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Abstract

We study null curves in Lorentz-Minkowski spaces by analysing the Frenet equations asso-
ciated to different screen distributions. In particular, by using the theory of Duggal-Bejancu,
we obtain the curvature functions of Bonnor, by finding the screen distribution and the null
transversal bundle which gives us Bonnor’s Frenet equations, [2].
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1. Introduction

The general theory of curves in a Riemannian manifoldM have been developed a long time
ago and now we have a deep knowledge of its local geometry as well as its global geometry.
WhenM is a proper semi-Riemannian manifold (that is, the indexν of the metric ofM satisfies
1 6 ν 6 dim(M) − 1) there exist three families of curves (spacelike, timelike, and null or
lightlike curves) depending on their causal characters. It is well-known, [9], that the study of
timelike curves has many analogies and similarities with that of spacelike curves. However, the
fact that the induced metric on a null curve is degenerate leads to a study much more complicated
and also different from the non-degenerate case.

In the geometry of null curves, difficulties arise because the arc length vanishes, so that it is
not possible to normalize the tangent vector in the usual way. One method of proceeding is to
introduce a new parameter called the pseudo-arc (already used by Vessiot, [13]) which normalize
the derivative of the tangent vector. This was the point of view followed by W.B. Bonnor in [2]
where he defined two curvaturesK2 andK3 in terms of the pseudo-arc and a third curvatureK1

which takes only two values, 0 whether the null curve is a straight line, or 1 otherwise (see also
the paper by M. Castagnino, [3]).

The importance of the study of null curves and its presence in the physical theories is clear
from the fact, see [6], that the classical relativistic string is a surface or world-sheet in Minkowski
space which satisfies the Lorentzian analogue of the minimal surface equations. The string equa-
tions simplify to the wave equation and a couple of extra simple equations, and by solving the
2-dimensional wave equation it turns out that strings are equivalent to pairs of null curves, or a
single null curve in the case of an open string (see also [5], [7], [8], [10] and [12]).

Motivated by the growing importance of null curves in mathematical physics, A. Bejancu ini-
tiated in [1] an ambitious program for the general study of the differential geometry of null curves
in Lorentz manifolds and, more generally, in semi-Riemannian manifolds. From a complementary
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vector subbundle to the tangent bundle of a null curve, he obtains the Frenet equations (with re-
spect to a general Frenet frame) and proves the existence and uniqueness theorems for null curves
in Lorentz manifolds.

In this note we study null curves in the Lorentz-Minkowskian spaces by analysing the Frenet
equations associated to different screen distributions. We reformulate, following the theory of
Duggal-Bejancu, the work of Bonnor since we find the screen distribution and the null transversal
bundle which generates the Frenet equations introduced by Bonnor in [2].

2. Frenet equations of a null curve inR4
1

2.1. The Cartan tetrad

Following [4, p. 55] it is easy to see that the Frenet equations of a null curveα in a 4-
dimensional Lorentzian manifold write down as follows:





L′ = hL + k1W1

N ′ = −hN + k2W1 + k3W2

W ′
1 = −k2L− k1N + k4W2

W ′
2 = −k3L− k4W1

(1)

whereL = α′. If h = 0, then the parametert is said to be adistinguished parameter. Moreover,
if the last curvaturek4 vanishes, then{L,N, W1,W2} is called adistinguished Frenet frame.

Letα : I → R4
1 be a null curve and choose a parametert such thatα′ is arc-length parametrized,

that is, 〈
α′′, α′′

〉
= 1.

Thent is called the pseudo-arc parameter. Hence, the curveγ = α′ is a unit spacelike curve. Now
we are going to find a Frenet frame{L,N,W1, W2} with h = 0 (showing thatt is a distinguished
parameter) andk1 = 1.

Let us denoteL = α′. Then we can chooseW1 as the vectorW1 = α′′. It is not difficult to
show that

〈
α′, α′′

〉
= 0,

〈
α′, α′′′

〉
= −1,〈

α′′, α′′′
〉

= 0,
〈
α′, α′′′′

〉
= 0.

Now we take

N = −α′′′ − 1
2

〈
α′′′, α′′′

〉
α′.

Taking into account the Frenet equations we can calculate the second curvature as follows:

k2 =
〈

DN

dt
,W1

〉

=
〈
−α′′′′ − 〈

α′′′′, α′′′
〉
α′ − 1

2
〈
α′′′, α′′′

〉
α′′, α′′

〉

=
1
2

〈
α′′′, α′′′

〉
.

As for the third curvaturek3 and the second vector field of the screen distributionW2 we have:

k3W2 =
DN

dt
− k2W1 = −α′′′′ − 〈

α′′′′, α′′′
〉
α′ − 〈

α′′′, α′′′
〉
α′′.
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Then an easy computation shows:

k3 =
√
〈α′′′′, α′′′′〉 − 〈α′′′, α′′′〉2,

W2 = − 1
k3

(
α′′′′ +

〈
α′′′, α′′′

〉
α′′ +

〈
α′′′′, α′′′

〉
α′

)
.

Finally, a direct computation leads to

k4 =
〈

DW1

dt
,W2

〉
=

〈
α′′′,W2

〉
= 0.

Then we have shown the following

Proposition 2.1 Let α : I → R4
1 be a null curve parametrized by the pseudo-arc. Then the

curvature functions with respect to the screen vector bundle generated by

{
W1 = α′′,
W2 = − 1

k3
(α′′′′ + 〈α′′′, α′′′〉α′′ + 〈α′′′′, α′′′〉α′) ,

are given by

k1 = 1, k2 =
1
2
‖α′′′‖2,

k3 =
√
〈α′′′′, α′′′′〉 − 〈α′′′, α′′′〉2, k4 = 0.

The Frenet frame{L,N, W1,W2} agrees with the Cartan tetrad introduced by Castagnino ([3])
and Bonnor ([2]).

Let us assume thatk2 6= 0. Sinceγ = α′ is a spacelike curve inR4
1, we can consider its proper

Frenet frame{`, n, b1, b2} and the corresponding curvature functions
{
k̄1, k̄2, k̄3

}
, related by the

following Frenet equations: 



D`
dt = ε1k̄1n
Dn
dt = −k̄1` + ε2k̄2b1
Db1
dt = −ε1k̄2n + ε3k̄3b2

Db2
dt = −ε2k̄3b1

Then the following result can be easily obtained

Corollary 2.2 Let α : I → R4
1 be a null curve parametrized by the pseudo-arc parameter with

k2 6= 0. Then the following relations holds:

k2 =
1
2
ε1k̄

2
1, k3 =

√
ε1k̄′

2
1 + ε2(k̄1k̄2)2,

W1 = `, W2 =
1√

ε1k̄′
2
1 + ε2(k̄1k̄2)2

(−ε1k̄
′
1n− ε1ε2k̄1k̄2b1 − k̄1k̄

′
1α
′).
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2.2. Null curves from a space curve inR3

Let us splitR4
1 as the orthogonal productR4

1 = R1
1⊥R3 and letP : R4

1 → R3 be the natural
projection. Letγ = Pα be the immersed curve inR3 obtained by projecting downα. Without
loss of generality, let us assume thatγ is arclength parametrized, so that we can write down

α = (t, γ).

Now we are going to define a Frenet frame{L,N, W1,W2} such that the curvature functions ofα
in this Frenet frame can be obtained from the curvature and torsion of the curveγ. Let{`γ , nγ , bγ}
be the Frenet frame ofγ satisfying





D`γ

dt = kγnγ
Dnγ

dt = −kγ`γ + τγbγ
Dbγ

dt = −τγnγ .

Let us consider the transversal vector bundle fieldN given by

N =

(
−τ2

γ + k2
γ

2k2
γ

,
k2

γ − τ2
γ

2k2
γ

`γ +
τγ

kγ
bγ

)
.

Then span
{
L = d

dt , N
}

is a Lorentzian plane and so we can find the screen vector bundle as its
complementary vector subbundle. By similar computations to those in the last section, we get the
following result

Proposition 2.3 Let α : I → R4
1 be a null curve with parametert such thatPα = γ is ar-

clength parametrized. Letkγ andτγ denote the curvature and torsion ofγ, respectively. Then the
curvature functions ofα with respect to the screen vector bundle spanned by the sections

{
W1 = (0, nγ),
W2 =

(
− τγ

kγ
,

τγ

kγ
`γ + bγ

)

satisfy the following equalities:

k1 = kγ , k2 =
k2

γ + τ2
γ

2kγ
,

k3 =
τ ′γkγ − k′γτγ

k2
γ

, k4 = 0.

As a consequence we have

Corollary 2.4 Let α : I → R4
1 be a null curve with curvature functionsk1, k2 and k3 with

respect to the screen vector bundle given in the above proposition. The following statements are
equivalent:
(a) γ = Pα is a generalized helix (that is,τγ = rkγ , r being a constant).
(b) α lies in a Lorentzian hyperplane.

As in non-degenerate case, we may consider the notion of null helices.
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Definition 2.5 A curveα : I → R3
1 is said to be a null helix (with respect to the screen distribution

given in Proposition 2.3) ifk2 andk3 are both constants.

Proposition 2.6 If α : I → R4
1 is a null helix, then the following relations hold:

kγ =
2c1

1 + (c2t + c3)2
and τγ =

2c1(c2t + c3)
1 + (c2t + c3)

,

wherec1, c2 andc3 are constants.
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