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Abstract

In a Lorentzian space (or more generally in a pseudo-Riemannian
space) appears a class of submanifolds where the induced metric is de-
generate; they are called lightlike submanifolds. This work tries to give
relations between geometric objects of a lightlike submanifold and those
of a (non-degenerate) Riemannian submanifold in a Lorentzian space.
These relations allow us to obtain some characterization results for to-
tally geodesic submanifolds in Lorentzian space forms.
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1 Introduction

It is well-know that in a Lorentzian manifold we can find three types of sub-
manifolds: spacelike (or Riemannian), timelike (or Lorentzian) and lightlike
(degenerate or null), depending on the induced metric in the tangent vector
space. The growing importance of lightlike submanifolds in global Lorentzian
geometry, and their use in general relativity, motivated the study of degenerate
submanifolds in a semi-Riemannian manifold. Due to the degeneracy of the
metric, basic differences occur between the study of lightlike submanifolds and
the classical theory of Riemannian as well as semi-Riemannian submanifolds
(see, for example, [1], [3], [5], [7], [11], and [14]).

Lightlike submanifolds (in particular, lightlike hypersurfaces) appear on
innumerable papers of physics. For example, the lightlike submanifolds are
very interesting for general relativity since they produce models of different
types of horizons (event horizons, Cauchy’s horizons, Kruskal’s horizons). The
idea that the Universe we live in can be represented as a 4-dimensional sub-
manifold embedded in a (4+d)-dimensional space-time manifold has attracted
the attention of many physicists. Higher dimensional semi-Euclidean spaces
should provide theoretical framework in which the fundamental laws of physics
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may appear to be unified, as in the Kaluza-Klein scheme. Lightlike hypersur-
faces are also studied in the theory of electromagnetism (see, for example, [4],
[15] and [16]).

In the following section we introduce the necessary geometric objects to
study the geometry of lightlike submanifolds. The aim of this work is to re-
late the geometry of a lightlike submanifold in a Lorentzian space with the
geometry of a Riemannian submanifold in the same Lorentzian space. Mak-
ing use of the well known results in the non-degenerate geometry we obtain
results for lightlike submanifolds. In the last section, and as application of the
results obtained before, we completely describe the totally geodesic lightlike
submanifolds in a Lorentzian space of constant curvature.

2 Preliminaries

Let us consider (Mn+1
1 ,∇◦) an (n + 1)-dimensional Lorentzian manifold with

metric g (which will also be denoted by 〈, 〉). An m-dimensional submanifold
Pm in Mn+1

1 is said to be a lightlike submanifold if the induced metric on
Pm is degenerate. In the sequel, and for simplicity of notation, we will write
M and P instead of Mn+1

1 and Pm, respectively. Also, we will suppose that
m ≥ 3.

The basic facts on lightlike submanifolds can be found in [5]. In the nota-
tion of [5], the tangent vector bundle on M restricted to P can be decomposed
(in a non unique way) as

TM |P = TP ⊕ tr(TP ) = S(TP )⊥(K ⊕ K̃)⊥S(TP⊥), (1)

where K is the 1-dimensional radical distribution of TP , that is, K = TP ∩
TP⊥. S(TP ) and S(TP⊥), called a screen distribution and a screen transver-
sal vector bundle of P , verify

TP = S(TP )⊥K and TP⊥ = S(TP⊥)⊥K.

K̃ is called a lightlike transversal vector bundle.
Bearing in mind the decomposition

TM |P = TP ⊕ tr(TP ),

we obtain the Gauss formula for lightlike submanifolds,

∇◦XY = ∇XY + θ(X,Y ), for all X, Y ∈ ΓTP,

where ∇XY = (∇◦XY )> is the tangent part and θ(X, Y ) = (∇◦XY )t is the
transversal part. ∇ is called the induced connection on P and θ is called the
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lightlike second fundamental form of P ⊂ M . The lightlike second fundamental
form is bilineal and symmetric. If U and X are normal and tangent sections,
respectively, we can consider

AU (X) = −S (∇◦XU) ,

where S : ΓTP −→ ΓS(TP ) denotes the projection map on the screen distri-
bution. The operator AU is called the lightlike shape operator with respect to
the section U . The properties of these operators can be encountered in [5].
Now we will restrict our attention on a special type of lightlike submanifolds
defined by Kupeli, [11].

Definition 1 A lightlike submanifold P of M is said to be irrotational if
∇◦Xξ ∈ ΓTP for all tangent section X of P , where ξ is a section of the radical
distribution K.

It is easy to check that this definition is independent of the chosen section ξ,
and it is equivalent to the condition θ(X, ξ) = 0 for any decomposition.

A submanifold P is called geodesic or totally geodesic if it contains the
geodesics of M which are somewhere tangent to it. In other words, if q ∈ P
and v ∈ TqP , then the geodesic γ in M with initial conditions γ(0) = q and
γ′(0) = v lies in P . This is equivalent to saying that the vector fields on P are
invariant by covariant derivation (this equivalence is valid for all torsion free
connections, [9]). Although there is no way to induce connections on arbitrary
lightlike submanifolds, the totally geodesic ones have such a connection, which
is compatible with the degenerate metric but not derived from it, as degenerate
metrics do not have Levi-Civita connections.

Trivial examples of irrotational submanifolds are the totally geodesic light-
like submanifolds, since ∇◦XY = ∇XY , or equivalently, θ = 0. Another im-
portant example are the lightlike hypersurfaces, since 〈∇◦Xξ, ξ〉 = 0 and so the
transversal part vanishes.

Definition 2 Let P be an m-dimensional lightlike submanifold of an (n+1)-
dimensional Lorentzian manifold M . We say that P is a totally umbilical
lightlike submanifold if for all U ∈ ΓTP⊥, there exist a differentiable function
λU verifying

AU (X) = λUSX, for all X ∈ ΓTP. (2)

This definition is independent of the chosen screen distribution S(TP ).
If P is an irrotational lightlike submanifold, for ξ ∈ ΓK, U ∈ ΓTP⊥ and

W ∈ ΓS(TP ), we have
〈∇◦ξU,W

〉
= − 〈∇◦ξW,U

〉
= 0,
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then S(∇◦ξU) = 0, which implies

AU (X) = AU (SX), for all U ∈ ΓTP⊥, X ∈ ΓTP. (3)

From now on, {E1, . . . , Em−1, ξ, η, N1, . . . , Nn−m} will denote a pseudo-ortho-
normal basis of TM |P adapted to the decomposition (1), where Ei ∈ ΓS(TP ),
Nj ∈ ΓS(TP⊥), ξ ∈ ΓK, η ∈ ΓK̃, verifying

〈Ei, Ei〉 = 〈Nj , Nj〉 = 〈ξ, η〉 = 1, 〈ξ, ξ〉 = 〈η, η〉 = 0.

The following proposition can be found in [11], page 80; here we present
a different point of view.

Proposition 1 Let P be an m-dimensional irrotational lightlike submanifold
of a Lorentzian manifold M . The following statements are equivalent:

(i) There exist a transversal section H verifying that

θ(X, Y ) = 〈X, Y 〉H, for all X, Y ∈ ΓTP.

(ii) P is totally umbilical.

Proof. Let {E1, . . . , Em−1, ξ, η, N1, . . . , Nn−m} be a pseudo-orthonormal
basis adapted to TM |P . We claim that θ(X,Y ) = θ(SX,SY ) for X,Y ∈ ΓTP .
The proof is a consequence of the following computation.

θ(SX, SY ) = 〈∇◦SXSY, ξ〉 η +
n−m∑

j=1

〈∇◦SXSY, Nj〉Nj

= −〈∇◦SXξ, SY 〉 η −
n−m∑

j=1

〈∇◦SXNj , SY 〉Nj

= 〈Aξ(SX), SY 〉 η +
n−m∑

j=1

〈
ANj (SX), SY

〉
Nj .

(4)

Let us assume (i), then θ(SX, SY ) = 〈SX, SY 〉H, H being

H = λη +
n−m∑

j=1

λjNj , (5)

and so, combining this equality with (4), we obtain

〈Aξ(SX), SY 〉 = λ 〈SX,SY 〉 , 〈
ANj (SX), SY

〉
= λj 〈SX, SY 〉 .
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These equations are equivalent to

〈Aξ(SX)− λSX, SY 〉 = 0,
〈
ANj (SX)− λjSX, SY

〉
= 0, ∀X,Y ∈ ΓTP,

which implies

Aξ(X) = Aξ(SX) = λSX, ANj (X) = ANj (SX) = λjSX, ∀X, Y ∈ ΓTP.

Taking into account that {ξ,N1, . . . , Nn−m} is a basis of TP⊥, we obtain (ii).
Conversely, if P is totally umbilical, then equation (2) implies that there

exist differentiable functions λ, λj verifying Aξ(X) = λSX and ANj (X) =
λjSX for all X ∈ ΓTP . Substituting these equalities into (4) we complete the
proof, where H is given by (5). ¥

If P is irrotational, we know that S(∇◦ξξ) = 0, and so there exist a differen-
tiable function ρ such that ∇◦ξξ = −ρξ. As a consequence of this computation
we have the following result.

Proposition 2 Let P be an irrotational lightlike submanifold of a Lorentzian
manifold M . Then the integral curves of ξ ∈ ΓK are null pregeodesics of M .

Proof. Let h be a function verifying ξ(log h) = ρ, and take ξ̃ = hξ. It is
easy to check that ∇◦

ξ̃
ξ̃ = 0, hence the integral curves of ξ̃ are geodesics and,

in consequence, the integral curves of ξ are pregeodesics. ¥

The above statement is true for all lightlike hypersurfaces. Furthermore,
if M have constant curvature, it is well know that the null geodesics are null
lines, which implies that P is ruled by null lines.

3 Lightlike submanifolds and submersions

Let P be an m-dimensional lightlike submanifold immersed in a (n + 1)-
dimensional Lorentzian manifold M by ψ : P −→ M . Let π : M −→ B a
Lorentzian submersion of codimension one (that is, dim(B)=1), and consider
π̃ = π ◦ ψ. Let us assume that π̃ : P −→ B̃ = π̃(P ) is a submersion, or
equivalent, P is not contained in any fiber of π.

Let us denote by Ft and Σt the fibers of π and π̃, respectively. It is clear
that Σt is a Riemannian submanifold immersed in Ft. The following diagram
illustrates the situation:

(Ft, ∇̂◦t ) it−−−−→ (M,∇◦) π−−−−→ B

ψt

x
xψ

xi

(Σt, ∇̂t)
jt−−−−→ (P,∇) eπ−−−−→ B̃ = π̃(P )

(6)
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The Levi-Civita connections ∇̂◦t and ∇̂t on Ft and Σt, respectively, can be
extended to connections ∇̂◦ and ∇̂ on the vertical distributions V(TM) and
Ṽ(TP ), respectively.

Our aim now is to define geometric objects with respect to these submer-
sions.

Definition 3 Let P be a lightlike submanifold of a Lorentzian manifold M
and π : M −→ B a submersion as before. The screen vector bundle S(TP ) =
Ṽ(TP ) on P is called the canonical screen distribution associated to the sub-
mersion π.

Bearing in mind the above diagram, definitions and notations, we can
decompose the tangent vector bundle TM |P in a different way that (1), as
follows,

TM |P = V(TM)|P⊥H(TM)|P
=

(
Ṽ(TP )⊥Ṽ(TP )⊥

)
⊥H(TM)|P

= S(TP )⊕
(
Ṽ(TP )⊥⊥H̃(TP )

)
,

(7)

where Ṽ(TP )⊥ denotes the orthogonal of Ṽ(TP ) in V(TM)|P . Comparing the
decompositions (1) and (7) we deduce

(K ⊕ K̃)⊥S(TP⊥) = Ṽ(TP )⊥⊥H̃(TP ).

Let χ ∈ H(TM) be a unit local basic vector field with respect to π and
write χ̃ = χ|P ∈ H̃(TP ). As P is not contained in any fiber of π, then
〈ξ, χ〉 6= 0 for ξ ∈ ΓK, so that K ⊕ H̃(TP ) is a hiperbolic plane. Choose K̃
such that Π = K⊕ K̃ = K⊕ H̃(TP ). We can construct local references {ξ, η}
and {N, χ̃}, with N ∈ Ṽ(TP )⊥ and η ∈ K̃, satisfying

ε = 〈N, N〉 = −〈χ̃, χ̃〉 , ξ =
1√
2
(N + χ̃), η =

ε√
2
(N − χ̃), (8)

where ε = ±1. In this case S(TP⊥) is necessarily the orthonormal comple-
mentary of span {N} in Ṽ(TP )⊥.

Definition 4 The section ξ and the vector bundle S(TP⊥) defined above are
called the canonical radical section and the canonical screen transversal vector
bundle associated to the submersion π.

If M is time-oriented, we can choose ξ and η pointing out to the future. In
this case they are completely determined by the submersion π. In these condi-
tions, if {N0 = N, N1, . . . , Nn−m} is a basis of Ṽ(TP )⊥, where {N1, . . . , Nn−m}



Angel Ferrández, Angel Giménez and Pascual Lucas 7

expands the canonical screen transversal vector bundle, we consider the oper-
ators

ÃNj : Ṽ(TP ) −→ Ṽ(TP )

W Ã −Ṽ(∇̂◦W Nj)

σ̃ : Ṽ(TP )× Ṽ(TP ) −→ Ṽ(TP )⊥

(W1,W2) Ã
(
∇̂◦W1

W2

)⊥

where 0 ≤ j ≤ n −m. Moreover, these operators restricted to each fiber are
the shape operator respect to Nj and the second fundamental form of the
immersion ψt : Σt −→ Ft, respectively.

On the other hand, bearing in mind the diagram (6), we can consider the
operators defined by

Â◦ : V(TM) −→ V(TM)
V Ã −∇◦V χ

σ̂◦ : V(TM)× V(TM) −→ H(TM)
(V1, V2) Ã H (∇◦V1

V2

)

These operators, restricted to each fiber Ft, are the shape operator and the
second fundamental form of the immersion it : Ft → M . We will consider
both operators acting on V(TM)|P .

We can write the following equations relating the above geometric objects,

∇◦V1
V2 = ∇̂◦V1

V2 + σ̂◦(V1, V2) = ∇̂◦V1
V2 − ε

〈
Â◦(V1), V2

〉
χ̃,

∇̂◦W1
W2 = ∇̂W1W2 + σ̃(W1,W2)

= ∇̂W1W2 + ε
〈
ÃN (W1),W2

〉
N +

n−m∑

j=1

〈
ÃNj (W1),W2

〉
Nj ,

(9)

where W1,W2 are sections on Ṽ(TP ) = S(TP ) and V1, V2 are sections on
V(TM)|P . These equations restricted to each fiber represent the Gauss equa-
tions of both immersions Ft ⊂ M and Σt ⊂ Ft, respectively.

We are going to state some results relating the different geometric objects
defined above. From these relationships we will obtain interesting applications
for particular cases.

Proposition 3 Let P be an m-dimensional irrotational lightlike submanifold
of a Lorentzian manifold M of dimension n+1, and π : M −→ B a totally um-
bilical semi-Riemannian (Riemannian or Lorentzian) submersion. Let S(TP )
be the canonical screen distribution, ξ the canonical radical section ξ associ-
ated to π and {N,N1, . . . , Nn−m} an orthonormal basis of Ṽ(TP )⊥. Then the
following statements hold:

(i) ∇◦W ξ = Aξ(W ), for all W ∈ ΓS(TP ).
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(ii) ANj = ÃNj for 1 ≤ i ≤ n −m, and Aξ = 1√
2

(
ÃN + µId

)
, where µ is

the differentiable function verifying the equation Â◦(V ) = µV .

Proof. “(i)” By hypothesis, ∇◦Xξ is a section of TP . The proof is completed
by showing that 〈∇◦W ξ, η〉 = 0. Indeed,

〈∇◦W ξ, η〉 =
〈

1√
2
∇◦W (N + χ̃),

ε√
2
(N − χ̃)

〉

=
ε

2
(−〈∇◦W N, χ̃〉+ 〈∇◦W χ̃, N〉)

= ε 〈∇◦W χ̃, N〉
= ε

〈
−Â◦(W ), N

〉
= 0.

“(ii)” Trivially, ANj = ÃNj since S(TP ) = Ṽ(TP ). Bearing in mind
the above statement and that the fibers of π are totally umibilical, that is,
Â◦(W ) = µW , we obtain

Aξ(W ) = − 1√
2
∇◦W (N + χ̃)

= − 1√
2

(∇◦W N +∇◦W χ̃)

= − 1√
2

(
∇̂◦W N − Â◦(W )

)

=
1√
2

(
ÃN (W ) + µW

)
. ¥

Proposition 4 Let P be an irrotational lightlike submanifold of a Lorentzian
manifold M and π : M −→ B a totally umbilical submersion with semi-
Riemannian fibers Ft. Let π̃ be the submersion induced by π on P with fibers
Σt. Then P is totally umbilical if and only if Σt is totally umbilical in Ft for
all t ∈ π̃(P ).

The proof is a direct consequence of Proposition 3. In particular, for
totally geodesic lightlike submanifolds we have ÃNj = 0, 1 ≤ j ≤ n−m, and
ÃN = −µId. Then if the fibers Ft are totally geodesics (µ = 0), then the
immersions Σt ⊂ Ft are totally geodesics.

4 Applications to Lorentzian space forms

This section contains some applications to Lorentzian manifolds of constant
curvature Mn+1

1 (c). In particular we describe the totally geodesic lightlike
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submanifolds in Mn+1
1 (c). We study separately the ambient spaces Rn+1

1 ,
Sn+1

1 and Hn+1
1 .

Lightlike submanifolds in Rn+1
1

As it is well known, a irrotational lightlike submanifold is ruled by null geodesics,
and these geodesics can be naturally enlarged to complete geodesics. The
problem is the appearance of singular points, but we can work locally.

Fix a vector a ∈ Rn+1
1 such that 〈a, a〉 = −1 and consider πa : Rn+1

1 −→ R
the map defined by πa(x) = 〈x, a〉. It is easy to prove that π is a totally
geodesic submersion with Riemannian fibers, and π̃ is a submersion, since P
can not be contained in any fiber (they are Riemannian). In particular, if we
choose a = (1, 0, . . . , 0) we obtain a submersion where the fibers are {t}×Rn.

We have the following situation:

{t} × Rn it−−−−→ Rn+1
1

πa−−−−→ R−

ψt

x
xψ

xi

Σt
jt−−−−→ P

π̃a−−−−→ π̃a(P )

(10)

Remark 1 Whenever P is a lightlike hypersurface of the (n+1)-dimensional
Lorentz-Minkowski space and πa is as above, with a = (1, 0, . . . , 0), the lightlike
transversal vector bundle expanded by the vector field η, given by (8), agrees
with the canonical lightlike transversal vector bundle introduced in [2] (up
the orientation). In particular, if n = 3, the Gauss map N t of the immersion
Σt ⊂ Ft defined by

N t : Σt −→ S2

p Ã N |Σt(p)

where the N is given by (8), agrees with the Gauss map associated to a lightlike
hypersurface P with base Σt introduced by Kossowski in [10].

It is well-known that the only totally geodesic submanifolds of Rn are
pieces of r-planes, with 2 ≤ r < n. Moreover, the only non geodesic totally
umbilical hypersurfaces of Rn are pieces of spheres. Then from this fact and
by using Proposition 4 we deduce the following results already known.

Proposition 5 The only totally geodesic lightlike submanifods in the Lorentz-
Minkowski space Rn+1

1 are pieces of null m-planes.
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Proof. We know that P is ruled by null lines, and the sections Σt provided
by the submersion π̃ are (m − 1)-planes. We only have to prove that ξ is a
parallel section with respect to Ṽ(TP ) = S(TP ). Using Proposition 3 we have

∇◦W ξ = Aξ(W ) = 0, for all W ∈ ΓS(TP ),

which is the desired conclusion. ¥

The following result, already proved by Akivis and Goldberg in [1], can
also be easily deduced.

Proposition 6 The only totally umbilical lightlike hypersurfaces in Rn+1
1 are

the lightlike cones.

Proof. Let P be a totally umbilical lightlike hypersurface, then the fibers
Σt are spherical. It is easy to see that there are only two lightlike hypersurfaces
that contain the fiber Σt, but we can construct two lightlike cones containing
Σt. This concludes the proof. ¥

Lightlike submanifolds in the De-Sitter space Sn+1
1

Fix a vector a ∈ Rn+2
1 such that 〈a, a〉 = −1 and consider as before π̄a :

Rn+2
1 −→ R the map defined by π̄a(x) = 〈x, a〉. It is not difficult to prove that

πa = π̄a|Sn+1
1

is a totally umbilical submersion with Riemannian fibers. To
make easier the computations, choose a = (1, 0, . . . , 0). Then, for each t ∈ R,
the fiber Ft = π−1

a (t) is a totally umbilical hypersurface with shape operator
Â◦ = µI, where µ = t/

√
t2 + 1. Therefore Ft have positive constant curvature

1/(t2 + 1), hence Ft is a sphere of radius
√

t2 + 1. Note that the fiber F0 is
totally geodesic (µ|F0 = 0). We have the following situation:

{t} × Rn+1 ιt−−−−→ Rn+2
1

π̄−−−−→ R−

ψ̄t

x
xψ̄

xi

{t} × Sn(1/(1 + t2)) it−−−−→ Sn+1
1

πa−−−−→ R−

ψt

x
xψ

xi

Σt
jt−−−−→ P

π̃a−−−−→ π̃a(P )

(11)

Proposition 7 The m-dimensional totally geodesic lightlike submanifolds P
in the De-Sitter space Sn+1

1 ⊂ Rn+2
1 are exactly the intersections of null (m+1)-

planes in Rn+2
1 passing through the origin with Sn+1

1 .
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Proof. Consider πa : Sn+1
1 −→ R with a = (1, 0, . . . , 0), defined as above.

Then the fibers Ft are exactly Sn(1/(1 + t2). Since totally geodesic lightlike
submanifolds are ruled by null lines, then it is very important to study the
immersion Σ0 ⊂ F0 = Sn(1). We work in F0 because it is the unique totally
geodesic fiber in Sn+1

1 , and so the computations are easier.
By using Proposition 3, for a suitable basis {N, N1, . . . , Nn−m} of Ṽ(TP )⊥,

we have

Aξ =
1√
2
(ÃN + µId), ANj = ÃNj , 1 ≤ j ≤ n−m.

Then P is totally geodesic iff ÃNj = 0 and ÃN = −µId. In particular, if
we restricted these operators to the fiber Σ0, then ÃN = 0 and consequently
the immersion Σ0 ⊂ Sn is totally geodesic. It is well-known that the totally
geodesics submanifolds of Sn are (m − 1)-dimensional spheres of maximum
radius (that is, intersections of m-planes passing through the origin with Sn).
Until now, we have proved that Σ0 = Πm ∩ Sn where Πm is an m-plane
contained in F0 = Rn+1. We are going to prove that ξ is a parallel section on
Σ0 in Rn+2

1 .
We denote by ν the normal vector field of the immersion Sn+1

1 ⊂ Rn+2
1 , so

that the shape operator of Sn+1
1 is given by Aν = −Id. If W ∈ S(TP ) = Ṽ(TP )

and ξ is the canonical radical section, then

∇̄◦W ξ = ∇◦W ξ + 〈Aν(W ), ξ〉 ν = Aξ(W ) = 0.

Let Π̄ be the null (m+1)-plane given by Π̄ = Πm⊥span {v}, where v have the
same direction of ξ|Σ0 , then it is easy to check that P = Π̄ ∩ Sn+1

1 . ¥

Lightlike submanifolds of the Anti-De Sitter space Hn+1
1

We can obtain analogous results as in the De Sitter space. Fix a vector a ∈
Rn+2

2 such that 〈a, a〉 = 1 and let us consider π̄a : Rn+2
2 −→ R the map defined

by π̄a(x) = 〈x, a〉. Consider πa = π̄a|Hn+1
1

. It can be proved that πa is a
totally umbilical submersion with Lorentzian fibers. The fibers Ft = π−1

a (t)
are totally umbilical hypersurfaces with shape operator Â◦ = (−t/

√
t2 + 1)I.

Then they are of negative constant curvature −1/(1 + t2) and therefore they
are pseudo-hyperbolic spaces Hn

1 (−1/(1+t2)). Note that the fiber F0 is totally
geodesic in Hn+1

1 . The induced map π̃ is not in general a submersion, but in
this case, since the fibers are again anti De-Sitter spaces, we can suppose that
P is not contained in any fiber and then π̃ is a submersion. Choosing the
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point a = (0, . . . , 0, 1), we are in the following situation.

{t} × Rn+1
2

ιt−−−−→ Rn+2
2

π̄−−−−→ R+

ψ̄t

x
xψ̄

xi

{t} ×Hn
1 (−1/(1 + t2)) it−−−−→ Hn+1

1
πa−−−−→ R+

ψt

x
xψ

xi

Σt
jt−−−−→ P

π̃a−−−−→ π̃a(P )

(12)

Denote by Π̄m+1
i,r an (m + 1)-plane passing through the origin of Rn+2

2 , where
i and r denote the index and the dimension of the radical distribution, re-
spectively. In the semi-Euclidean space Rn+2

2 there exist six different types of
(m + 1)-planes, they are: Π̄m+1

0,0 , Π̄m+1
1,0 , Π̄m+1

2,0 , Π̄m+1
1,1 , Π̄m+1

0,1 and Π̄m+1
0,2 .

The intersection of (m + 1)-planes of index 0 with the Anti De-Sitter
space is empty. On the other hand, Π̄m+1

1,0 ∩ Hn+1
1 is an hiperbolic space Hm

and Π̄m+1
2,0 ∩ Hn+1

1 is an Anti De-Sitter space Hm
1 . The following proposition

describes the intersection Π̄m+1
1,1 ∩Hn+1

1 .

Proposition 8 The m-dimensional totally geodesic lightlike submanifolds P
of the Anti De-Sitter space Hn+1

1 ⊂ Rn+2
2 are exactly the intersections of (m+

1)-planes Π̄m+1
1,1 in Rn+2

2 passing through the origin with Hn+1
1 .

Proof. Consider the submersion πa : Hn+1
1 −→ R defined above and let π̃

be the submersion induced by π. Similar considerations as in the De-Sitter
space apply to this case, and prove that P is of the form Σ0 × ` where `
represents a constant null direction and Σ0 is a (m − 1)−dimensional totally
geodesic Riemannian submanifold of F0 = Hn

1 , that is, Σ0 = Hm−1. Actually,
we can write Σ0 = Πm ∩Hn, where Πm is a Lorentzian plane of dimension m.
Take Π̄m+1

1,1 = Πm⊥span {v}, where v have the same direction of `, then it is
easy to show that P = Π̄m+1

1,1 ∩Hn+1
1 . ¥

Acknowledgments

This research has been partially supported by Dirección General de Investi-
gación (MCYT) grant BFM2001-2871.
The second author is supported by a FPI Grant, Program PG, Ministerio de
Educación y Ciencia.



Angel Ferrández, Angel Giménez and Pascual Lucas 13
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