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Departamento de Mateḿaticas , Universidad de Murcia

emails: aferr@um.es, majava@um.es, plucas@um.es

Abstract

We study particle paths determined by an action which is linear in the torsion.
The Euler-Lagrange equations associated are solved obtaining the curvatures
of the paths. We also integrate the corresponding Frenet equations and find out
explicitly the trajectories.
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1 Introduction

The model of a particle with torsion in (2+1)-Minkowski space has been deeply in-
vestigated. For example, it was shown that, at classical level, the squared mass of
the system is restricted from above and that, besides the massive solutions of the
equations of motion, the model must also have massless and tachyonic solutions, [1].
The same author obtains in [2] the classical equations of motion of the model whose
Lagrangian isf = −m + ατ . This model of relativistic particle with torsion (whose
action appears in the Bose-Fermi transmutation mechanism) is also studied in [3],
where it is canonically quantized in the (2+1)-Minkowski and 3-Euclidean spaces.

In d=(3+1) there are also some geometrical models of relativistic particles that
involve the curvatures of the particle path. In these cases, it seems interesting to
investigate the models and establish which of them have a maximal symmetry, [4].
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Recently, in [5] the authors consider a relativistic particle whose dynamics is deter-
mined by an action depending on the torsionk2. The Euler-Lagrange equations are
obtained but unfortunately, as the authors pointed out, these higher order differential
equations do not appear to be tractable in general.

The main goal of this work is to solve the Euler-Lagrange equations when the
action depends linearly on the torsion and the background is 4-dimensional and flat.
Furthermore, we are able to integrate the Frenet-Serret equations of the critical curves
obtaining explicit expressions for its coordinates.

This paper advances some results contained in [6].

2 The model and the equations of motion

Let R4
ν be the4-dimensional pseudo-Euclidean space with background gravitational

field ds2 = 〈, 〉 given byds2 = −
∑ν

i=1 dx2
i +

∑4
i=ν+1 dx2

i , where(x1, x2, x3, x4)
denote the usual rectangular coordinates. As usual, let∇ denote the Levi-Civita
connection onR4

ν .

A non-null differentiable curveγ : [0, L] → R4
ν is said to be a Frenet curve

if there exist functions{k1, k2, k3} and vector fields{T = γ′, N1, N2, N3} alongγ
such that the following equations (called the Frenet-Serret equations) hold:

∇T T = ε1k1N1,

∇T N1 = −ε0k1T + ε2k2N2,

∇T N2 = −ε1k2N1 + ε3k3N3,

∇T N3 = −ε2k3N2.

Hereε0 = 〈T, T 〉 andεi = 〈Ni, Ni〉 for i = 1, 2, 3. It should be noted that curves
in Euclidean spaceR4 and time-like curves in Lorentzian spaceL4 are always Frenet
curves.

We are now to investigate Lagrangians which are linear functions on the torsion
of the relativistic particle. The spaceΛ of elementary fields in this model is that
of Frenet curves fulfilling given first order boundary data to drop out the boundary
terms which appear in the first variation formula of the action. We consider the action
L : Λ → R given by

L(γ) =
∫

γ
(pk2 + q)ds,

p andq being constant.

By using a standard argument involving some integrations by parts we find, after
a long and messy computation using the Frenet equations, the first-order variation of
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this action, which is given by

L′(0) = [B(γ, W )]L0 −
∫

γ
〈∇T P,W 〉 ds, (1)

where the vector fieldP reads

P = ε0qT + ε0p(k1 − εk3ϕ)N2 + ϕ′N3

and the boundary term is given by

B(γ, W ) =
〈
∇2

T W, ε1
p

k1
N2

〉
+ 〈∇T W,−ε1ε3pϕN3〉+ 〈W,P 〉 ,

W standing for a generic variational vector field alongγ, ε = ε0ε1ε2ε3 andϕ =
k3/k1. To drop out the term[B(γ, W )]L0 , we must consider curves with the same
endpoints and having the same Frenet frame on them. Then we have obtained the
following result.

The trajectory γ ∈ Λ is the worldline of a relativistic particle in our model if
and only if the vector field P is constant alongγ.

A straightforward computation from the above equations shows thatP is con-
stant if and only if the following equations of motion hold:

pk2(1− εϕ2)− q = 0, (2)

k′1(1− εϕ2)− 3εk1ϕϕ′ = 0, (3)

−ε2ε3ϕ
′′ − εk2

1ϕ(1− εϕ2) = 0. (4)

Before integrating these equations, we are going to present some easy consequences.
First, let us consider the functionΨ = k2

1(1 − εϕ2)3. Then from Eq. (3) we find
Ψ′ = 0, so thatΨ = A is constant. Second, assume without loss of generality that
k1 6= 0 (otherwise,γ would be a geodesic). IfA = 0 thenϕ2 = 1, so thatk3 = ±k1,
and from equation (2) we deduce thatq = 0. Note that this situation can not appears
in the Lorentzian background. The most interesting case happens whenA 6= 0, which
will be solved in the next section.

3 The solutions of the equations of motion

The main goal of this section is to integrate the motion equations of Lagrangians giv-
ing models for relativistic particles that involve linearly the torsion of the worldline.
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Let Z1 andZ2 be constant vector fields and consider the vector fieldW = γ ∧
Z1 ∧ Z2, then the boundary term reads

B(γ, W ) = 〈(p N1 ∧N2 − ε1ε3pϕ T ∧N3 + γ ∧ P ) ∧ Z1, Z2〉 .

As P is a constant vector field, we obtain two constant vectors

Q = p N1 ∧N2 ∧ P − ε1ε3pϕ T ∧N3 ∧ P,

V = p N1 ∧N2 ∧Q− ε1ε3pϕ T ∧N3 ∧Q + γ ∧ P ∧Q.

ThenJ = −γ ∧ P ∧Q + V is a Killing vector field alongγ. Furthermore,P , Q and
J read

P = ε0q T + ε0pk1(1− εϕ2) N2 + ε1ε3pϕ′ N3, (5)

Q = −ε0ε1ε3p
2ϕ′ T + ε0ε3p

2ϕk1(1− εϕ2) N1 + ε0ε3pq N3, (6)

J = p2(−ε3q T − ε0ε1ε2pϕ2k1(1− εϕ2) N2 − ε0ε1pϕ′N3), (7)

and they can be interpreted as generators of the particle massM and spinS, with
the mass-shell condition and the Majorana-like relation betweenM andS given by
〈P, P 〉 = M2 and〈P, J〉 = MS.

By using thatP andQ are constant vector fields alongγ, so that〈P, P 〉 = εP u2

and〈Q,Q〉 = εQv2 also are, we obtain the following two first integrals forϕ:

ε3p
2(ϕ′)2 + ε0q

2 + ε2p
2k2

1(1− εϕ2)2 = εP u2, (8)

p2[ε0p
2(ϕ′)2 + ε1ϕ

2p2k2
1(1− εϕ2)2 + ε3q

2] = εQv2. (9)

Then, asA is not zero, we get

(ϕ′)2 =
(εP u2 − ε0q

2)(1− εϕ2)− ε2p
2A

ε3p2(1− εϕ2)
.

This ODE can be integrate and its solution reads

aE
(
arcsin (bϕ) ,

ε

b2

)
= t + C1,

whereC1 is an arbitrary constant,a =
√

ε3p2

ε(εP u2−ε0q2)
, b =

√
ε(εP u2−ε0q2)

−ε2p2A+εP u2−ε0q2 and

E stands for the elliptic function of second kind. From here and Eq. (2) we obtain the
curvatures in terms of the functionϕ:

k2
1 =

A

(1− εϕ2)3
, k2 =

q

p (1− εϕ2)
,

k2
3 =

Aϕ2

(1− εϕ2)3
.
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4 Integration of the Frenet equations

As P and Q determine privileged directions, it is natural to introduce cylindrical
coordinates inR4

ν such thatP andQ are axes. Without loss of generality we can as-
sume thatP andQ are linearly independent and one of them is non-null; otherwise,
we haveϕ2 = 1, which can not be integrated. Then letΠ = P ∧ Q be the plane
determined byP andQ. We can introduce orthonormal (or pseudo-orthonormal)
coordinates(z1, z2) in Π such thatP andQ are collinear with∂z1 and∂z2 , respec-
tively. On the other hand, letΠ∗ a complementary plane, i.e.R4

ν = Π ⊕ Π∗ get-
ting coordinates(z3, z4) on Π∗ such that{∂z1 , ∂z2 , ∂z3 , ∂z4} is an orthonormal (or
pseudo-orthonormal) frame satisfying that∂z4 = ∂z1 ∧ ∂z2 ∧ ∂z3 .

Let {Rθ} be the uniparametric group of rotations ofR4
ν leaving invariant the

planeΠ (the expression of this group depends on the causal character ofP andQ).
Consider the parametrizationΨ of R4

ν given by

Ψ(z1, z2, r, θ) = Rθ(z1∂z1 + z2∂z2 + r∂z3)

that provides us a new coordinate system(z1, z2, r, θ) in R4
ν . Note that the parameter

θ can be chosen in such a way thatγ ∧ ∂z1 ∧ ∂z2 = ∂θ.

By using the invariance under translations it is not difficult to see that the vector
field J can be written as

J = c∂θ − εQv2H,

whereH = − εP
u ∂z1 or H = ∂z3 according toP is non-null or null respectively, and

c is a constant. Here we have used that〈P, J〉 = −〈Q,Q〉.
The unit tangent vector readsT = (z1)s∂z1 +(z2)s∂z2 +rs∂r +θs∂θ, and taking

into account Eqs. (5)–(7) we can obtain three ordinary differential equations from
the products〈T, P 〉, 〈T,Q〉 and〈T, J〉. These equations jointly with the equation
obtained from〈J, J〉 allow us to determineγ.

We have to consider three cases: (i)P andQ are non-null; (ii)P is null andQ
is non-null; (iii) P is non-null andQ is null. All of them can be solved following the
method described above. For example, in case (i) we can takeΠ∗ as the orthogonal
complementΠ⊥ to Π and(r, θ) the polar coordinates inΠ⊥. Then(z1, z2, r, θ) are
the cylindrical coordinates in the background space.

As T = (z1)s∂z1 + (z2)s∂z2 + rs∂r + θs∂θ we have

(z1)s = εP

q

u
, (z2)s = −ε1ε3εQ

p2ϕ′

v
.

On the other hand, from〈J, J〉 = εθr
2u2v2 +εP v4/u2 and (7) we are able to find the

radial functionr. Finally, as we can compute〈J, T 〉 in two different ways, we deduce
that−εθuvr2θs − εP εQ(v2/u)(z1)s = −ε0ε3p

2q. Then we can easily integrate to
getθ.
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