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Abstract

We study null Cartan generalized helices in the four dimensional Lorentz-Minkowski
L*. We find a Lancret type theorem and the solutions to the natural equations
problem. We also give some solutions of the null Betchov-Da Rios equation.
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1 Introduction

A Lancret curve (or generalized helix) & is a curve whose tangent makes a con-
stant angle with a fixed direction (called the axis). The study of these cuni$ in
dates from 1802 when M.A. Lancret stated that “a curve is a generalized helix if and
only if the ratio of curvature to torsion is constant” (see [9] for details). The Lancret
theorem was revisited and solved by M. Barros (see [1]) in 3-dimensional real space
forms by using Killing vector fields along curves. Recently, new improvements have
been achieved in Lorentzian space forms (see [2]).

The interest of non null generalized helices is well known (see [7] and [8]). We
have found in [3] parametrized solutions of the localized induction equation (LIE)
dv/0s = 0v/0t x 8%y/0t? in the 3-dimensional Lorentzian space forms, so that
the soliton solutions are the null geodesics of the Lorentzian cylindeBssmrolls.

In [6] we propose the equatiadyy/ds = 0%v/0t? x 33y/0t3 x --- x "~ /Ot™ as

the corresponding LIE for null curvegt) = ~(¢,0) in then-dimensional Lorentz-
Minkowski space. Then we find that null generalized helicek’trevolving in the

axis direction are solutions of the null LIE.

Throughout this paper we will deal with fully immersed curves, which means
that all of its Cartan curvatures do not vanish anywhere.
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2 Null generalized helices ini-dimensional Lorentz-
Minkowski spaces

Lety : I — L* be a null Cartan curve (see [4]) with Cartan frafile = ~/(t),
W1, N, W»} satisfying the equations

L'=Wy; W|{=-kL+N; N =—-kWi+7Wy; Wj=r7L. Q)

Definition 2.1. A null Cartan curvey : I — L* is said to be ageneralized helix
if there exists a constant vector# 0 such that the produck = (L(t),v) # 0 is
constant.

The straight line generated by which can be spacelike, timelike or lightlike, is
uniquely determined and will be called tagisof v. Whenv is spacelike or timelike,
we can suppose thatis of unit length.

The general characterization of null generalized helicds'intates as follows.

Theorem 2.2.Lety : I — LL* be a null Cartan curve. Thenis a generalized helix
if and only if its Cartan curvatures satisfy the following differential equation

(K =7*(2k+C), K #0, )
whereC' is a constant.

Proof. Let~ be a Cartan generalized helix with axis= u(¢t)L + A\ (t)W1 — AN +
A2(t)Wo, where is a constant ang, \; : I — R are differentiable functions.
Then

d
dis’: (1 = Mk + Xom) L+ (4 N, 4+ M) Wi + AN + (N — A7) W

As v is a constant vector we get

AM=0; pu+Xe=0; g +X7r=0 XNy—XIr=0. 3)
As T # 0, we deduce that = —\k and\, = \k’/7, so that the axis of the helix is

k/
U =—MkL — AN + A\—Wh. (4)
T

Finally, as(v, v) = ¢ = +1 we obtain the equation (2) with = /2. Furthermore,
k' = 0 yields A\, = 0 and soAT = 0, which can not be hold by definition of
generalized helix.

Conversely, let us suppose that the curvatureg sdtisfiy the equation (2), and
consider the vector field alongdefined by (4), where. = \m Then is easy to
prove that is a constant vector and., v) = \. O
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3 The solving natural equations problem

This classical problem concerns with finding out a fully immersed parametrized curve
which has as Cartan curvatures a pair of given functions. As we are now dealing with
helices, we have to distinguish according to whether the axis is non-null or null.

3.1 Non-null axis

Lety : I — LL* be a null Cartan curve and let # 0 be a unit constant vector
(spacelike or timelike), that iSy,v) = ¢ = +1. Let X denote the hyperplane or-
thogonal tov, P the projection map onto the hyperplafi@nd3 = P(~). Following
the ideas of [5], we deduce thatis a spacelike (resp. timelike) curve provided that
v is timelike (resp. spacelike).

Let3 : J — X be the arc-length parametrization@fvith curvature functions
k and7.
Theorem 3.1. Lety be a null Cartan curve if.%, v # 0 a constant unit vectoi:
the hyperplane orthogonal to in I.* and 3 the projection ofy ontoX. Theny is a
generalized helix with axis if and only if 3 is a curve of with constant curvature
and non-constant torsion.

As a consequence we have

Theorem 3.2. Let~ be a null Cartan curve if.*. Theny is a generalized helix with
non-null axis if and only if it is a null geodesic of a Lorentzian cylinder constructed
on a spacelike curve iiR3 or a timelike curve inL3 with constant curvature and
non-constant torsion.

3.2 Null axis

There exists a close relation between timelike generalized helices and null Cartan
generalized helices having both the same null axis. Let us begin doing a short study
of non-degenerate generalized helices.

Let 3 : J — L* be a non-degenerate curve with Frenet frapfie= /3(s),
ni,n2,n3}, where(l, £) = 9 and(n;,n;) = ¢;. We will say thats is ageneralized
helix if there exist a constant vecter # 0 such that the produgt/(s),v) # 0 is
constant.

Theorem 3.3. Let 3 be a non-degenerate curveliit. Theng is a generalized helix
if and only if its curvatures functions satisfy the following differential equation

(¢)? = eoe1ki (9 +C), ¢ #0, (5)

whereg = k; /k, andC is a constant.
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The proof of this theorem is quite similar to that of Theorem 2.2.
On the other hand, let : I — L* be a timelike generalized helix with null

axisv. We choose as
k 1d [k
2U:£+Tln2+~77 Tl ns,
) ks ds \ ko

satisfying that/, v) = —%. Then, the surfacé locally parametrized by (s,w) =
B(s) +wuv is a Lorentzian surface ih*. The null geodesics & can be parametrized
by 7(s) = B(s) — (s +o)v, whereo is a constant. Letbe the pseudo-arc parameter
of 4 (as a curve i) and writey(t(s)) = 3(s) — (s + o)v. An easy computation

yields/ k1 (s) (L, v) = —1/2. Thereforey is a Cartan generalized helix if and only

if l?:l is constant. Furthermore, the Cartan curvatures ahd those of the timelike
generalized helixs are related by

2 _ ka(s)%hks(s)” + ky(s)?
o T(s)” = P :

ka(s)? — k2
2k,

k(t(s)) =

Then we have proved the following

Theorem 3.4. Let~ be a null Cartan curve if.*. Theny is a generalized helix with
null axis if and only if it is a geodesic of a Lorentzian ruled surface whose directrix
is a timelike generalized helix ih* (with null axis and constant first curvature) and
whose rulings have the axis direction.

4 The null Betchov-Da Rios equation

In this section we present a similar soliton equation toBetchov-Da Rios or local-
ized induction equation (LIEsuch that the evolving curves are null ones. We are
interested in finding out evolution equations where the null helices provide soliton
solutions.

Definition 4.1. Let v(¢, s) be the evolution equation by null Cartan curves, in a
n-dimensional Lorentzian spade”, of v(¢t) = ~(¢,0), wheret is the pseudo-arc
parameter. The equation
oy 0%y o™y
B A NPy s 6
0s  Ot2 otn ©)
will be called the null Betchov-Da Rios equation or null localized induction equation
(NLIE).
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Observe that, from a geometric point of view, s) is a parametrized surface,
thenV(t,s) = %(t, s) is thevariational vector fieldon the surface. The classical
Betchov-Da Rios equation is usually written %}5 = kB (then known as filament
equation), that is, in terms of the Frenet frames and curvature functions of the state
curves. We can do the same for NLIE in the three, four and five dimensional cases,
respectively, obtaining

oy oy W

%— (kL+N), %—kQ(lﬁlL“y‘N) kl 25

19}

L= —k3ka(ki L+ N) = KikakoWa — (b — kakf{ + K5ki)We.

As a conseguence it is easy to see the following

Proposition 4.2. Let (¢, s) be the evolution equation by null Cartan curvedlifi
andlet{L, Wy, N,Ws, ..., W, _»} be the Cartan frame associated to any state curve
of the evolution. Then the variational vector fiéfdof (¢, s) satisfies the following
equations:

(A1)(VLV,L) =0, (A2)(ViV, W) = 0.

Then the solutions of NLIE satisfy the following conditions

3-dimensional case 4-dimensional case¢ 5-dimensional case
or 0
Al) | al ar_ 921y
(A1) | always 5 0 8t(k2k3) 0
ok Ok
A2) | — = always = =
(A2) | 5 =0 way o

Finally, we present some interesting examples in low dimensions.

Example 4.1.Let~ : I — L2 a null Cartan helix with constant curvatukeand
Cartan framg L, W, N'}, and consider

V(t, ) = y(t) — s(kL(t) + N(1)),

which means that/(t) evolves by translation along its axis. It is easy to see that
v(t, 5) is a solution of the NLIE irl.3,

Example 4.2.Let v be a null Cartan generalized helix It with Cartan frame
{L,W1, N,Ws,} and constant second curvaturelts axis was given in (4), which
now is written as

v = 2 (r(ROL(E) + N () — K (O)Wa(t)).

T
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where) = (L, v) andk(t) satisfies (2). Then we obtain that

_ 1y 2 &
k) =5 (Pt +0) - 53)
o being a constant, andt, s) = v(t) — (7/))sv is a solution of the NLIE irl.%.

Example 4.3.Let v be a null Cartan helix irl.> with Cartan frame{L, Wy, N,
Wy, W3}, lts axis is given byv = kska(kiL + N) + W3, wherek;, ko and k3
are constant. Thef(t, s) = y(t) — skjv is a simple solution of the NLIE.
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