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Abstract. We study degenerate curves in pseudo-Euclidean spaces of index two by introducing the
Cartan reference along a degenerate curve. We obtain several different types of degenerate curves and
present existence, uniqueness and congruence theorems. We also give some examples of such a curves
in low dimensions.

1. Introduction

The aim of this paper is to find a good Frenet frame for degenerate curves in pseudo-Euclidean
spaces of index two. The study of this type of curves is motivated because of the growing impor-
tance that degenerate geometry (null curves, null hypersurfaces,...) plays in mathematical physics
(see for instance?], [7], [8], [9], [10]). Null curves in Lorentzian (index one) space forms has
been studied by several author$|([ 3], [5]) due to its importance in General Relativity. Itis well
known the important role played by the anti De Sitter space, so we focus on ambient spaces of
index two. A first approach to this question has been made by Duggal and]Jimin a different
point of view.

Here, we are going to study degenerate curves in pseudo-Euclidean spaces of index two from
a mathematical viewpoint.

2. Preliminaries

Let V' be ann-dimensional real vector space endowed with a symmetric bilinear mapping
g:V xV — R. We will say thatg is degenerat®n V' if there exists a vectaf # 0 of V' such
that

g(&,v) =0, forallveV;

otherwiseg is said to benon-degenerate
Theradical of (V, g) is the subspace df defined by

RadV ={{e€V; g(§v)=0foralveV}.

It is clear thatl” is non-degenerate if and only fad V' = {0}.

A pseudo-Euclidean spac¢#, g) will be ann-dimensional real vector spateequipped with
a symmetric non-degenerate bilinear ma@he dimensiony of the largest subspad® C V on
which g[w is definite negative is called thedexof g on V. (V, g) will be denoted byR7.

Let B = {V4,...,V,} be an ordered basis of a pseudo-Euclidean space amg deid g;
be the dimension of the radical and the indexspén{Vi,...,V;} for all i, respectively. The
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sequencegr;;0 < i < n} and{¢;0 <i < n}, whererg = go = 0, will be called thenullity
degree sequen@nd theindex sequencef the basisB.

It is easy to see that; — r;_1| andg; — ¢;—1 are eitherO or 1, forall = 1,...,n, as well as
r, = 0 andg, = q.

Definition 2.1 Let B = {V4,...,V,} be an ordered basis of a pseudo-Euclidean space and let
{ri; 1 <i < n} be the nullity degree sequence. The positive number

1 n
r= 52 ’Ti —7"2;1|
1=1

is said to be thelegeneration degrexd the basisB.

The following result, that extends the Gram-Smith’s orthonormalization method, will be used
in next sections.

Lemma 2.2 Let (E, (,)) be a bilinear space and lef' be a hyperplane. Suppose th&t =
F\LF5, whereFy, = span{Ly,...,L,} is totally lightlike andF; is non-degenerate. Then we
have:

() fdimRadFE) =r+1(F & RadFE)), there exists a null vectat (not unique) such that

E = F, 1Fy Lspan{L}.

(i) If dimRad F) = r (F1 = Rad F)), there exists a non-null unit vectdf such that
FE = FlLFQJ_span{V}.
Moreover, if RadE) = {0}, thenV is unique (up to the sign).

(i) IfdimRad F) = r—1(Rad E) & F1), there exists a null vecta¥; such that L;, N;) = n,
n=+1, and
E = (span{L;} @ span{N,}) Lspan{L, ... ,Ej, coy Ly} L.
Furthermore, if RadE) = {0}, thenN; is unique.

Definition 2.3 A basisB = {L1, N1, ..., Ly, N, W1, ..., Wp} of Ry, with 2 < 2¢ < n and
m = n — 2r, is said to bepseudo-orthonormdi it satisfies the following conditions:

(Li, Lj) = (Niy Nj) =0, (L, Nj) = 10045,
<Li7 Woc> = <Ni7Wa> = 07 <Wa7W,B> = Ea(saﬂv

wherei,j € {1,...,r},m; = (Li, N;) = +1,a, € {1,....,m},eq = —-1if 1 <a < g—rand
ca=1lifg—r+1<a<m

Corollary 2.4 LetB = {V4,...,V,} be an ordered basis of a pseudo-Euclidean space and let
be the degeneration degree Bf Then:

() riswell-defined, that is, it is an integer.
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(i) » < ¢, whereq is the index ol

Proof. We know thatry = r, = 0 and sequencér;} satisfies that either; = r,_; + 1, or
r; = ri_1 — lorr; = r;_1. Then, from Lemma 2.2, we get a pseudo-orthonormal iasis
{C4,...,C,} satisfying thatspan{V1, ..., Vi} = span{Cy,...,C;}, foralli =1,...,n,and

Wi If Ti —Ti—1 = 0,
CZ‘ - Lz If Ti —Ti—1 — 1,
Ni if Ty —Tri—1 = —1,

where(W;, W;) = +1 and(L;, L;) = (N;, N;) = 0. Then (i) is clear. To show (ii), first observe
thatr = card {ix; Cs, = L;, }. Now, for all L;, € C, there existsV;, € C, with kin {1,...,7},
verifying thatspan{L;, , N;, } is a hyperbolic plane. Then< g¢.

3. Frenet references along degenerate curves

Let RY be a pseudo-Euclidean space of index two and/letl — RY be a differentiable
curve inR%. Assume thatd = {'y’(t), D) (t)} is a linearly independent system for all
t € I, and, for alli, r;(t) andg;(t) are constant for alt € I, where{r;(¢);0 <i < n} and
{qi(t); 0 < i < n} stand for the nullity degree and index sequences of the bhsls this case,
these sequences will be calledllity degreeandindex sequences the curvey, respectively, and
the degeneration degreé=constant) ofA will be called thedegeneration degreef the curvey.

Definition 3.1 With the above notations, a curye: I — Ry is said to be alegenerate curvié
r > 0. We will say that two degenerate curvéandC are of the same typeif = 7; andq; = g;,
for all 7.

The relation “to be of the same type” defines an equivalence relation and each equivalence
class defines a type of degenerate curves.

From definition and Corollary 2.4, the degeneration degree of a degenerate curve in a pseudo-
Euclidean space of index two satisfiégs< r» < 2. Observe that the index sequence is very
conditioned by the nullity degree sequence. Indeed, two cdinasdC with degeneration degree
two are of the same type if and only if they have the same nullity degree sequence.

Remark 3.2 The nullity degree and index sequences, as well as the degeneration degree, of a
degenerate curve do not depend on the chosen parameter and they are invariant under pseudo-
Euclidean transformations.

Observe that we are dealing not only with null curves, but also spacelike and timelike ones.
Now we aim to classify degenerate curves depending on the nullity degree and index sequences,
said otherwise, to classify the types. To do that, we need to pseudo-orthonormalize the basis
{v(@),....,7 ()}, foralli =1,...,n, such as in Corollary 2.4. The pseudo-orthonormal bases
obtained are just the Frenet references.

We will consider two cases according to whether the degeneration degreee or two.
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3.1. Degenerate curves ifR} with degeneration degree one

In this case we will get a family-type of degenerate curves. The method to construct a Frenet
frame is quite similar to that used iB][ It can be proved that the only nullity degree sequences
are of the form{0,...,0,1,1,0,...,0}, wherel,1,0... can be moved along the sequence. The
possible Frenet equations are as follows:

Family |
v = ek Wh,
V_Vll = 52];32W2,
W = —gi_1kiWi_1 + EikipaWig1, 2<i<s—2,
Viy = —Es—2ks—1Ws_g + fsksLs,
E/s = ﬁs%s—i—lis + és—i-llgs—l-QWs-&-lv
Wé—&-l = Nsks+3Ls — Nsks+2Ns,
N = &g 1ksWs_1 — fskss 1Ny — Ns1ksr3Wes1 + EspokssaWeo,
Wiig = —Nsksyals + EsysksysWeys,
W) = —&i1kipoaWi1 + Ei1kisWigy1, s+3<i<n-—2,
W) | = —&n_2kni1Wy_2

wherei; = (L;, N;) = 1 andg; = (W;, W) = +1, existing only onej, such that;, = —1.

3.2. Degenerate curves iR} with degeneration degree two

We will find two family-types of curves depending on the nullity degree sequence is given by
{0,...,0,1,1,0,...,0,1,1,0,...,0} or{0,...,0,1,2,2,1,0,...,0}. To do that we proceed as
follows.

Assume thaty = r, = --- = r;_1 = 0. By an iterative process, using Lemma 1, we obtain
aset{W;,...,W,_,} of orthonormal spacelike vector fields alomgNow suppose that, = 1.

From Lemma 2.2 and Corollary 2.4 the possible cases are collected in Figure 9. We will rule out
those ones which are not admissible.

Way a. We have the following equations:

=0 o =kW
ro = 0 Wll = ]_€2W2
rigt = 0 W) = —kiWi1 + ki1 Wip
re = 1 Sl:l = _]fs—lv_Vs—Q + NsksLs
Ts+1 = 0 L/s = ﬁsks—i-lLs

It is clear thatL, € span{v,...,7®)}, so we writeL, = A1y + -+ + A, with
As #0. ThenL, = --- + A\t = 7.k, 1 Ly andyGtY) € span{y/,...,7)}, which is
a contradiction.

Way bb. Now we obtain:

T‘s = 1 WS/ 1 — _];5—1.[?5—2:’_7787?81_;5

Tst1 = 1 ng = ﬁskerlLs +ks+2Ws+1
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BT b..
-
Impossible T
TS+2:O‘ r5+2:1‘ rs+2:2‘ TS+2:1‘
Family Il Impossible Impossible Impossible

Impossible
a’ b
r(g_s_‘i = O‘ rs+4 =1 ‘
Family Il Impossible

Figure 9: Tree of possibilities

Sincersio = 1, thenRad By 2) = span{L,} and (L,,7tV) = (L, ~+2) = 0.
We deduce thafL!,y**V) = 0 and, using (1), we gefW,1,7*D) = 0. Therefore

Ws4+1 € Rad Es41), which can not hold.
Way bc. We find that:

rs = 1 75/:1 = _%sflli/sf?j_ﬁslz_jsis
T's+1 = 1 LIS - ﬁslfs—i—ll;/s + ks+2Ws+17

Tst2 = 2 s+l — Nskst3Ls + Nst1ksralsia

Then we write B
0 7& k5+2 = <L;)WS+1> = - < s/+17L8> - 07
getting again a contradiction.

Way ca. We have:

rs =1 Wsl_l = _I_is—lv__Vs—Q"‘rﬁsEs[_/s_

Ts+1 = 2 B Lls = ﬁs@s«#l@s +7_]s+1lfs+2{/s+l L
Ts4+2 = 1 Lg+1 - ﬁsks+3Ls +ﬁs+1ks+4Ls+1 +77kN

We obtain that eitheN = N,,; or N = N.. Inthe first case we find = (L4, Lot1) =0
and in the second one we hakve= (L/,,Ls) = — (L1, L) = 0. In any case: = 0,
which can not be hold.

Way cbb. Now the equations are:

rs = 1 A 5/_1 = _E’sflv_T/sf2 + ﬁsgfsis_
Ts+1 = 2 3 L; = ﬁs]fs-‘rl-ljs + 775+1]fs+2-§s+1 _ 3
Tsyg = 2 Lls+1 = ﬁsks+3Ls + 7_]3+1k73+4Ls+1 + ks+5Ws+2
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Working as above, we get again a contradiction.

Way cbab. The Frenet equation write down as follows:

rs = 1 Ws/jl = _Iis—IWs—Q + ﬁslst‘i
Tot1l = 2 B Lls = ﬁslferlI_/s + 773+1]f75+2l_/s+1 B B
Ts42 = 2 §;+1 = ﬁslfs-i-?)l_—fs + 7734—1]_“8—&-41_-/5—}—1 + ks_—&—5W§+2
T3 = VWi = fisksteLs + Nsr1kst7Lst1 — Mkses N
Ts4a = 1| N' = fksisL — ks iWiio + NEN + ks 9Wisys

Two possibilities can be given: (iN = N, and thereforel, = L, 1, 7 = 7,41 and
k = ks 1;and (i) N = N, 1, and thereford, = L, 7 = s andk = k4.

In any case, we find a contradiction.

Hence, we have only to consider two admissible families. As for Family Ill, it is clear that
r; =0, fori > s + 4. So the Frenet reference is given by

{W].v oo 7WS*15I’57-ES+17WS+25NS+].’NS7V_VS+37 L) 7Wn72} .

As for Family Il, callings; = s, there is only oney > s; + 3 satisfyingr,, = 1 andr; = 0, for
i=s51+2,...,52— 1. We also have that,,.; = 1 andr; = 0, for all i > sy + 2. Therefore, the
Frenet reference for this Family is of the form:

{Wla sy Wslflv L817WS1+17 Nsla W81+27 e 7W52717 L327 W52+17N827 W52+27 DRI Wn72} .

Summing up, the general Frenet equations for degenerate cunig with degeneration
degree two state as follows:

Family 11
7/ = 72‘1W1
W{ = EZWQ
W) =—kWi_1 + kiy1Wip1, 2<i<s—2
Vi1 =~k 1Ws,—2 + 05, ks, L,
E;l = s ksi+1Ls, + ks +2Wi 41
Vi1 = Tsiksy+3Ls, — s, ks, 42Ny,
Nél = —ksy W1 — N5 ksy 41N, — ks 43We 41 + ks +aWi 42
Viio = —Tsksi4als, + ks 15 W 43
Wi/ = _I;;i+2Wi—1 + Ei+3Wz’+1, s1+3 <1< sy —2
¥ 5/2—1 = —ksyt1Way—2 + Tsy sy 2L,
DSQ = Nsyksyt3Lsy + ksyraWept1
Ws’z—H = ﬁ82]_€82+5j;82 - 7752]2752+4ng
Nég = _%52+2W8271 - 7732];752+3N32 - E82+5W52+1 + /;?32+6W52+2
W/, 1o = —Tlsyksyr6Lsy + koyy7Weys3
W) = —kipaWi1 + kipsWip1, s2+3<i<n-—3
Voo = —knsoWo3
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Family 111
v =

ol IRl

W
2 W

Wi = —kiWi_1 + kipaWig1, 2<i<s—2
V! | = —ke_1Ws_g + NsksLs

I

w»

|
o
|

Ly = fsksy1Ls + Ns1ks2Lopn
Ly = NsksysLs + Msr1ksralorr + ksysWipo 3)
Viio = flsksi6Ls + fsy1ksyrLlor1 — Top1ksrsNot
Vi1 = TsksisLs — koprWeys — Mog1kspaNop1 — Nsksga N

Ng = —ksWi 1 — flep1ksrgLsy1 — sr1ksr3Nep1

- 775]%5+1Ns - E‘9+6W5+2 + E5+9W5+3
W£+3 - ﬁsks+9Ls + ks+10Ws+4
Wi/ = —]%z'+6Wz‘—1 + ]5@+7Wi+1, s+4<1<n—-3

X7/
n—2 — _kn+4Wn73

wherei; = (Lj, N;).

4. The Cartan reference of a degenerate curve

As we have seen, the Frenet equations for degenerate curves are quite complicated and in-
volve too many curvature functions. In the non-degenerate case, it is well-known that choosing
an arbitrary parameter, there exists only one Frenet reference satisfying the Frenet equations.
In particular, if one chooses the arclength parameter, one obtains the usual curvature functions.
However, this is not true here. Actually, for null curves it does not exit the arclength parameter, so
we have to define a new one as follows.

Definition 4.1 Lety : I — R¥% be a differentiable curve, parametrized hysatisfying that
(v (t),yD(t)) =0fori=1,...,m—1,and(y™(t),~™(t)) = £1. Thent is said to behe
pseudo-arclength parameter

Even though we have chosen the pseudo-arclength parameter, we can not assure the uniqueness
of this Frenet reference. Then, we wondered whether there exist any “canonical” Frenet reference,
in the following sense:

(1) It is unique, that is, if we have referencé&and B satisfying the same equations, then
B = B.

(2) The number of the corresponding curvature functions is minimal.

(3) The corresponding curvature functions are invariant under pseudo-Euclidean transforma-
tions.
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Theorem4.2Lety : I — Ry be a degenerate curve and suppose that)R? is spanned

by {v'(t),7"(?), ... L) (t)} for all t. Then there exists only one (up the orientation) Frenet
reference verifying the above conditions. Furthermore, the corresponding curvature functions are
given by one of the following set of equations

Family |
Null curves Non-null curves
v = Ly, v =W,
L = paeaWs, W1 = eakWo,
W5 = mkiLy — pani Ny, W! =ei_1kisaWi—1 + i1 kiWisa,
Ny = —e2k1Wa + €3k W3, a1 = —€s—2ksaWs o+ psnsLs,
W3 = —mkaLy + e4ksWy, L, = esy1ks—1 Wi,
W) = —ei1kiaWi_1 + ekiWiy1, | Wi = nsksLs — nsks—1 N5,
i1 = —€n—2kn—2Wn_o N = —pses—1Ws1 — esp1ksWis1 + €s42ks 11 Wega,
aro = —Nsksy1Ls + €51 3ks12Wiy3,
W) =ei1kiciWi1 + i1 kiWiya,
1= —en—2kn_oWp_o
Family Il
Null curves Spacelike curves
v = L, v =W,
L) =W, W = k1Who,
W5 = mkiLy —m Ny, W! = ki-aWi—1 + kWi,
Ni = —k1 W + ko W3, a1 = —ks;2Ws 2+ pis;Msy Ly
Wy = —mikoLy + ksWy, L, = ke 1We 41,
W! = —ki-iWi_1 + kE;Wiya, Wi i1 = Nsiks; Ls; — Nsy ks —1Ngy,
a1 = —ksoWs_ o+ psnsLs, N, = s W1 — kg Wy 11+ ksy 11 W, 4o,
L = ks 1Wsya, Ws,1+2 = —Ns ks, +1Ls, + ks;12Ws 43,
Wiy = nsksLs — nsks—1Ns, W) = kioiWi_1 + kiWiga,
Né = —pusWs_1 —ksWsi1 + ks 1Wiio, 5/2—1 = _k’szf2W3272 + MSQnsstza
Wiio = —nsksi1Ls + ksyaWiys, L, = ksy - 1Wsyi1,
W], = _kj—le—l + kjo-i-l? s,2+1 = n32k52L32 - n52k52_1N52,
r/z—2 = —kn—3Wn_3 Néz = _7782W52—1 - k52W52+1 + k82+1W82+27
Wi, 0= —MNsyksys1Lsy + ksy2Wsyy3,
W/ = kiaWi—1 + kiWig,
1,1—2 = —kn—3Wh—3
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Family Il
Null curves Spacelike curves
7' =L, 7 =W,
Ly = panzLa, Wi = k1 Wa,
Ly = W3, Wi = —ki1Wi_1 + kWi,
W3 = n2k1La — 12No, i1 = ks 2aWs o+ psnsLs,
Ny = mkaLy — pom N1 — k1Wa, | L = pspansy1Lsya,
Ni = —nokaLa + k3Wy, Ly = ks 1Wiya,
Wy = —mksLi + kaWs, W/, o =nst1ksLor1 — nsp1ks—1Nop1,
Wi = —kiaWi1 + kiWiy1, Nl 1 = nskss1Ls — ksWiyo — psy1msNs,
ho = —kn_3Wy_3, N = —nsp1ksi1Lsi1 — psWeo1 + ks oa Wiy s,
Wiig = —nsksials + ks13Wsa,
W»’ = —kiaW;_1+ k;Wiqq,
n2 = —kn3Wn_3

wheree; = (W;,W;), n; = (L;,N;) and p; = +1. Moreover, we can choosg and 1 SO
that {+/,...,7®} and {C4,...,C;} have the same orientation, for all= 1,...,n — 1, and
{C1,...,C,} is positively oriented, wherg(, . .., C,, } represents a Frenet reference as above.

Proof. For families | and Il we follow the ideas contained B].[ As for Family Ill, let B_andB*
be two Frenet references where we have chosen the pseudo-arclength parametet.anddet
andk? = us, whereus = £1. Then we have the following bases

{Wl,...,W I/ E3+1,W5+2,N5+1,N3,W3+3,--.,ang} and
_{Wl,...,W L, Ly Wi, No NS W s, W o)

with curvatures k1 = 1, ks, ..., ks = fis, ksy1, ..., km } @and{ky = 1,ka, ... ks = ps, kipq, ... K},
respectively.

As {Ls,Loy1,Wsy2,Noy1,Ns} and{L,, L%, |, WS, o, NZ, ,,Ni} are pseudo-orthonormal
and they have the same orientation, there exist a mateix (p;;) such that

I 1 0 0 0 0\ /I
Li, P21 P22 0 0 0 Lot
* _ P31 P32 1 0 0 Weia
i+2 117%2 Y% 1 0 ot
N3 P41 . T2 TP P22 Ns+1
N; DDA~ 5P 5t — DaiPs2 — Paapu PAEER —py P2 N

By ChOOSIngp22 = % andp21 — ﬁz+1
computation leads t°,, = 0 andk?,, = j,1. Therefore the problem can be reduced to the
bases

B - {V_V].u .. '7W8—17I/SuE5+17WS+27N8+17N57W8+35 . '7W’n—2} and
B* = {Wi,...,We_1, Ly, Loy1, W) o, NIy 1, NI Wi s, W o}

9
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where the curvatures are given l{ycl =1,ko, ..., ks =1, koy1 =0,ksyo =1, ksrs..., km}
and{k; = 1,ka, ..., ks = 1, ksy1 =0, ksyo = 1,ks+3, ...k}, }, respectively.
Now, the pseudo -ortonormal bases are related by

L, 1 0 0 0 0 L,
Es—l—l 0 1 0 0 0 I_/S+1
Wio | =1 pa P32 1 00 W2
Ny P41 —1p3, —pz2 1 Of [ Nopa

Ng —%1%1 —p31p32 —pa1 —p31 0 1 N,

Chooseps; = %ii andpsy = Z—fg and use the Frenet equations to ggt; = 0 andk}, , = 0.
Therefore, we can now suppose thet, , = W*+2 We have again reduced the problem to a

S
simpler one. Working as above, takipg, = i‘“‘ we show that} , = 0. We only have to
rename curvatures and use a suitable notation. Concerning to the orientation we stand out three
cases corresponding to the three family-types.
Family I: There exist only ong, such that;, = —1, so we have several possibilities.
If jo<s—1<n-—3,wetakeus =ns=—1.If jo <s—1=n— 3, wechoosg,, =n, = +1
depending On{V(i)}1gign is negatively or positively oriented, respectively. In these cases we
havek;,_1 < 0andk; > 0forall j # {jo — 1, s}.
If jo = s+1 < n—1,wechooseus = ns = 1. If jop = s+ 1 = n — 1, then we take
j1s = ns = +1 depending o~} _._ is positively or negatively oriented, respectively. Now
we obtaink,_; < 0 andk; > 0 for all\j\;& {s—1,s}.
Finally, if jo > s + 1 takeus = n, = —1to getk;,—1 < 0 andk; > 0forall j # {jo — 1, s}.

Family Il: If s < n — 3 chooseus, = ps, = 15, = 15, = —1. If 59 = n — 3 takepus_; =
ns, = —1, andus, = ns, = +1 depending on{y¥} _._ is negatively or positively oriented,
respectively. Ther; > 0 forall j # {s1, s2}. o

Family lll: If s < n—4takeusy; = ns41 = —landus = ns = 1. If s = n — 4 choose

fis+1 = Mep1 = —1, andu, = n, = +1 depending on{y(9} _ _ is positively or negatively
oriented, respectively. Therefokg > 0 for all j # {s,s + 1}.
The uniqueness follows now from Lemma 2.2.

Definition 4.3 A degenerate curve satisfying the above conditions is said to bel@generate
Cartan curve The reference and curvature functions given by those equations will be called the
Cartan referencand Cartan curvaturesf +, respectively.

Corollary 4.4 The number of Cartan curvatures of a degenerate cyrvé — RZ isn—r —1,
wherer is the degeneration degree of

Hence, degenerate curves with degeneration degree one (resp. twa) -hav/&esp.n — 3)
Cartan curvatures.

5. Congruence theorems for a degenerate Cartan curve in a pseudo-
Euclidean space of index two
The following question naturally arises: Létbe a reference satisfying the Cartan equations

for certain functions:;. Is there a degenerate Cartan cupwehose Cartan referencedsand his
Cartan curvatures adg? If it is affirmative, is that curve unique?

10
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The answer is affirmative and the result sets out as follows.

Theorem 5.1 Letky, ..., ky : [—0,0] — R be differentiable functions. Letbe a point ofR%

and letCy be an admissible pseudo-orthonormal basiggR? with degeneration degrekeor 2,
according tom = n— 2 or m = n — 3, respectively. Then there exists a unique degenerate Cartan
curve~ in R%, with v(0) = p and the same nullity degree and index sequencesGhawvhose
Cartan reference ap is justCy.

Proof. See p] and [6].

Theorem 5.2 (Congruence Theorem)Let C andC be two degenerate Cartan curves which are
of the same type and have the same Cartan curvafures . ., k., }, wherek; : [—d,] — R are
differentiable functions. Then there exists a pseudo-Euclidean transformatitfwhich maps
bijectivelyC into C.

Remark 5.3 The same results can be easily obtained in the de Sitter §§amed in the anti de
Sitter spacély. With some extra effort they can be extended to higher dimensions.

6. Examples

Example 6.1
Spacelike degenerate curvesip with degeneration degree &, = o > 0, ko = 0, k3 = —1,
g4 = —1 and nullity degree sequen¢é, 1,1,0,0}:

245 42042 3 42042 2,44
t t=(t 1 t te(t- —1 t

(t) = o 70 (t* + )’cr ’a ( ),t ot 1))
120 4/6 6 4/6 120

Example 6.2
Timelike degenerate curves & with degeneration degree &, = o > 0, ko = 0, k3 = 1 and
nullity degree sequendd, 1,1,0,0}:

= (¢ ot ) ot’(t* +1) ot® ot?*(t> = 1) o>t
=120 46 60 4y 120 )

Example 6.3
Null curves inR3 with degeneration degree &, = o2, ko = —202% andks = /20 > 0,63 = —1
and nullity degree sequenge, 1, 0,0, 0}:

(t) = (( 1 03t4)t ot t2<1_a2t2) ot 03t5)
W= \\Vae  30v2) 12 2 6 ) Voo 30v2
Example 6.4

A null curve inR with degeneration degree 2 ahg= ko = 0:

(1) = (t(l—t‘*) P+ 8 20— t(1+t4)>
TWE4vs 0 ave 6 4ve | avis

Since it is similar to the null cubic d&$, we will call it the null quintic of R3.
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