2 > 0, while p2 = 1/2 if c = 2r2. Then

we get the maximum curvature of the non trivial solutions

κo =
√
a3 = 2p

√
c− 2r2

1− 2p2
, 0 < p ≤

√
2

2
.

The solutions are summarized as follows:

(i) If c = 2r2, then we have the following elastic curves

– Geodesics, κ = 0

– The one-parameter class of wavelike elastic curves with curvature functions

κ(s) = κo cn

(√
2κo
2

s,

√
2

2

)
, κo > 0. (9)

(ii) If c > 2r2, then we have the following elastic curves

– Geodesics, κ = 0

– The one-parameter class of wavelike elastic curves whose curvature functions

are given by

κ(s) = 2p

√
c− 2r2

1− 2p2
cn

(√
c− 2r2

1− 2p2
s, p

)
, 0 < p <

√
2

2
. (10)

As a consequence, we obtain the following:

Corollary 6.1 The class of Willmore tubes in either a Berger sphere with c = 2r2 > 0

or R2 × S1 (c = r = 0) is made up of the following surfaces:

1. Minimal surfaces shaped on geodesics in B(c).

2. A one-parameter class of tubes built on the wavelike elastic curves whose curvature

function is given in (9).

Corollary 6.2 The class of Willmore tubes in either a Berger sphere with c > 2r2 > 0

or S2 × S1 (c > 0, r = 0) consists of the following surfaces:

1. Minimal surfaces shaped on geodesics in B(c).

2. A one-parameter class of tubes built on the wavelike elastic curves whose curvature

function is given in (10).
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It should be noted that Willmore surfaces, in the conformal round three sphere, ob-

tained by U. Pinkall, [24], are also obtained, as a special case, in the last corollary just

choosing c = 4 and r = 1.

(2) If c− 2r2 < 0, then it is clear that, besides geodesics, those curves with constant

curvature function
√

2(2r2 − c) are elastic curves. To investigate the non trivial solutions

of (7), we proceed as follows. We will study separately two cases depending on which root

vanishes.

(2.1) If a1 = 0, then 0 < p2 = q2 = a3−a2

a3
< 1. Then, we combine this information with

(8) to obtain the value of the maximum squared curvature, a3, in terms of p, and the

homogeneous structure parameters (c, r)

2(2r2 − c) < a3 =
4(2r2 − c)

2− p2
< 4(2r2 − c).

Therefore, we get a one-parameter family of orbitlike elastic curves whose curvature func-

tions are given by

κ(s) = 2

√
2r2 − c

2− p2
dn

(√
2r2 − c

2− p2
s, p

)
, 0 < p < 1. (11)

(2.2) If a2 = 0, then we obtain a one-parameter family of wavelike elastic curves with

curvature functions given by

κ(s) = 2p

√
2r2 − c

2p2 − 1
cn

(√
2r2 − c

2p2 − 1
s, p

)
,

√
2

2
< p < 1. (12)

and the maximum squared curvature satisfying a3 > 4(2r2 − c).

Two details should be pointed out. First, we obtain another elastica when a1 = a2 = 0.

In this case the maximum squared curvature is a3 = 4(2r2−c) and the curvature function

is given by

κ(s) = 2
√

2r2 − c sech(
√

2r2 − c s). (13)

This elastica is called borderline and it is strongly related with the tractrix as we will

see in the next section. Secondly, there exists a gap separating geodesics from the main

continuum of elasticae.

Now, those families of elasticae generate corresponding Willmore tubes according to

the following:

Corollary 6.3 The class of Willmore tubes in E(c, r), with c < 2r2, is made up of the

following surfaces:

1. Minimal sheets (or tubes) shaped on geodesics of B(c).

2. Sheets (or tubes) with constant mean curvature
√

2(2r2 − c)/2.
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3. A one-parameter family of sheets (or tubes) built on orbitlike elasticae with curvature

functions given in (11).

4. A one-parameter family of sheets (or tubes) built on wavelike elasticae with curvature

functions given in (12).

5. A sheet (or tube) shaped on a borderline elastica with curvature function given in

(13).

It should be observed that, as a consequence of this result, just choosing c = −1 and

r = 0, we find the Willmore surfaces in the conformal Euclidean three space, viewed as a

Riemannian product of a hyperbolic plane and a circle, obtained by J. Langer and D. A.

Singer in [20].

7 Explicit examples of Willmore sheets, tubes and

tori.

In this section, we wish to illustrate the previous discussion by constructing explicit

examples of Willmore surfaces of any kind: sheets, tubes and tori. Therefore, we will

be mainly interested in Willmore surfaces of homogeneous spaces with 4-dimensional

isometry group. For simplicity, in this part we will omit most of the long computations

and, for the reader convenience, we will analyze separately the three cases: c = 0, c < 0,

and c > 0.

7.1 Nilmanifolds or geometries associated with the Heisenberg

group

It is known that a symplectic vector space with dimension 2n, say (V, ω), determines an

associated Heisenberg group on V × R. In particular, the three dimensional Heisenberg

group is defined on R3 when starting from the symplectic structure (R2, ω), where

ω((x, y), (x̄, ȳ)) = det

(
x y

x̄ ȳ

)
,

and defining the group operation as follows

(x, y, z) ? (x̄, ȳ, z̄) =

(
x+ x̄, y + ȳ, z + z̄ +

1

2
ω((x, y), (x̄, ȳ))

)
.

From a classical point of view, the three dimensional Heisenberg group, Nil3, appeared

as the nilpotent Lie subgroup in GL(3,R). However, the following map provides an
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isomorphism between (R3, ?) and Nil3

(x, y, z) 7→

 1 x z + xy
2

0 1 y

0 0 1

 .

The three dimensional Heisenberg group is one of the eight canonical Thurston three

dimensional geometries. In fact, it can be endowed with a one-parameter class of left

invariant metrics that, in the usual coordinates of R3, can be written by

gr = dx2 + dy2 + (dz + r(y dx− x dy))2, r > 0.

The Heisenberg three space (Nil3, gr) which we will denote by Nil3(r) is a homogeneous

space whose isometry group has dimension four. According to the used terminology, it

is identified with E(0, r) and it appears as a fibre bundle over the Euclidean plane with

projection p : Nil3(r) → R2, p(x, y, z) = (x, y). Consequently, the discussion in Section 6

can be applied. In particular, regardless of the squashing parameter r, we get that Nil3(r)

admits the following Willmore surfaces:

(1) Minimal sheets constructed over straight lines.

(2) Cylinders with constant mean curvature r built over circles with radius 1
2r

.

(3) A one-parameter class of sheets constructed on orbitlike elasticae in the Euclidean

plane and curvature function given by (11) (with c = 0).

(4) A one-parameter class of sheets constructed on wavelike elasticae in the Euclidean

plane and curvature function given by (12) (with c = 0).

(5) A sheet built over a borderlike elastica in the Euclidean plane with curvature func-

tion (13) (with c = 0).

The goal now is to find explicit parametrizations of the above surfaces. To start with

we observe that a first integral of (7) with c = 0 is

κ̇2 +
1

4
κ4 − 2r2κ2 = d, d ∈ R . (14)

On the other hand, along any elastica γ(s), which is a solution of (7), we can define

the vector field

J = (κ2 − 4r2)T + 2κsN , (15)

which can be extended to a Killing field on R2 (see [19]). From (7) and (15), one sees

that the length of J is constant and then its integral curves are straight lines. Take

an orthonormal parametrization x(u, v) of R2 such that xu = bJ , b ∈ R and write the

elastica as γ(s) = x(u(s), v(s)). Let T (s) be the unit tangent to γ(s) and choose a unit

normal N(s), so that {T (s), N(s)} is positively oriented.
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Combining (7), (15) and bJ = xu, we find b2 = 1
4d+16r4

. Moreover, using the definition

of J given in (15) and since ‖T (s)‖ = 1, we get

u′ (s)2 + v′ (s)2 = 1 , (16)

u′ (s) = 〈xu, T 〉 = 〈bJ , T 〉 = b
(
κ2 − 4r2

)
, (17)

v′ (s) = 〈xu, N〉 = 〈bJ , N〉 = 2 b κs . (18)

Integrating (18) we get, without loss of generality,

v (s) =
1√

d+ 4r4
κ (s) . (19)

Now, we discuss the different possibilities which appear in the item (2) in Section

6 when c = 0. If a1 = 0, then 0 < p2 = q2 = a3−a2

a3
< 1 and 4r2 < a3 = 8r2

2−p2 <

8r2. Therefore, we get a one-parameter family of orbitlike elastic curves whose curvature

functions are given by

κ(s) =
2
√

2 r√
2− p2

dn

( √
2 r s√

2− p2
, p

)
, 0 < p < 1, (20)

which combined with (19) gives

v(s) =
2
√

2 r√
(d+ 4r4)(2− p2)

dn

( √
2 r s√

2− p2
, p

)
, 0 < p < 1. (21)

After substitution of (20) in (17) and integrating we obtain

u(s) =
2r√

d+ 4r4

(
r s−

√
2√

2− p2
E

(
am

( √
2r s√

2− p2
, p

)
, p

))
, (22)

where 0 < p < 1, E (−, p) is the elliptic integral of the second kind of modulus p, am (−, p)
is the Jacobi amplitude and d = −a2a3

4
= 16(p2−1)r4

(p2−2)2
.

If a2 = 0, then we have

κ(s) =
2
√

2 rp√
2p2 − 1

cn

( √
2r√

2p2 − 1
s, p

)
,

√
2

2
< p < 1, (23)

and the maximum squared curvature satisfies a3 > 4(2r2 − c). Proceeding similarly to

the previous case we get

u(s) =
2r√

d+ 4r4

(
r s

2p2 − 1
−

√
2√

2p2 − 1
E

(
am

( √
2 r s√

2p2 − 1
, p

)
, p

))
, (24)

v(s) =
2
√

2 rp√
(d+ 4r4)(2p2 − 1)

cn

( √
2 r s√

2p2 − 1
, p

)
,

√
2

2
< p < 1, (25)
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where, as before, E (−, p) is the elliptic integral of the second kind of modulus p, am (−, p)
is the Jacobi amplitude and d = a1a3

4
= 16p2(1−p2)r4

(1−2p2)2
. The limiting case p =

√
2

2
gives the

so called free elastica which corresponds to the choice r = 0, that is, the background is a

Euclidean three space.

Finally, when a1 = 0 = a2, the maximum squared curvature is a3 = 8r2, the curvature

function is given by

κ(s) = 2
√

2r sech(
√

2 rs), (26)

and the associated borderline elastica is a member of the so called Poleni’s curves family

([16]). In fact, in 1729 Giovanni Poleni studied a family of curves related to the tractrix,

which are known as syntractrices. A syntractrix is the locus of a point on the tangent

to a tractrix at a constant distance, L, from its intersection with the axis. When L is

twice the constant length of the segment generating the tractrix, one obtains the so called

courbe des forçats (see [16] and references therein).

The natural equations for (26) can be solved obtaining the Poleni’s curve (borderline

elastica) coordinate functions

u(s) = s−
√

2

r
tanh(

√
2 rs), v(s) =

√
2

r
sech(

√
2 rs) , (27)

up to plane motions.

Therefore, using the parametrizations we found in (21)-(22), (24)-(25) and (27) for

the planar elastica with potential 4r2, we obtain explicit parametrizations of the Will-

more sheets in the conformal Heisenberg three space. For instance, choosing the simplest

parametrization, i. e., that corresponding to the Poleni’s curve (27), we would obtain the

following Willmore sheet in Nil3(r) (see Fig. 1)

Fig. 1: Willmore sheet in Nil3(r) over a Poleni’s curve.

parametrized by

X(s, z) =

 1 s−
√

2
r

tanh(
√

2 rs) z +
√

2
2r

sech(
√

2 rs)(s−
√

2
r

tanh(
√

2 rs))

0 1
√

2
r

sech(
√

2 rs)

0 0 1

 .
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Once we have explicitly described the whole class of equivariant Willmore sheets in

the three dimensional Heisenberg group Nil3(r), we should find out if this family contains

cylinders. Since they are obtained by lifting closed elastic curves, to answer this question

we have to check the closed curve problem for elasticae in the Euclidean plane. In other

words, we will look for closed elastic curves in the Euclidean plane. We already know

that circles with radii 1
2r

are closed elasticae and so they provide equivariant Willmore

cylinders with constant mean curvature in Nil3(r). It is also clear that the curvature

function of a closed elastica should be a periodic function. Then the borderline elastica

will be discarded as a candidate and the searching for closed elasticae with non constant

curvature is reduced to the two big families of wavelike and orbitlike elastic curves. The

condition for a planar elastica with curvature κ(s) to close up is
∫ ρ

0
(κ2(s)− 4r2) ds = 0,

where ρ is the period of κ, [2]. Now, we can prove that orbitlike elasticae in the Euclidean

plane never close. For wavelike elastic curves, we use (23) and integrate to obtain that

closed wavelike elasticae in the Euclidean plane correspond with the solutions of the

equation

2E(p) = K(p) , (28)

where K(p), E(p) are the complete elliptic integrals of the first and second kind, respec-

tively. It provides us a unique solution, the eight-shaped elastica. This discussion can be

summarized in the following:

Corollary 7.1 The family of equivariant Willmore cylinders in Nil3(r) consists, up to

congruences, of the following surfaces

1. An embedded cylinder with constant mean curvature r built by lifting a circle with

radius 1
2r

.

2. An immersed cylinder constructed by lifting the eight-shaped elastica.

Let us recall that for any lattice Γ in Nil3(r) the compact quotient Γ\Nil3(r) is a

nilmanifold (sometimes called Heisenberg three space). However, it is well known that,

up to congruences in Nil3(r), the lattices can be indexed by the natural numbers {Γn :

n ∈ N}, where

Γn =


 1 a c/n

0 1 b

0 0 1

 : a, b, c ∈ Z

 .

The line bundle, p : Nil3(r) → R2 induces a Seifert fibration, pn : Mn = Γn\Nil3(r) →
T2 ≈ Z2\R2, which is a circle bundle over the torus T2 whose fibres are flow orbits by

right translations associated with the central one-parameter subgroup

Z(Nil3(r)) =


 1 0 t

0 1 0

0 0 1

 : t ∈ R

 .
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This construction provides the complete class of circle bundles over a torus (see for exam-

ple [14]). Furthermore, it is compatible with the Kaluza-Klein mechanism, which allows

us to consider, in the Seifert three spaces Mn, the bundle-like metric projected from the

corresponding in the Heisenberg group. That Seifert fibration factorizes as pn = π ◦ p̃n,

where p̃n : Mn = Γn\Nil3(r) → R2 and π : R2 → T2 ≈ Z2\R2 stands for the natural pro-

jection. Therefore, we can apply our main result to obtain the whole class of equivariant

Willmore tori in Mn = Γn\Nil3(r). Summarizing we have:

Corollary 7.2 The complete list of equivariant Willmore tori in Mn = Γn\Nil3(r) is

1. An embedded torus with constant mean curvature r built by lifting a circle with radius
1
2r

in the Euclidean plane.

2. An immersed torus built by lifting the eight-shaped elastica in the Euclidean plane.

However, the class of equivariant Willmore tori in the Heisenberg three spaces can be

made larger by using directly the Seifert fibration pn : Mn = Γn\Nil3(r) → T2 ≈ Z2\R2

by lifting closed elastic curves in the flat torus T2 ≈ Z2\R2.

7.2 Geometries associated with the projective special linear group

The Thurston list of 3-dimensional canonical geometries consists of eight simply con-

nected homogeneous spaces. One of them is the universal cover, P̃SL(2,R), of PSL(2,R).

However, for any natural number, n ≥ 2, the space P̃SL(2,R)/Zn is still a homogeneous

three space whose isometry group has dimension four and so it is a circle bundle over

the hyperbolic two plane. In particular, that happens with PSL(2,R) = P̃SL(2,R)/Z2.

Therefore, we turn our attention to the group PSL(2,R). There are several equivalent

ways to see this group in geometry. For example,

PSL(2,R) =

{
M =

(
a b

c d

)
: det(M) = ad− bc = 1

}
,

can be identified with the group of Möbius transformations with real coefficients. These

mappings preserve the open half plane, Im(z) > 0, of the complex plane C and then

PSL(2,R) is isomorphic to the isometry group of the hyperbolic plane. Moreover, PSL(2,R)

can be naturally identified with the following quadric of C2

PSL(2,R) = {(z1, z2) ∈ C2 : |z1|2 − |z2|2 = 1} , (29)

and, even more, it can be also regarded as a suitable tube built over a complex hyperplane

in the complex hyperbolic plane CH2.

Let H2(c) be the hyperbolic plane with curvature c < 0 regarded as one of the two

sheets of a suitable hyperboloid, namely

H2(c) =

{
(ρ eiη, a) ∈ C× R : ρ2 − a2 =

1

c
, a > 0

}
. (30)
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Then, we use the model described in (29) to define the map

p : PSL(2,R) → H2(c) , p(z1, z2) =
1√
−c

(2z1 z̄2, |z1|2 + |z2|2),

which provides a circle principal bundle. The fibre over (ρ eiη, a) ∈ H2(c) is the following

circle

p−1(ρ eiη, a) =

{√
2

2

(√
1 + a

√
−c eiη,

√
−1 + a

√
−c
)
eiθ : θ ∈ R

}
.

It is obvious that the vector field generating the fibre flow is given by V (z1, z2) = i(z1, z2),

so that if we consider the following vector fields in PSL(2,R)

X1(z1, z2) = (z̄2, z̄1), X2(z1, z2) = iX1(z1, z2) = i(z̄2, z̄1),

we get a global frame {X1, X2, V } on the whole PSL(2,R). We define the one form

ω ∈ Λ1(PSL(2,R)) by

ω(X1) = ω(X2) = 0, ω(V ) = 1,

to obtain a principal connection on this circle principal bundle. If go denotes the metric

of H2(c), then we can use ω to define the one-parameter class of bundle-like metrics

ḡr = p∗(go) + r2 ω∗(dt2), r 6= 0,

which, obviously, are left invariant in PSL(2,R). In this way (PSL(2,R), ḡr) becomes into

a homogeneous three space whose isometry group has dimension four and, consequently,

we can apply again the previous discussion in Section 6 to get the complete family of

equivariant Willmore tubes in the aforementioned conformal classes.

In order to find explicit examples, we have to investigate elastica in the hyperbolic

plane H2(c). Without loss of generality we may assume that c = −1. Then, a first integral

of (7) is

κ̇2 +
1

4
κ4 − (2r2 + 1)κ2 = d, d ∈ R . (31)

For later purposes we denote by Q(x) the polynomial Q(x) := d− 1
4
x4 + (2r2 + 1)x2.

As before, the following vector field

J = (κ2 − 4r2)T + 2κsN , (32)

defined along any elastica γ(s) solution of (7), can be extended to a Killing field on

H2(−1), which is also denoted by the same letter (Proposition 2.1, [19]). Let T (s) be the

unit tangent to γ(s) and take the unit normal N(s), so that {T (s), N(s)} is positively

oriented. Imagine that κ(s), the curvature of γ(s), reaches a local maximum at so and let

β be the integral curve of J through γ(so). From Proposition 2.2 in [19], we have

κβ =
2κ(so)

κ2(so)− 4r2
. (33)

26



Now, we distinguish several cases according to the value of the constant of integration

d in (31). For simplicity and without loss of generality, we assume that r = 1.

Case 1: −9 < d < −4. We take d 6= −8, otherwise we will find a singularity in the

integration process. In this case, a1 = 0 and we have two solutions of (31) for any value

of d. By analyzing the roots of Q(x) and using (33), we can see that κβ > 1 and therefore

the integral curves of J are circles. Take a parametrization

x(u, θ) = (sinhu cos θ, sinhu sin θ, coshu) (34)

of the hyperboloid’s upper sheet model of H2 (−1), whose metric coefficients are g11 =

1, g12 = 0, g22 = sinh2 u, and choose J so that bJ = xθ. Then, as ‖T (s)‖ = 1, we can

use the definition of J given in (32) to get the following relations

(u′)
2
+ (θ′)

2
sinh2 u = 1 , (35)

θ′ sinh2 u = 〈xθ, T 〉 = 〈bJ , T 〉 = b
(
κ2 − 4

)
, (36)

u′ sinhu = 〈xθ, N〉 = 〈bJ , N〉 = 2 b κs . (37)

A direct integration of (37) yields

coshu = 2bκ+ µ , (38)

where µ ∈ R. Furthermore, from (31) and (32), we find 4d = 1
b2

sinh2 u− 4(4+κ2), which

combined with (38) gives

µ = 0, 4b2(d+ 4) = −1 . (39)

From (11), (38) and (39) we have

u(s) = arccosh

(
2
√

3√
−(4 + d)(2− p2)

dn

( √
3 s√

2− p2
, p

))
. (40)

Substituting (38) and (39) in (36) gives

θ′ =
b (κ2 − 4)

4b2κ2 − 1
. (41)

Finally, using (11) in (41) and integrating one gets

θ(s) =

√
−(d+ 4)

6

(
3s+

√
3(2− p2)3/2(8 + d)

p2(4 + d)− 2(10 + d)
×

× Π

(
12p2

2(10 + d)− p2(4 + d)
, am

( √
3s√

2− p2
, p

)
, p

))
, (42)

where 0 < p < −5 + 3
√

5, Π (n,−, p) is the elliptic integral of the third kind of charac-

teristic n and modulus p, am (−, p) is the Jacobi amplitude and d = −a2a3

4
= 36(p2−1)

(p2−2)2
.
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Thus (40) and (42) give us the coordinate functions of the elastica with potential 4 with

respect to the system (34).

The remaining cases can be worked out similarly and we will not go into much detail.

The main features of them can be summarized as follows:

Case 2: d = −4. Again a1 = 0, and for any value of d we have a solution of (31)

of type (11). But now, the analysis of the roots of Q(x) and using (33) forces κβ = 1

and, therefore, the integral curves of J are horocycles. By choosing a suitable coordinate

system it would be also possible to obtain an explicit parametrization of the elastica as

in the previous case.

Case 3: −4 < d < 0. Once more a1 = 0 and we have a solution of (31) of type (11) for

any value of d. Now, the roots of Q(x) and (33) would give that κβ < 1 and so the integral

curves of J are equidistant curves. By choosing again a suitable coordinate system we

could to obtain an explicit parametrization of the elastica in this case too.

Case 4: 0 < d. Geometrically this case is similar to the previous one in the sense that

the integral curves of J are equidistant curves, but now a2 = 0 and we have one solution

of (31) of type (12) for any value of d. One can proceed similarly to obtain the explicit

parametrization of the elastica for positive d.

Hence, (34), (40) and (42) (and the corresponding equations which we would have ob-

tained in the remaining cases proceeding similarly as in case 1) give us explicit parametriza-

tions of our elastica in H2(−1), what can be used in turn to get explicit parametrizations

of Willmore tubes in PSL(2,R).

As an illustration, we consider the limiting case d = 0 and obtain an explicit parametri-

zation for the Willmore tube built over the borderline elastica of the hyperbolic plane.

This elastica is nothing but the Poleni’s curve in H2(c) whose curvature function is given

in (13). If we use the half plane Poincaré model of the hyperbolic plane, H2(c) = {(u, v) ∈
R2 : v > 0}, then the natural equations for Poleni’s curve read as follows

u′′(s)− 2u′(s) v′(s)

v(s)
= −2mv′(s) sech(ms),

v′′(s) +
(u′(s))2 − (v′(s))2

v(s)
= 2mu′(s) sech(ms),

where we have used
√

2r2 − c = m. Now these equations can be easily integrated to

obtain the following solution for the hyperbolic Poleni’s curve

u(s) = ms, v(s) = cosh(ms) ,

which is a catenary. These coordinates for the Poleni’s curve can be brought to the

hyperboloid model of H2(c) (30), by using the map which identifies both models

Ψ(u, v) = (ρ eiη, a) =

(
u

v
+
u2 + v2 − 1

2v
i,
u2 + v2 + 1

2v

)
.
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Therefore, the hyperbolic Poleni’s curve in the hyperboloid model is given by

δ(s) = Ψ(ms, cosh(ms)) =

(
ms

cosh(ms)
+
m2s2 + sinh2(ms)

2cosh(ms)
i,
m2s2 + sinh2(ms) + 1

2cosh(ms)

)
.

Consequently, we obtain the following parametrization for the Willmore tube, in

(PSL(2,R), ḡr), built on the above hyperbolic Poleni’s curve (see Fig. 2)

X(s, θ) =

√
2

2

(√
1 + a(s)

√
−c eiη(s),

√
−1 + a(s)

√
−c
)
eiθ,

where

η(s) = arctan

(
m2s2 + sinh2(ms)

2ms

)
, a(s) =

m2s2 + sinh2(ms) + 1

2 cosh(ms)
.

Fig. 2: Projection, in a coordinate hyperplane, of a piece of a Willmore tube in

PSL(2,R) over a hyperbolic Poleni’s curve.

Finally, note that there are plenty of examples of closed elasticae of rotational type in

case 1 which can be used to construct examples of Willmore tori in PSL(2,R). This can be

seen in the following way. The curvature of our elastica in case 1 is a periodic function of

period 2
√

2−p2
3
K(p), where K(p) is the complete elliptic integral of the first kind. Then,

from (40) and (42), the corresponding elastica will close up provided θ(2
√

2−p2
3
K(p)) is

a rational multiple of 2π. But θ(2
√

2−p2
3
K(p)) is a non-constant function as p moves

in (0,−5 + 3
√

5), which means that there are infinitely many values of p in the interval

(0,−5+3
√

5) providing closed elasticae with potential 4 in H2(−1). Similar computations

can be made for any choice of r, so that we summarize this remarkable achievement in

the following:

Corollary 7.3 There exists a rational one-parameter family of equivariant Willmore tori

in (PSL(2,R), ḡr).

It is worth pointing out the following remarks:
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(i) Corollary 7.3 also holds for P̃SL(2,R)/Zn, with n ≥ 2. However, for P̃SL(2,R) we

obtain a rational one-parameter class of equivariant Willmore cylinders.

(ii) As the potential is 4r2 > 0, the corresponding closed elastica have self-intersections

(see [26]) and, therefore, none of the tori obtained in Corollary 7.3 are embedded.

(iii) The Kaluza-Klein mechanism, used to construct bundle-like metrics, also works for

Lorentzian metrics. In particular, we have the following one-parameter class of

Lorentzian bundle-like metrics on PSL(2,R):

g̃r = p∗(go)− r2 ω∗(dt2), r 6= 0.

Now (PSL(2,R), g̃r) → H2(c) becomes into a semi-Riemannian submersion and we

can still reduce symmetry. In this sense, equivariant Willmore tubes, which are

timelike, correspond with elastic curves in the hyperbolic plane H2(c) associated

with a potencial λ = −4r2. In contrast with the Riemannian case, we now have

simple (without self-intersections) elastic curves in the hyperbolic plane for certain

values of r. To be precise, if we consider, for simplicity, c = −1, then the whole

family of simple elastic curves, according to the values of r, can be described as

follows (see [26]):

– For r2 < 1
4
, the circle with radius sinh−1

(√
1

1−4r2

)
.

– For any natural number n ≥ 2 and each r, with r2 < 1
4
− 1

4(n2−1)
, there is a

simple elastic curve that closes after n laps.

7.3 Berger spherical geometries

The Berger spheres first appeared in [9], where M. Berger obtained the classification of sim-

ply connected normal homogeneous Riemannian spaces with positive sectional curvature.

These spheres can be geometrically realized as geodesic spheres of either a complex pro-

jective plane or a complex hyperbolic plane, and consequently they have constant scalar

curvature. However, using the usual Hopf map, the Berger spheres can be also viewed as

three spheres endowed with bundle-like metrics. Although there exists a two-parameter

class of Berger spheres, up to homotheties, it can be reduced to a one-parameter class

which, obviously, is enough for our purposes. Therefore, we start with, the unit sphere,

S3 = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 = 1}. Consider the round 2-sphere S2
(

1
2

)
, with radius

1/2 so it has curvature c = 4, and the Hopf map

p : S3 → S2

(
1

2

)
, p(z1, z2) =

(
z1z̄2,

1

2
(|z1|2 − |z2|2)

)
, (43)

which provides a circle principal bundle whose fibre flow is generated by the vector field

V (z1, z2) = i(z1, z2). The following vector fields in S3

X1(z1, z2) = (−z̄2, z̄1), X2(z1, z2) = iX1(z1, z2) = i(−z̄2, z̄1) ,
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along with the vertical one, V , determine a global frame on the whole S3. Now, one can

define a principal connection, ω, by

ω(X1) = ω(X2) = 0, ω(V ) = 1.

We now introduce the Berger metrics, associated with ω and the round metric go of S2
(

1
2

)
,

as

ḡr = p∗(go) + r2 ω∗(dt2), r 6= 0.

The discussion in Section 5 holds also here, so that we obtain the complete class of

Willmore tubes and tori in the conformal Berger spheres (S3, ḡr). However, in contrast

with the situation previously analyzed for R2 and H2(−1), now the value of the squashing

parameter, r, should be carefully considered. Thus, if r2 ≤ 2, the class of Willmore

tubes consists of minimal tubes (shaped on geodesics in the base space S2
(

1
2

)
) and a

one-parameter class of Willmore tubes built on a corresponding class of wavelike elasticae

in the two sphere. While if r2 > 2, besides the Willmore tubes with constant mean

curvature, we get two one-parameter classes of Willmore tubes built on wavelike and

orbitlike elasticae, respectively, and a borderlike elasticae whose curvature function is

given in (13). This curve is also called the spherical Poleni’s curve and apart from the

elastic circles, it is the only elastica that can be parametrized by elementary functions.

In order to do that, we follow the notations of [16]. Choose geographical coordinates in

S2
(

1
2

)
, φ for the longitude and θ for the colatitude, and write the natural equations for

the Poleni’s curve in these coordinates

φ′′ + 2
cos(θ)

sin(θ)
φ′θ′ = 2m sech(ms)

θ′

sin(θ)
,

θ′′ − sin(θ)cos(θ) (φ′)2 = −2m sech(ms)φ′sin(θ),

where m =
√

2(r2 − 2). By solving this system, we have that the Poleni’s curve can be

expressed in geographical coordinates as follows

φ(s) = ms, θ(s) = arccos(sech(ms)).

Thus, in cartesian coordinates, the Poleni’s curves in S2
(

1
2

)
are given by

γr(s) = (x(s), y(s), z(s)) =
1√
c

(tanh(ms) cos(ms), tanh(ms) sin(ms), sech(ms)) ,

with m =
√

2(r2 − 2) and r2 > 2.

Consequently, by using the Hopf mapping described previously in (43), we obtain the

following parametrization of the Willmore tubes shaped on spherical Poleni’s curves (see

Fig. 3)

X(s, τ) =

√
2

2

(√
1 + sech(ms) eims,

√
1− sech(ms)

)
eiτ , m =

√
2(r2 − 2).
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Fig. 3: Stereographic projection of a piece of a Willmore tube in a Berger sphere built

over a spherical Poleni’s curve.
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à courbure strictement positive, Ann. Scuola Norm. Sup. Pisa 15 (1961), 179-246.

[10] A. Besse, Einstein manifolds, Springer Verlag, 1987.

[11] A. Dall’Acqua, K. Deckelnick and H. Christoph Grunau, Classical solutions to the

Dirichlet problem for Willmore surfaces of revolution, Advances in Calculus of Vari-

ations 1 (2008), 379-298.

[12] B. Daniel, Isometric immersions into 3-dimensional homogeneous manifolds, Com-

mentarii Math. Helv. 82 (2007), 87-131.

[13] I. Fernández and P. Mira, Constant mean curvature surfaces in 3-dimensional

Thurston geometries, Proceedings of the International Congress of Mathematics,

Hyderabad, India 2010. arXiv:1004.4752v1.

[14] L. Flaminio and G. Forni, Equidistribution of nilflows and applications to θ sums,

Ergodic Theor. Dyn. Sys. 26 (2006), 409-433.

[15] A. Gray, Tubes, Addison Wesley, 1990.

[16] Th. Hangan, C. M. Murea and T. Sari, Poleni curves on surfaces of constant cur-

vature, Rend. Sem. Mat. Univ. Pol. Torino 67 (2009), 91-107.

[17] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, John Wiley,

New York, 1963(I), 1969 (II).

[18] N. Koiso, Elasticae in a Riemannian manifold, Osaka J. Math., 29 (1992), 539-543.

[19] J. Langer and D. A. Singer, The total squared curvature of closed curves, J. Diff.

Geom. 20 (1984), 1-22.

[20] J. Langer and D. A. Singer, Curves in the hyperbolic plane and mean curvature of

tori in 3 space, Bull. London Math. Soc. 18 (1984), 531-534.

[21] J. Langer and D. A. Singer, Curve-straightening in Riemannian manifolds, Ann.

Global Anal. Geom. 5 (1987), 133-150.

[22] B. O’Neill, The fundamental equations of a submersion, Michigan Math. J. 13

(1966), 459-469.

33



[23] R. S. Palais, The principle of symmetric criticality, Comm. Math. Phys., 69 (1979),

19-30.

[24] U. Pinkall, Hopf tori in S3, Invent. Math. 81 (1985), 379-386.

[25] D. A. Singer, Lectures on elastic curves and rods, AIP Conference Proceedings, 1002

(2008) 3-32.

[26] D. H. Steinberg, Elastic curves in the hyperbolic space, Ph. D. thesis. Case Western

Reserve Univ. 1995.

[27] H. K. Urbantke, The Hopf fibration, seven times in physics, J. Geom. Phys. 46

(2003), 125-150.

[28] J. L. Weiner, On a problem of Chen, Willmore et al., Indiana Univ. Math. J. 27

(1978), 19-35.

34


