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In this paper we introduce a reference along a degenerate curve (null or non null) in
an n-dimensional Lorentzian space with the minimun number of curvatures. That
reference is called the Cartan frame of the curve. In the Lorentzian space forms
case, we obtain a complete classification of helices (that is, curves with constant
Cartan curvatures) in low dimensions. In all cases we present existence, uniqueness
and congruence theorems.

1 Introduction

In a proper semi-Riemannian manifold there exist three families of curves de-
pending on their causal characters. It is well-known1 that the study of timelike
curves has many analogies and similarities with that of spacelike curves. How-
ever, the fact that the induced metric on a null curve is degenerate leads to
a much more complicated study and also different from the non-degenerate
case. Even more, a timelike or spacelike curve can have a null higher order
derivative and then its study is also different from that of Riemannian case.

In the geometry of null curves difficulties arise because the arc length
vanishes, so that it is not possible to normalize the tangent vector in the
usual way. A solution is to introduce the pseudo-arc parameter (already used
by Vessiot2) which normalizes the derivative of the tangent vector (see the
papers by W.B. Bonnor3 and M. Castagnino4).

The importance of the study of null curves and its presence in the physic
theories is clear5,6,7,8,9. Recently, Nersessian and Ramos10 show that there
exists a geometrical particle model based enterely on the geometry of the
null curves in Minkowskian 4-dimensional spacetime which under quantiza-
tion yields the wave equations corresponding to massive spinning particles
of arbitrary spin. The same authors11 study the simplest geometrical par-
ticle model which is associated with null curves in 3-dimensional Lorentz-
Minkowski space.
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Motivated by the growing importance of null curves in mathematical
physics, A. Bejancu12 initiated an ambitious program for the general study
of the differential geometry of null curves in Lorentzian manifolds and, more
generally, in semi-Riemannian manifolds (see also his book13).

This paper is organized as follows. In Section 2 we introduce the Cartan
frame and the Cartan curvatures of a null curve and compute the ordinary
differential equation that helices satisfy. In the next section we obtain the
existence and uniqueness theorems relative to Cartan curves (see Theorems 2
and 3) and determine the families of null helices in R5

1, S4
1 and H4

1 (Theorems
4, 5 and 6). In Section 4 we introduce the s-degenerate curves as an extension
of the null curves (that are 1-degenerate curves) and, in Section 5, we present
existence and congruence theorems for that kind of curves. Finally, in the last
section we classify 2-degenerate Cartan helices in 4-dimensional Lorentzian
space forms.

The results of this paper can be extended to degenerate curves in pseudo-
Euclidean spaces of index two14 and following the same ideas they can be
also stated in Sn

2 and Hn
2 . With some extra effort they can be extended to

pseudo-Riemannian space forms of higher indices.

2 The Cartan frame of a null curve

Let Mn
1 be an orientable Lorentzian manifold and consider C a null curve

locally parametrized by γ : I ⊂ R → Mn
1 . Assume that {γ′, γ′′, . . . , γ(n)}

is a linearly independent family and define Ei = span{γ′, γ′′, . . . , γ(i)},
i = 1, . . . , n. Let L ∈ E1, so that γ′ = k̄1L, for a certain function k̄1.
Since E2 = E1 ⊕ span{γ′′} we can choose a unit spacelike vector W1 satisfy-
ing E2 = span{L,W1}. Now, since E3 = E2 ⊕ span{γ(3)} we obtain that E3

is a Lorentzian subspace of En, then there exists only one null vector N such
that 〈L,N〉 = ε = ±1, 〈W1, N〉 = 0 and E3 = span{L,W1, N}. In general,
for i = 2, . . . , n − 3, we can find orthonormal spacelike vectors {W1, . . . ,Wi}
such that Ei+2 = span{L,W1, N, . . . , Wi} and the basis {γ′, γ′′, . . . , γ(i+2)}
and {L,W1, N, . . . , Wi} have the same orientation. Finally, the vector Wm,
m = n − 2, is chosen in order that the basis {L,W1, N, . . . , Wm} is pos-
itively oriented. An easy computation shows that there exist functions
{k̄1, . . . , k̄m+3} such that the following equations hold (compare with Ref.
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12)

γ′ = k̄1L,

L′ = εk̄2L + k̄3W1,

W ′
1 = εk̄4L− εk̄3N,

N ′ = −εk̄2N − k̄4W1 + k̄5W2,

W ′
2 = −εk̄5L + k̄6W3,

W ′
i = −k̄i+3Wi−1 + k̄i+4Wi+1, i = 3, . . . ,m− 1

W ′
m = −k̄m+3Wm−1.

(1)

Without loss of generality we may assume that γ is parametrized by the
pseudo-arc parameter, that is, 〈γ′′, γ′′〉 = 1. Now choose L = γ′ and
W1 = γ′′, so that k̄1 = 1, k̄2 = 0 and k̄3 = 1. Let us take N given
by N = −εγ(3) − ε 1

2 〈γ
(3), γ(3)〉γ′, then the forth curvature is given by

k̄4 = −〈N ′,W1〉 = ε 1
2 〈γ

(3), γ(3)〉. After a direct computation, where the
curvature functions are renamed (k1 = k̄4, k2 = k̄5 and so on), we can show
the following theorem.

Theorem 1 (15) Let γ : I → Mn
1 , n = m + 2, be a null curve parametrized

by the pseudo-arc such that {γ′(t), γ′′(t), . . . , γ(n)(t)} is a basis of Tγ(t)M
n
1

for all t. Then there exists only one Frenet frame satisfying the equations

L′ = W1,

W ′
1 = εk1L− εN,

N ′ = −k1W1 + k2W2,

W ′
2 = −εk2L + k3W3,

W ′
i = −kiWi−1 + ki+1Wi+1 i = 3, . . . ,m− 1,

W ′
m = −kmWm−1,

(2)

and verifying

i) For 1 6 i 6 m − 1, {γ′, γ′′, . . . , γ(i)} and {L,W1, N, . . . ,Wi−2} have the
same orientation.

ii) {L,W1, N, . . . ,Wm} is positively oriented.

Observe that when m > 1 then ε = −1 and ki ≥ 0 for i ≥ 2; however,
when m = 1 then ε = −1 or ε = 1 according to {γ′, γ′′, γ′′′} is positively or
negatively oriented, respectively.
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Definition 1 A null curve in Mn
1 satisfying the conditions of the above the-

orem is called a Cartan curve. The above frame {L, W1, N, . . . ,Wm} and
curvatures {k1, k2, . . . , km} are called the Cartan frame and the Cartan cur-
vatures, respectively, of the curve γ.

It is not difficult to show that the Cartan curvatures of a curve C in Mn
1

are invariant under Lorentzian transformations.

Definition 2 A curve is said to be a helix if it has constant Cartan curva-
tures.

A long and messy computation shows that if γ is a helix then it satisfies
the following differential equation

γ(n+1) = a1γ
′ + a2γ

(3) + · · ·+ asγ
(n−1), if n is even, n = 2s,

and

γ(n+1) = a1γ
′′ + a2γ

(4) + · · ·+ asγ
(n−1), if n is odd, n = 2s + 1,

where the coefficients can be easily computed (see Ref. 15).

3 Null curves in Mn
1 (c)

In this section Mn
1 (c) stands for Rn

1 , Sn
1 (c) or Hn

1 (c), according to c = 0, c > 0
or c < 0, respectively. Our first goal is to prove the following theorem.

Theorem 2 Let k1, k2, . . . , km : [−δ, δ] → R be differentiable functions with
k2 < 0 and ki > 0 for i = 3, . . . ,m − 1. Let p be a point in Mn

1 , n = m + 2,
and consider

{
L0,W 0

1 , N0, . . . ,W 0
m

}
a positively oriented pseudo-orthonormal

basis of TpMn
1 . Then there exists a unique Cartan curve γ in Mn

1 , with γ(0) =
p, whose Cartan frame {L,W1, N, . . . ,Wm} satisfies

L(0) = L0, N(0) = N0,Wi(0) = W 0
i , i = 1, . . . ,m.

Proof. Let us suppose Mn
1 = Rn

1 (the remaining cases are similar). According
to the general theory of differential equations, there exists a unique solution
{L,W1, N, . . . ,Wm} of (2), defined on an interval [−δ, δ], and satisfying the
initial conditions of the theorem. A straightforward computation, bearing in
mind (2), leads to

d

dt

(
εLiNj + εLjNi +

m∑
α=1

WαiWαj

)
= 0, i, j ∈ {1, . . . , n}.
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Since {L(0),W1(0), N(0), . . . ,Wm(0)} is a pseudo-orthonormal basis, then the
above equation jointly with Lemma 6 of Ref. 15 implies

εLi(t)Nj(t) + εLj(t)Ni(t) +
m∑

α=1

Wαi(t)Wαj(t) = ηij , t ∈ [−δ, δ].

Then by using again the same lemma we deduce that {L,W1, N, . . . ,Wm} is
a pseudo-orthonormal basis for all t, and this concludes the proof.

The following result shows that the Cartan curvatures determine curves
satisfying the nondegeneracy conditions stated in Theorem 1.

Theorem 3 If two Cartan curves C and C̄ in Mn
1 have Cartan curvatures

{k1, . . . , kn}, where ki : [−δ, δ] → R are differentiable functions, then there
exists a Lorentzian transformation of Mn

1 which maps C into C̄.

3.1 Null helices in R5
1

The goal of this section is to classify the family of null helices in R5
1. Before

to do that, we present some examples. From the general equation, we know
that a null helix in R5

1 satisfies the following differential equation

γ(6) + (2k1 + k2
3)γ

(4) − (k2
2 − 2k1k

2
3)γ

′′ = 0,

which will help us to find the examples.

Example 1 Let ω, σ and h be three non-zero constants such that 1
σ2 < h2 <

1
ω2 and let γ : R → R5

1 be the curve defined by

γ(t) =
(

ht,
1
ω

a sinωt,
1
ω

a cos ωt,
1
σ

b sinσt,
1
σ

b cos σt

)
,

where a =
√

h2σ2 − 1/
√

σ2 − ω2 and b =
√

1− h2ω2/
√

σ2 − ω2. Then it is
easy to see that γ is a helix with curvatures k1 = 1

2 (σ2 + ω2(1 − σ2h2)),
k2
2 = −ω2σ2

(
ω2h2 − 1

)
(σ2h2 − 1) and k2

3 = ω2σ2h2.

Example 2 Let ω, σ and h be three non-zero constants such that 0 < h2ω2 <
1 and let γ : R → R5

1 be the curve defined by

γ(t) =
(

1
ω

a sinhωt,
1
ω

a coshωt,
1
σ

b sinσt,
1
σ

b cos σt, ht

)
,

where a =
√

1 + h2σ2/
√

ω2 + σ2 and b =
√

1− h2ω2/
√

ω2 + σ2. Then γ is a
helix with curvatures k1 = 1

2 (σ2−ω2(1+σ2h2)), k2
2 = −ω2σ2(ω2h2−1)(σ2h2+

1) and k2
3 = ω2σ2h2.
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Example 3 Let σ and h be two non-zero constants such that 0 < 2h2 < 1
and let γ : R → R5

1 be the curve defined by

γ(t) =
(

3
2
at +

1
6
h2t + t3,

h√
2
t2,

3
2
at− 1

6
h2t + t3, b sinσt, b cos σt

)
,

where a = (1 − 2h2)/(σ2h2) and b =
√

1− 2h2/σ2. Then γ is a helix with
curvatures k1 = 1

2σ2(1− 2h2), k2
2 = 2σ4h2(1− 2h2) and k2

3 = 2σ2h2.

Theorem 4 (15) A null curve fully immersed in R5
1 is a helix if and only if

it is congruent to a helix of the families described in Examples 1-3.

3.2 Null helices in S4
1

In this section we are going to classify the null helices in the 4-dimensional De
Sitter space. A null curve γ in S4

1 ⊂ R5
1 is a helix if and only if it satisfies the

differential equation γ(5) + 2k1γ
(3) − (1 + k2

2)γ
′ = 0, whose general solution is

γ(t) = A1 sinhωt+A2 coshωt+A3 sinσt+A4 cos σt+A5, where A1, A2, A3, A4

and A5 are constant vectors in R5
1.

Example 4 Let γ : R → S4
1 ⊂ R5

1 be the null curve defined by

γ(t) =
1√

ω2 + σ2

(
1
ω

sinhωt,
1
ω

coshωt,
1
σ

sinσt,
1
σ

cos σt,

√
ω4 − 1

ω2
+

σ4 − 1
σ2

)

where 0 < ω2σ2 > 1. A direct computation shows that γ is a null helix with
curvatures k1 = 1

2 (σ2 − ω2) and k2
2 = ω2σ2 − 1.

Theorem 5 (15) A null curve fully immersed in S4
1 is a helix if and only if it

is congruent to one of the family described in Example 4.

3.3 Null helices in H4
1

Let γ be a null curve in H4
1, then it is a helix if and only if it verifies the

ordinary differential equation γ(5) + 2k1γ
(3) + (1− k2

2)γ
′ = 0. Before we state

the main result of this section we present some examples of helices in the
4-dimensional anti De Sitter space.
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Example 5 Let 0 < ω2 < 1 and let γ be the curve in H4
1 defined by

γ(t) =
(

t

2ω
coshωt,

1
ω2

(
coshωt− 1

2
ωt sinhωt

)
,

1
ω2

(
sinhωt− 1

2
ωt coshωt

)
,

t

2ω
sinhωt,

√
1− ω4

ω2

)
.

Then γ is a helix with curvatures k1 = −ω2 and k2
2 = 1− ω4.

Example 6 Let 0 < σ2 < 1 and let γ be the curve in H4
1 defined by

γ(t) =
(

1
σ2

(
sinσt− 1

2
σt cos σt

)
,

1
σ2

(
cos σt +

1
2
σt sinσt

)
,− t

2σ
cos σt,

t

2σ
sinσt,

√
1− σ4

σ2

)
.

Then γ is a helix with curvatures k1 = σ2 and k2
2 = 1− σ4.

Example 7 Let ω2 = 1 and let γ be the null curve in H4
1 defined by

γ(t) =
(

1− t4

24
,
ω(t3 + t)

2
√

3
,
t4

24
,
ω(t3 − t)

2
√

3
,
t2

2

)
.

Then γ is a helix with curvatures k1 = 0 and k2
2 = 1. γ will be called the null

quartic in H4
1.

Example 8 Let 0 < ω2 < σ2 and ω2σ2 < 1, and let γ be the curve in H4
1

defined by

γ(t) =
1√

σ2 − ω2

(
1
ω

sinωt,
1
ω

cos ωt,
1
σ

sinσt,
1
σ

cos σt,

√
1 + ω4

ω2
− 1 + σ4

σ2

)
.

Then γ is a helix with curvatures k1 = 1
2 (ω2 + σ2) and k2

2 = 1− ω2σ2.

Example 9 Let 0 < σ2 < ω2 and ω2σ2 < 1, and let γ be the curve in H4
1

defined by

γ(t) =
1√

ω2 − σ2

(
1
ω

sinhωt,
1
σ

coshσt,
1
σ

sinhσt,
1
ω

coshωt,

√
1 + σ4

σ2
− 1 + ω4

ω2

)
.

Then γ is a helix with curvatures k1 = − 1
2 (ω2 + σ2) and k2

2 = 1− ω2σ2.
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Example 10 Let σ 6= 0 and let γ be the curve in H4
1 defined by

γ(t) =
(

2 + 2σ4 − σ2t2

2σ2
√

1 + σ4
,

t

σ
,

t2

2
√

1 + σ4
,

1
σ2

sinσt,
1
σ2

cos σt

)
.

Then γ is a helix with curvatures k1 = σ2/2 and k2
2 = 1.

Example 11 Let ω 6= 0 and let γ be the curve in H4
1 defined by

γ(t) =
(

2 + 2ω4 + ω2t2

2ω2
√

1 + ω4
,

1
ω2

sinhωt,
1
ω2

coshωt,
t2

2
√

1 + ω4
,

t

ω

)
.

Then γ is a helix with curvatures k1 = −ω2/2 and k2
2 = 1.

Example 12 Let ωσ 6= 0 and let γ be the curve in H4
1 defined by

γ(t) =
1√

ω2 + σ2

(√
1 + ω4

ω2
+

1 + σ4

σ2
,
1
ω

sinhωt,
1
ω

coshωt,
1
σ

sinσt,
1
σ

cos σt

)
Then γ is a helix with curvatures k1 = 1

2 (σ2 − ω2) and k2
2 = 1 + ω2σ2.

Example 13 Let ω2 + σ2 < 1 and let γ be the curve in H4
1 defined by

γ(t) =
1

2ωσ (ω2 + σ2)
(
2ωσ coshωt sinσt +

(
ω2 − σ2

)
sinhωt cos σt,

−2ωσ coshωt cos σt +
(
ω2 − σ2

)
sinhωt sinσt,

(
ω2 + σ2

)
sinhωt cos σt,(

ω2 + σ2
)
sinhωt sinσt, 2ωσ

√
1− (ω2 + σ2)2

)
.

Then γ is a helix with curvatures k1 = −ω2 + σ2 and k2
2 = 1− (ω2 + σ2)2.

Theorem 6 (15) A null curve fully immersed in H4
1 is a helix if and only if

it is congruent to one helix of the families described in Examples 5–13.

4 The Cartan frame for s-degenerate curves

Let γ be a differentiable curve in Mn
1 , write Ei(t) =

span
{
γ′(t), γ′′(t), . . . , γ(i)(t)

}
and let d be the number defined by

d = max {i : dim Ei(t) = i for all t}. The curve γ is said to be an s-
degenerate (or s-lightlike) curve if for all 1 ≤ i ≤ d dim Rad(Ei(t)) is constant
for all t, and there exists s, 0 < s ≤ d, such that Rad(Es) 6= {0} and
Rad(Ej) = {0} for all j < s.
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Note that 1-degenerate curves are precisely the null curves studied in
preceding sections. In this section we will focus on s-degenerate curves (s > 1)
in Lorentzian spaces. Notice that they must be spacelike curves.

To find the Frenet frames, we will distinguish four cases:
Case 1: d = n and s ≤ d. One can show that there exist a set F =
{W1, . . . ,Ws−1, L,Ws, N, Ws+1, . . . ,Wm} such that the following equations
hold

γ′ = k̄1W1,

W ′
1 = k̄2W2,

W ′
i = −k̄iWi−1 + k̄i+1Wi+1, 2 ≤ i ≤ s− 2,

W ′
s−1 = −k̄s−1Ws−2 + εk̄sL,

L′ = εk̄s+1L + k̄s+2Ws,

W ′
s = εk̄s+3L− εk̄s+2N,

N ′ = −k̄sWs−1 − εk̄s+1N − k̄s+3Ws + k̄s+4Ws+1,

W ′
s+1 = −εk̄s+4L + k̄s+5Ws+2,

W ′
j = −k̄j+3Wj−1 + k̄j+4Wj+1, s + 2 ≤ j ≤ m− 1,

W ′
m = −k̄m+3Wm−1,

for certain functions {k̄1, . . . , k̄m+3} called the curvature functions of γ with
respect to F .
Case 2: d < n and s = d. If Mn

1 is a Lorentzian space form, then γ lies in
a d-dimensional totally geodesic lightlike submanifold. This can be proved by
adapting the proofs of Theorems 5 and 9 of Chapter 7 in Ref. 17. This case
will be treated in a forthcoming paper16.
Case 3. d < n and s = d− 1. This case can not occur.
Case 4: d < n and s < d− 1. Working as in the non-degenerate case (see,
for example, the book of Spivak17 ) this case reduces to Case 1.

Note that the type s does not depend on the parameter of the curve.
Also, this kind of curves are invariant under Lorentzian transformations, in
the sense that the type s does not change under a Lorentzian transformation.

Now we are going to find a Frenet frame with the minimal number of
curvatures and such that they are invariant under Lorentzian transformations.
We will restrict to Case 1. Without loss of generality, let us assume that γ is
arc-length parametrized, so that W1 = γ′ and k̄1 = 1. By taking k̄s = 1, a
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straightforward computation shows that

γ′ = W1,

W ′
1 = k1W2,

W ′
i = −ki−1Wi−1 + kiWi+1, 2 ≤ i ≤ s− 2,

W ′
s−1 = −ks−2Ws−2 + L,

L′ = ks−1Ws,

W ′
s = εksL− εks−1N,

N ′ = −εWs−1 − ksWs + ks+1Ws+1,

W ′
s+1 = −εks+1L + ks+2Ws+2,

W ′
j = −kjWj−1 + kj+1Wj+1, s + 2 ≤ j ≤ m− 1,

W ′
m = −kmWm−1,

(3)

for certain functions {k1, . . . , km}. We can easily deduce the following result.
Observe that when m > s then ε = −1 and ki ≥ 0 for i 6= s; however,

when m = s then ε = −1 or ε = 1 according to {γ′, γ′′, . . . , γ(n)} is positively
or negatively oriented, respectively.

Theorem 7 (18) Let γ : I → Mn
1 , n = m+2, be an s-degenerate (s > 1) unit

spacelike curve and suppose that
{
γ′(t), γ′′(t), . . . , γ(n)(t)

}
spans Tγ(t)M

n
1 for

all t. Then there exists a unique Frenet frame satisfying the equations (3).
In this case γ is said to be an s-degenerate Cartan curve, the reference and
curvature functions given by (3) are called the Cartan frame and Cartan
curvatures of γ, respectively.

5 s-degenerate curves in Lorentzian space forms

Let γ : I → Mn
1 (c) be an s-degenerate (s > 1) Cartan curve, where Mn

1 (c)
stands for Rn

1 , Sn
1 o Hn

1 , according to c = 0, c = 1 or c = −1, respectively. If
{W1, . . . ,Ws−1, L,Ws, N, Ws+1, . . . ,Wm} is the Cartan frame then in equa-
tions (3) we must write W ′

1 = k1W2 − cγ.
The following results can be obtained in a similar way as in the null case

(for the proofs see Ref. 18).

Theorem 8 Let k1, . . . , km : [−δ, δ] → R be differentiable functions with
ki > 0 for i 6= s,m. Let p be a point in Mn

1 , n = m + 2, and let{
W 0

1 , . . . ,W 0
s−1, L

0,W 0
s , N0,W 0

s+1, . . . ,W
0
m

}
be a positively oriented pseudo-

orthonormal basis of TpMn
1 (c). Then there exists a unique s-degenerate, s > 1,
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Cartan curve γ in Mn
1 (c), with γ(0) = p, whose Cartan frame satisfies:

L(0) = L0, N(0) = N0,Wi(0) = W 0
i , i ∈ {1, . . . ,m} .

Theorem 9 (Congruence Theorem) If two s-degenerate Cartan curves C
and C̄ in Mn

1 (c) have Cartan curvatures {k1, . . . , km}, where ki : [−δ, δ] → R
are differentiable functions, then there exists a Lorentzian transformation of
Mn

1 (c) which maps bijectively C into C̄.

6 s-degenerate helices in M4
1(c)

This section is devoted to classify s-degenerate Cartan helices in Lorentzian
space forms M4

1(c), c = −1, 0, 1. If we assume that k1 and k2 are con-
stant, then γ satisfies the differential equation γ(5) − (2εk1k2 − c) γ(3) −(
k2
1 + 2εck1k2

)
γ′ = 0. Without loss of generality, we can assume that γ

is positively oriented, that is, ε = −1.
In what follows, we will present examples of 2-degenerate Cartan helices

in M4
1(c) and show the corresponding characterization theorems.

6.1 2-degenerate helices in R4
1

Example 14 Let γ be the curve in R4
1 defined by

γ(t) =
1√

ω2 + σ2

(σ

ω
coshωt,

σ

ω
sinhωt,

ω

σ
sinσt,

ω

σ
cos σt

)
, ωσ > 0,

Then γ is a helix with curvatures k1 = ωσ and k2 = (σ2 − ω2)/(2ωσ).

Theorem 10 (18) An s-degenerate spacelike Cartan curve R4
1 is a helix if

and only if it is congruent to a helix of Example 14.

6.2 2-degenerate helices in S4
1

Example 15 Let 0 < σ2 < 1 < ω2 and let γ be the curve in S4
1 defined by

γ(t) =

(√
(ω2 − 1)(1− σ2)

ω2σ2
,
1
ω

a sinωt,
1
ω

a cos ωt,
1
σ

b sinσt,
1
σ

b cos σt

)
,

where a =
√

1− σ2/
√

ω2 − σ2 and b =
√

ω2 − 1/
√

ω2 − σ2. Then γ is
a helix with curvatures k1 =

√
(ω2 − 1)(1− σ2) and k2 = 1

2 (ω2 + σ2 −
1)/
√

(ω2 − 1)(1− σ2).
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Example 16 Let σ2 > 1 and let γ be the curve in S4
1 defined by

γ(t) =
(

1
ω

a coshωt,
1
ω

a sinhωt,
1
σ

b sinσt,
1
σ

b cos σt,
1

ωσ

√
(ω2 + 1)(σ2 − 1)

)
,

where ω 6= 0, a =
√

σ2 − 1/
√

ω2 + σ2 and b =
√

ω2 + 1/
√

ω2 + σ2. Then
γ is a helix with curvatures k1 =

√
(σ2 − 1)(ω2 + 1) and k2 = (σ2 − ω2 −

1)/
√

4(σ2 − 1)(ω2 + 1).

Example 17 Let σ2 > 1 and let γ be the curve in S4
1 defined by

γ(t) =

(
1
2

√
σ4 − 1

σ2 − 1
t2,

√
σ2 − 1

σ2
t,

√
σ4 − 1
σ2

−
√

σ4 − 1
2(σ2 + 1)

t2,
1
σ2

sinσt,
1
σ2

cos σt

)
Then γ is a helix with curvatures k1 =

√
σ2 − 1 and k2 = 1

2

√
σ2 − 1.

Theorem 11 (18) An s-degenerate spacelike Cartan curve in S4
1 is a helix if

and only if it is congruent to one of the families described in Examples 15-17.

6.3 Helices in H4
1

Example 18 Let 0 < σ2 < 1 < ω2 and let γ be the curve in H4
1 defined by

γ(t) =
(

1
ω

a coshωt,
1
σ

b coshσt,
1
ω

a sinhωt,
1
σ

b sinhσt,− 1
ωσ

√
(ω2 − 1)(1− σ2)

)
where a =

√
1− σ2/

√
ω2 − σ2 and b =

√
ω2 − 1/

√
ω2 − σ2. Then γ is

a helix with curvatures k1 =
√

(ω2 − 1)(1− σ2) and k2 = −(ω2 + σ2 −
1)/
√

4(ω2 − 1)(1− σ2).

Example 19 Let ω2 > 1 and let γ be the curve in H4
1 defined by

γ(t) =

(√
(ω2 − 1)(σ2 + 1)

ω2σ2
,
1
ω

a coshωt,
1
ω

a sinhωt,
1
σ

b sinσt,
1
σ

b cos σt

)
,

where σ 6= 0, a =
√

σ2 + 1/
√

ω2 + σ2 and b =
√

ω2 − 1/
√

ω2 + σ2. Then
γ is a helix with curvatures k1 =

√
(ω2 − 1)(σ2 + 1) and k2 = (σ2 − ω2 +

1)/
√

4(ω2 − 1)(σ2 + 1).

Example 20 Let ω2 > 1 and let γ be the curve in H4
1 defined by

γ(t) =

(√
ω4 − 1
ω2

+
1
2

√
ω4 − 1

ω2 + 1
t2,

1
ω2

coshωt,
1
ω2

sinhωt,

√
ω2 − 1

ω2
t,

1− ω4

2(1 + ω2)
t2

)
Then γ is a helix with curvatures k1 =

√
ω2 − 1 and k2 = − 1

2

√
ω2 − 1.
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Theorem 12 (18) An s-degenerate spacelike Cartan curve in H4
1 is a helix if

and only if it is congruent to one of the families described in Examples 18-20.
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14. A. Ferrández, A. Giménez, and P. Lucas. Degenerate curves in pseudo-Euclidean
spaces of index two. To appear in Proceedings of Geometry, Integrability and Quan-
tization, Varna. Ed. I. Mladenov, 2002.
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