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Abstract

We study null Cartan generalized helices in the four dimensional Lorentz-Minkowski
L4. We find a Lancret type theorem and the solutions to the natural equations
problem. We also give some solutions of the null Betchov-Da Rios equation.
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1 Introduction

A Lancret curve (or generalized helix) inR3 is a curve whose tangent makes a con-
stant angle with a fixed direction (called the axis). The study of these curves inR3

dates from 1802 when M.A. Lancret stated that “a curve is a generalized helix if and
only if the ratio of curvature to torsion is constant” (see [9] for details). The Lancret
theorem was revisited and solved by M. Barros (see [1]) in 3-dimensional real space
forms by using Killing vector fields along curves. Recently, new improvements have
been achieved in Lorentzian space forms (see [2]).

The interest of non null generalized helices is well known (see [7] and [8]). We
have found in [3] parametrized solutions of the localized induction equation (LIE)
∂γ/∂s = ∂γ/∂t × ∂2γ/∂t2 in the 3-dimensional Lorentzian space forms, so that
the soliton solutions are the null geodesics of the Lorentzian cylinders orB-scrolls.
In [6] we propose the equation∂γ/∂s = ∂2γ/∂t2 × ∂3γ/∂t3 × · · · × ∂nγ/∂tn as
the corresponding LIE for null curvesγ(t) = γ(t, 0) in then-dimensional Lorentz-
Minkowski space. Then we find that null generalized helices inLn evolving in the
axis direction are solutions of the null LIE.

Throughout this paper we will deal with fully immersed curves, which means
that all of its Cartan curvatures do not vanish anywhere.
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2 Null generalized helices in4-dimensional Lorentz-
Minkowski spaces

Let γ : I −→ L4 be a null Cartan curve (see [4]) with Cartan frame{L = γ′(t),
W1, N, W2} satisfying the equations

L′ = W1; W ′
1 = −kL + N ; N ′ = −kW1 + τW2; W ′

2 = τL. (1)

Definition 2.1. A null Cartan curveγ : I −→ L4 is said to be ageneralized helix
if there exists a constant vectorυ 6= 0 such that the productλ = 〈L(t), υ〉 6= 0 is
constant.

The straight line generated byυ, which can be spacelike, timelike or lightlike, is
uniquely determined and will be called theaxisof γ. Whenυ is spacelike or timelike,
we can suppose thatυ is of unit length.

The general characterization of null generalized helices inL4 states as follows.

Theorem 2.2.Letγ : I −→ L4 be a null Cartan curve. Thenγ is a generalized helix
if and only if its Cartan curvatures satisfy the following differential equation

(k′)2 = τ2 (2k + C) , k′ 6= 0, (2)

whereC is a constant.

Proof. Let γ be a Cartan generalized helix with axisυ = µ(t)L + λ1(t)W1 − λN +
λ2(t)W2, whereλ is a constant andµ, λi : I −→ R are differentiable functions.
Then

dυ

ds
=
(
µ′ − λ1k + λ2τ

)
L +

(
µ + λ′1 + λk

)
W1 + λ1N +

(
λ′2 − λτ

)
W2.

As υ is a constant vector we get

λ1 = 0; µ + λk = 0; µ′ + λ2τ = 0; λ′2 − λτ = 0. (3)

As τ 6= 0, we deduce thatµ = −λk andλ2 = λk′/τ , so that the axis of the helix is

υ = −λkL− λN + λ
k′

τ
W2. (4)

Finally, as〈υ, υ〉 = ε = ±1 we obtain the equation (2) withC = ε/λ2. Furthermore,
k′ = 0 yields λ2 = 0 and soλτ = 0, which can not be hold by definition of
generalized helix.

Conversely, let us suppose that the curvatures ofγ satisfiy the equation (2), and
consider the vector field alongγ defined by (4), whereλ =

√
|C|. Then is easy to

prove thatυ is a constant vector and〈L, υ〉 = λ.
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3 The solving natural equations problem

This classical problem concerns with finding out a fully immersed parametrized curve
which has as Cartan curvatures a pair of given functions. As we are now dealing with
helices, we have to distinguish according to whether the axis is non-null or null.

3.1 Non-null axis

Let γ : I −→ L4 be a null Cartan curve and letυ 6= 0 be a unit constant vector
(spacelike or timelike), that is,〈υ, υ〉 = ε = ±1. Let Σ denote the hyperplane or-
thogonal toυ, P the projection map onto the hyperplaneΣ andβ̄ = P (γ). Following
the ideas of [5], we deduce thatβ̄ is a spacelike (resp. timelike) curve provided that
υ is timelike (resp. spacelike).

Let β : J −→ Σ be the arc-length parametrization ofβ̄ with curvature functions
k̃ andτ̃ .

Theorem 3.1. Let γ be a null Cartan curve inL4, υ 6= 0 a constant unit vector,Σ
the hyperplane orthogonal toυ in L4 and β̄ the projection ofγ ontoΣ. Thenγ is a
generalized helix with axisυ if and only if β̄ is a curve ofΣ with constant curvature
and non-constant torsion.

As a consequence we have

Theorem 3.2. Letγ be a null Cartan curve inL4. Thenγ is a generalized helix with
non-null axis if and only if it is a null geodesic of a Lorentzian cylinder constructed
on a spacelike curve inR3 or a timelike curve inL3 with constant curvature and
non-constant torsion.

3.2 Null axis

There exists a close relation between timelike generalized helices and null Cartan
generalized helices having both the same null axis. Let us begin doing a short study
of non-degenerate generalized helices.

Let β : J −→ L4 be a non-degenerate curve with Frenet frame{` = β′(s),
n1, n2, n3}, where〈`, `〉 = ε0 and〈ni, ni〉 = εi. We will say thatβ is ageneralized
helix if there exist a constant vectorυ 6= 0 such that the product〈`(s), υ〉 6= 0 is
constant.

Theorem 3.3. Letβ be a non-degenerate curve inL4. Thenβ is a generalized helix
if and only if its curvatures functions satisfy the following differential equation

(φ′)2 = ε0ε1k̃
2
3

(
φ2 + C

)
, φ′ 6= 0, (5)

whereφ = k̃1/k̃2 andC is a constant.
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The proof of this theorem is quite similar to that of Theorem 2.2.
On the other hand, letβ : I −→ L4 be a timelike generalized helix with null

axisυ. We chooseυ as

2υ = ` +
k̃1

k̃2

n2 +
1
k̃3

d

ds

(
k̃1

k̃2

)
n3,

satisfying that〈`, υ〉 = −1
2 . Then, the surfaceS locally parametrized byX(s, ω) =

β(s)+ωυ is a Lorentzian surface inL4. The null geodesics ofS can be parametrized
by γ̄(s) = β(s)− (s+σ)υ, whereσ is a constant. Lett be the pseudo-arc parameter
of γ̄ (as a curve inL4) and writeγ(t(s)) = β(s) − (s + σ)υ. An easy computation

yields
√

k̃1(s) 〈L, υ〉 = −1/2. Therefore,γ is a Cartan generalized helix if and only

if k̃1 is constant. Furthermore, the Cartan curvatures ofγ and those of the timelike
generalized helixβ are related by

k(t(s)) =
k̃2(s)2 − k̃2

1

2k̃1

, τ(t(s))2 =
k̃2(s)2k̃3(s)2 + k̃′2(s)

2

k̃2
1

.

Then we have proved the following

Theorem 3.4. Letγ be a null Cartan curve inL4. Thenγ is a generalized helix with
null axis if and only if it is a geodesic of a Lorentzian ruled surface whose directrix
is a timelike generalized helix inL4 (with null axis and constant first curvature) and
whose rulings have the axis direction.

4 The null Betchov-Da Rios equation

In this section we present a similar soliton equation to theBetchov-Da Rios or local-
ized induction equation (LIE), such that the evolving curves are null ones. We are
interested in finding out evolution equations where the null helices provide soliton
solutions.

Definition 4.1. Let γ(t, s) be the evolution equation by null Cartan curves, in a
n-dimensional Lorentzian spaceLn, of γ(t) = γ(t, 0), wheret is the pseudo-arc
parameter. The equation

∂γ

∂s
=

∂2γ

∂t2
∧ · · · ∧ ∂nγ

∂tn
(6)

will be called the null Betchov-Da Rios equation or null localized induction equation
(NLIE).
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Observe that, from a geometric point of view,γ(t, s) is a parametrized surface,
thenV (t, s) = ∂γ

∂s (t, s) is thevariational vector fieldon the surface. The classical

Betchov-Da Rios equation is usually written as∂γ
∂s = kB (then known as filament

equation), that is, in terms of the Frenet frames and curvature functions of the state
curves. We can do the same for NLIE in the three, four and five dimensional cases,
respectively, obtaining

∂γ

∂s
= −(kL + N),

∂γ

∂s
= k2(k1L + N)− k′1W2,

∂γ

∂s
= −k2

2k3(k1L + N)− k′1k2k3W2 − (k3
2 − k2k

′′
1 + k′2k

′
1)W3.

As a consequence it is easy to see the following

Proposition 4.2. Let γ(t, s) be the evolution equation by null Cartan curves inLn

and let{L,W1, N, W2, . . . ,Wn−2} be the Cartan frame associated to any state curve
of the evolution. Then the variational vector fieldV of γ(t, s) satisfies the following
equations:

(A1)〈∇LV,L〉 = 0, (A2)
〈
∇2

LV,W1

〉
= 0.

Then the solutions of NLIE satisfy the following conditions

3-dimensional case 4-dimensional case 5-dimensional case

(A1) always
∂τ

∂t
= 0

∂

∂t
(k2

2k3) = 0

(A2)
∂k

∂t
= 0 always

∂k1

∂t
= 0

Finally, we present some interesting examples in low dimensions.

Example 4.1.Let γ : I −→ L3 a null Cartan helix with constant curvaturek and
Cartan frame{L,W,N}, and consider

γ(t, s) = γ(t)− s(kL(t) + N(t)),

which means thatγ(t) evolves by translation along its axis. It is easy to see that
γ(t, s) is a solution of the NLIE inL3.

Example 4.2.Let γ be a null Cartan generalized helix inL4 with Cartan frame
{L,W1, N, W2} and constant second curvatureτ . Its axis was given in (4), which
now is written as

υ = −λ

τ

(
τ(k(t)L(t) + N(t))− k′(t)W2(t)

)
,
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whereλ = 〈L, υ〉 andk(t) satisfies (2). Then we obtain that

k(t) =
1
2

(
τ2(t + σ)2 − ε

λ2

)
,

σ being a constant, andγ(t, s) = γ(t)− (τ/λ)sυ is a solution of the NLIE inL4.

Example 4.3.Let γ be a null Cartan helix inL5 with Cartan frame{L,W1, N ,
W2,W3}. Its axis is given byυ = k3k2(k1L + N) + W3, wherek1, k2 andk3

are constant. Thenγ(t, s) = γ(t)− sk3
2υ is a simple solution of the NLIE.
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